author | paulson |
Fri, 12 Jan 2001 16:11:55 +0100 | |
changeset 10881 | 03f06372230b |
parent 10850 | e1a793957a8f |
child 10908 | a7cfffb5d7dc |
permissions | -rw-r--r-- |
10213 | 1 |
(* Title: HOL/Datatype_Universe.ML |
2 |
ID: $Id$ |
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
4 |
Copyright 1991 University of Cambridge |
|
5 |
*) |
|
6 |
||
7 |
(** apfst -- can be used in similar type definitions **) |
|
8 |
||
9 |
Goalw [apfst_def] "apfst f (a,b) = (f(a),b)"; |
|
10 |
by (rtac split 1); |
|
11 |
qed "apfst_conv"; |
|
12 |
||
13 |
val [major,minor] = Goal |
|
14 |
"[| q = apfst f p; !!x y. [| p = (x,y); q = (f(x),y) |] ==> R \ |
|
15 |
\ |] ==> R"; |
|
16 |
by (rtac PairE 1); |
|
17 |
by (rtac minor 1); |
|
18 |
by (assume_tac 1); |
|
19 |
by (rtac (major RS trans) 1); |
|
20 |
by (etac ssubst 1); |
|
21 |
by (rtac apfst_conv 1); |
|
22 |
qed "apfst_convE"; |
|
23 |
||
24 |
(** Push -- an injection, analogous to Cons on lists **) |
|
25 |
||
26 |
Goalw [Push_def] "Push i f = Push j g ==> i=j"; |
|
27 |
by (etac (fun_cong RS box_equals) 1); |
|
28 |
by (rtac nat_case_0 1); |
|
29 |
by (rtac nat_case_0 1); |
|
30 |
qed "Push_inject1"; |
|
31 |
||
32 |
Goalw [Push_def] "Push i f = Push j g ==> f=g"; |
|
33 |
by (rtac (ext RS box_equals) 1); |
|
34 |
by (etac fun_cong 1); |
|
35 |
by (rtac (nat_case_Suc RS ext) 1); |
|
36 |
by (rtac (nat_case_Suc RS ext) 1); |
|
37 |
qed "Push_inject2"; |
|
38 |
||
39 |
val [major,minor] = Goal |
|
40 |
"[| Push i f =Push j g; [| i=j; f=g |] ==> P \ |
|
41 |
\ |] ==> P"; |
|
42 |
by (rtac ((major RS Push_inject2) RS ((major RS Push_inject1) RS minor)) 1); |
|
43 |
qed "Push_inject"; |
|
44 |
||
45 |
Goalw [Push_def] "Push (Inr (Suc k)) f = (%z. Inr 0) ==> P"; |
|
46 |
by (rtac Suc_neq_Zero 1); |
|
47 |
by (etac (fun_cong RS box_equals RS Inr_inject) 1); |
|
48 |
by (rtac nat_case_0 1); |
|
49 |
by (rtac refl 1); |
|
50 |
qed "Push_neq_K0"; |
|
51 |
||
52 |
(*** Isomorphisms ***) |
|
53 |
||
54 |
Goal "inj(Rep_Node)"; |
|
55 |
by (rtac inj_inverseI 1); (*cannot combine by RS: multiple unifiers*) |
|
56 |
by (rtac Rep_Node_inverse 1); |
|
57 |
qed "inj_Rep_Node"; |
|
58 |
||
59 |
Goal "inj_on Abs_Node Node"; |
|
60 |
by (rtac inj_on_inverseI 1); |
|
61 |
by (etac Abs_Node_inverse 1); |
|
62 |
qed "inj_on_Abs_Node"; |
|
63 |
||
64 |
bind_thm ("Abs_Node_inject", inj_on_Abs_Node RS inj_onD); |
|
65 |
||
66 |
||
67 |
(*** Introduction rules for Node ***) |
|
68 |
||
69 |
Goalw [Node_def] "(%k. Inr 0, a) : Node"; |
|
70 |
by (Blast_tac 1); |
|
71 |
qed "Node_K0_I"; |
|
72 |
||
73 |
Goalw [Node_def,Push_def] |
|
74 |
"p: Node ==> apfst (Push i) p : Node"; |
|
75 |
by (fast_tac (claset() addSIs [apfst_conv, nat_case_Suc RS trans]) 1); |
|
76 |
qed "Node_Push_I"; |
|
77 |
||
78 |
||
79 |
(*** Distinctness of constructors ***) |
|
80 |
||
81 |
(** Scons vs Atom **) |
