author | nipkow |
Fri, 10 May 2002 18:00:48 +0200 | |
changeset 13133 | 03d20664cb79 |
parent 6053 | 8a1059aa01f0 |
child 13134 | bf37a3049251 |
permissions | -rw-r--r-- |
1478 | 1 |
(* Title: ZF/Zorn.thy |
516 | 2 |
ID: $Id$ |
1478 | 3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
516 | 4 |
Copyright 1994 University of Cambridge |
5 |
||
6 |
Based upon the article |
|
7 |
Abrial & Laffitte, |
|
8 |
Towards the Mechanization of the Proofs of Some |
|
9 |
Classical Theorems of Set Theory. |
|
10 |
||
11 |
Union_in_Pow is proved in ZF.ML |
|
12 |
*) |
|
13 |
||
806 | 14 |
Zorn = OrderArith + AC + Inductive + |
516 | 15 |
|
16 |
consts |
|
1401 | 17 |
Subset_rel :: i=>i |
18 |
chain, maxchain :: i=>i |
|
19 |
super :: [i,i]=>i |
|
516 | 20 |
|
753 | 21 |
defs |
516 | 22 |
Subset_rel_def "Subset_rel(A) == {z: A*A . EX x y. z=<x,y> & x<=y & x~=y}" |
485 | 23 |
|
516 | 24 |
chain_def "chain(A) == {F: Pow(A). ALL X:F. ALL Y:F. X<=Y | Y<=X}" |
25 |
super_def "super(A,c) == {d: chain(A). c<=d & c~=d}" |
|
26 |
maxchain_def "maxchain(A) == {c: chain(A). super(A,c)=0}" |
|
27 |
||
28 |
||
29 |
(** We could make the inductive definition conditional on next: increasing(S) |
|
30 |
but instead we make this a side-condition of an introduction rule. Thus |
|
31 |
the induction rule lets us assume that condition! Many inductive proofs |
|
32 |
are therefore unconditional. |
|
33 |
**) |
|
34 |
consts |
|
1401 | 35 |
"TFin" :: [i,i]=>i |
516 | 36 |
|
37 |
inductive |
|
38 |
domains "TFin(S,next)" <= "Pow(S)" |
|
39 |
intrs |
|
1478 | 40 |
nextI "[| x : TFin(S,next); next: increasing(S) |
1155 | 41 |
|] ==> next`x : TFin(S,next)" |
516 | 42 |
|
1478 | 43 |
Pow_UnionI "Y : Pow(TFin(S,next)) ==> Union(Y) : TFin(S,next)" |
516 | 44 |
|
6053
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
1478
diff
changeset
|
45 |
monos Pow_mono |
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
1478
diff
changeset
|
46 |
con_defs increasing_def |
516 | 47 |
type_intrs "[CollectD1 RS apply_funtype, Union_in_Pow]" |
48 |
||
49 |
end |