|
82 |
||
83 |
Goalw [Atom_def,Scons_def,Push_Node_def] "Scons M N ~= Atom(a)"; |
|
84 |
by (rtac notI 1); |
|
85 |
by (etac (equalityD2 RS subsetD RS UnE) 1); |
|
86 |
by (rtac singletonI 1); |
|
87 |
by (REPEAT (eresolve_tac [imageE, Abs_Node_inject RS apfst_convE, |
|
88 |
Pair_inject, sym RS Push_neq_K0] 1 |
|
89 |
ORELSE resolve_tac [Node_K0_I, Rep_Node RS Node_Push_I] 1)); |
|
90 |
qed "Scons_not_Atom"; |
|
91 |
bind_thm ("Atom_not_Scons", Scons_not_Atom RS not_sym); |
|
92 |
||
93 |
||
94 |
(*** Injectiveness ***) |
|
95 |
||
96 |
(** Atomic nodes **) |
|
97 |
||
98 |
Goalw [Atom_def] "inj(Atom)"; |
|
99 |
by (blast_tac (claset() addSIs [injI, Node_K0_I] addSDs [Abs_Node_inject]) 1); |
|
100 |
qed "inj_Atom"; |
|
101 |
bind_thm ("Atom_inject", inj_Atom RS injD); |
|
102 |
||
103 |
Goal "(Atom(a)=Atom(b)) = (a=b)"; |
|
104 |
by (blast_tac (claset() addSDs [Atom_inject]) 1); |
|
105 |
qed "Atom_Atom_eq"; |
|
106 |
AddIffs [Atom_Atom_eq]; |
|
107 |
||
108 |
Goalw [Leaf_def,o_def] "inj(Leaf)"; |
|
109 |
by (rtac injI 1); |
|
110 |
by (etac (Atom_inject RS Inl_inject) 1); |
|
111 |
qed "inj_Leaf"; |
|
112 |
||
113 |
bind_thm ("Leaf_inject", inj_Leaf RS injD); |
|
114 |
AddSDs [Leaf_inject]; |
|
115 |
||
116 |
Goalw [Numb_def,o_def] "inj(Numb)"; |
|
117 |
by (rtac injI 1); |
|
118 |
by (etac (Atom_inject RS Inr_inject) 1); |
|
119 |
qed "inj_Numb"; |
|
120 |
||
121 |
bind_thm ("Numb_inject", inj_Numb RS injD); |
|
122 |
AddSDs [Numb_inject]; |
|
123 |
||
124 |
(** Injectiveness of Push_Node **) |
|
125 |
||
126 |
val [major,minor] = Goalw [Push_Node_def] |
|
127 |
"[| Push_Node i m =Push_Node j n; [| i=j; m=n |] ==> P \ |
|
128 |
\ |] ==> P"; |
|
129 |
by (rtac (major RS Abs_Node_inject RS apfst_convE) 1); |
|
130 |
by (REPEAT (resolve_tac [Rep_Node RS Node_Push_I] 1)); |
|
131 |
by (etac (sym RS apfst_convE) 1); |
|
132 |
by (rtac minor 1); |
|
133 |
by (etac Pair_inject 1); |
|
134 |
by (etac (Push_inject1 RS sym) 1); |
|
135 |
by (rtac (inj_Rep_Node RS injD) 1); |
|
136 |
by (etac trans 1); |
|
137 |
by (safe_tac (claset() addSEs [Push_inject,sym])); |
|
138 |
qed "Push_Node_inject"; |
|
139 |
||
140 |
||
141 |
(** Injectiveness of Scons **) |
|
142 |
||
143 |
Goalw [Scons_def] "Scons M N <= Scons M' N' ==> M<=M'"; |
|
144 |
by (blast_tac (claset() addSDs [Push_Node_inject]) 1); |
|
145 |
qed "Scons_inject_lemma1"; |
|
146 |
||
147 |
Goalw [Scons_def] "Scons M N <= Scons M' N' ==> N<=N'"; |
|
148 |
by (blast_tac (claset() addSDs [Push_Node_inject]) 1); |
|
149 |
qed "Scons_inject_lemma2"; |
|
150 |
||
151 |
Goal "Scons M N = Scons M' N' ==> M=M'"; |
|
152 |
by (etac equalityE 1); |
|
153 |
by (REPEAT (ares_tac [equalityI, Scons_inject_lemma1] 1)); |
|
154 |
qed "Scons_inject1"; |
|
155 |
||
156 |
Goal "Scons M N = Scons M' N' ==> N=N'"; |
|
157 |
by (etac equalityE 1); |
|
158 |
by (REPEAT (ares_tac [equalityI, Scons_inject_lemma2] 1)); |
|
159 |
qed "Scons_inject2"; |
|
160 |
||
161 |
val [major,minor] = Goal |
|
162 |
"[| Scons M N = Scons M' N'; [| M=M'; N=N' |] ==> P \ |
|
163 |
\ |] ==> P"; |
|
164 |
by (rtac ((major RS Scons_inject2) RS ((major RS Scons_inject1) RS minor)) 1); |
|
165 |
qed "Scons_inject"; |
|
166 |
||
167 |
Goal "(Scons M N = Scons M' N') = (M=M' & N=N')"; |
|
168 |
by (blast_tac (claset() addSEs [Scons_inject]) 1); |
|
169 |
qed "Scons_Scons_eq"; |
|
170 |
||
171 |
(*** Distinctness involving Leaf and Numb ***) |
|
172 |
||
173 |
(** Scons vs Leaf **) |
|
174 |
||
175 |
Goalw [Leaf_def,o_def] "Scons M N ~= Leaf(a)"; |
|
176 |
by (rtac Scons_not_Atom 1); |
|
177 |
qed "Scons_not_Leaf"; |
|
178 |
bind_thm ("Leaf_not_Scons", Scons_not_Leaf RS not_sym); |
|
179 |
||
180 |
AddIffs [Scons_not_Leaf, Leaf_not_Scons]; |
|
181 |
||
182 |
||
183 |
(** Scons vs Numb **) |
|
184 |
||
185 |
Goalw [Numb_def,o_def] "Scons M N ~= Numb(k)"; |
|
186 |
by (rtac Scons_not_Atom 1); |
|
187 |
qed "Scons_not_Numb"; |
|
188 |
bind_thm ("Numb_not_Scons", Scons_not_Numb RS not_sym); |
|
189 |
||
190 |
AddIffs [Scons_not_Numb, Numb_not_Scons]; |
|
191 |
||
192 |
||
193 |
(** Leaf vs Numb **) |
|
194 |
||
195 |
Goalw [Leaf_def,Numb_def] "Leaf(a) ~= Numb(k)"; |
|
196 |
by (simp_tac (simpset() addsimps [Inl_not_Inr]) 1); |
|
197 |
qed "Leaf_not_Numb"; |
|
198 |
bind_thm ("Numb_not_Leaf", Leaf_not_Numb RS not_sym); |
|
199 |
||
200 |
AddIffs [Leaf_not_Numb, Numb_not_Leaf]; |
|
201 |
||
202 |
||
203 |
(*** ndepth -- the depth of a node ***) |
|
204 |
||
205 |
Addsimps [apfst_conv]; |
|
206 |
AddIffs [Scons_not_Atom, Atom_not_Scons, Scons_Scons_eq]; |
|
207 |
||
208 |
||
209 |
Goalw [ndepth_def] "ndepth (Abs_Node(%k. Inr 0, x)) = 0"; |
|
210 |
by (EVERY1[stac (Node_K0_I RS Abs_Node_inverse), stac split]); |
|
211 |
by (rtac Least_equality 1); |
|
10850
e1a793957a8f
generalizing the LEAST theorems from "nat" to linear
paulson
parents:
10213
diff
changeset
|
212 |
by Auto_tac; |
10213 | 213 |
qed "ndepth_K0"; |
214 |
||
10850
e1a793957a8f
generalizing the LEAST theorems from "nat" to linear
paulson
parents:
10213
diff
changeset
|
215 |
Goal "nat_case (Inr (Suc i)) f k = Inr 0 --> Suc(LEAST x. f x = Inr 0) <= k"; |
10213 | 216 |
by (induct_tac "k" 1); |
217 |
by (ALLGOALS Simp_tac); |
|
10850
e1a793957a8f
generalizing the LEAST theorems from "nat" to linear
paulson
parents:
10213
diff
changeset
|
218 |
by (rtac impI 1); |
e1a793957a8f
generalizing the LEAST theorems from "nat" to linear
paulson
parents:
10213
diff
changeset
|
219 |
by (etac Least_le 1); |
10213 | 220 |
val lemma = result(); |
221 |
||
222 |
Goalw [ndepth_def,Push_Node_def] |
|
223 |
"ndepth (Push_Node (Inr (Suc i)) n) = Suc(ndepth(n))"; |
|
224 |
by (stac (Rep_Node RS Node_Push_I RS Abs_Node_inverse) 1); |
|
225 |
by (cut_facts_tac [rewrite_rule [Node_def] Rep_Node] 1); |
|
226 |
by Safe_tac; |
|
227 |
by (etac ssubst 1); (*instantiates type variables!*) |
|
228 |
by (Simp_tac 1); |
|
229 |
by (rtac Least_equality 1); |
|
230 |
by (rewtac Push_def); |
|
10850
e1a793957a8f
generalizing the LEAST theorems from "nat" to linear
paulson
parents:
10213
diff
changeset
|
231 |
by (auto_tac (claset(), simpset() addsimps [lemma])); |
10213 | 232 |
by (etac LeastI 1); |
233 |
qed "ndepth_Push_Node"; |
|
234 |
||
235 |
||
236 |
(*** ntrunc applied to the various node sets ***) |
|
237 |
||
238 |
Goalw [ntrunc_def] "ntrunc 0 M = {}"; |
|
239 |
by (Blast_tac 1); |
|
240 |
qed "ntrunc_0"; |
|
241 |
||
242 |
Goalw [Atom_def,ntrunc_def] "ntrunc (Suc k) (Atom a) = Atom(a)"; |
|
243 |
by (fast_tac (claset() addss (simpset() addsimps [ndepth_K0])) 1); |
|
244 |
qed "ntrunc_Atom"; |
|
245 |
||
246 |
Goalw [Leaf_def,o_def] "ntrunc (Suc k) (Leaf a) = Leaf(a)"; |
|
247 |
by (rtac ntrunc_Atom 1); |
|
248 |
qed "ntrunc_Leaf"; |
|
249 |
||
250 |
Goalw [Numb_def,o_def] "ntrunc (Suc k) (Numb i) = Numb(i)"; |
|
251 |
by (rtac ntrunc_Atom 1); |
|
252 |
qed "ntrunc_Numb"; |
|
253 |
||
254 |
Goalw [Scons_def,ntrunc_def] |
|
255 |
"ntrunc (Suc k) (Scons M N) = Scons (ntrunc k M) (ntrunc k N)"; |
|
256 |
by (safe_tac (claset() addSIs [imageI])); |
|
257 |
by (REPEAT (stac ndepth_Push_Node 3 THEN etac Suc_mono 3)); |
|
258 |
by (REPEAT (rtac Suc_less_SucD 1 THEN |
|
259 |
rtac (ndepth_Push_Node RS subst) 1 THEN |
|
260 |
assume_tac 1)); |
|
261 |
qed "ntrunc_Scons"; |
|
262 |
||
263 |
Addsimps [ntrunc_0, ntrunc_Atom, ntrunc_Leaf, ntrunc_Numb, ntrunc_Scons]; |
|
264 |
||
265 |
||
266 |
(** Injection nodes **) |
|
267 |
||
268 |
Goalw [In0_def] "ntrunc 1 (In0 M) = {}"; |
|
269 |
by (Simp_tac 1); |
|
270 |
by (rewtac Scons_def); |
|
271 |
by (Blast_tac 1); |
|
272 |
qed "ntrunc_one_In0"; |
|
273 |
||
274 |
Goalw [In0_def] |
|
275 |
"ntrunc (Suc (Suc k)) (In0 M) = In0 (ntrunc (Suc k) M)"; |
|
276 |
by (Simp_tac 1); |
|
277 |
qed "ntrunc_In0"; |
|
278 |
||
279 |
Goalw [In1_def] "ntrunc 1 (In1 M) = {}"; |
|
280 |
by (Simp_tac 1); |
|
281 |
by (rewtac Scons_def); |
|
282 |
by (Blast_tac 1); |
|
283 |
qed "ntrunc_one_In1"; |
|
284 |
||
285 |
Goalw [In1_def] |
|
286 |
"ntrunc (Suc (Suc k)) (In1 M) = In1 (ntrunc (Suc k) M)"; |
|
287 |
by (Simp_tac 1); |
|
288 |
qed "ntrunc_In1"; |
|
289 |
||
290 |
Addsimps [ntrunc_one_In0, ntrunc_In0, ntrunc_one_In1, ntrunc_In1]; |
|
291 |
||
292 |
||
293 |
(*** Cartesian Product ***) |
|
294 |
||
295 |
Goalw [uprod_def] "[| M:A; N:B |] ==> Scons M N : uprod A B"; |
|
296 |
by (REPEAT (ares_tac [singletonI,UN_I] 1)); |
|
297 |
qed "uprodI"; |
|
298 |
||
299 |
(*The general elimination rule*) |
|
300 |
val major::prems = Goalw [uprod_def] |
|
301 |
"[| c : uprod A B; \ |
|
302 |
\ !!x y. [| x:A; y:B; c = Scons x y |] ==> P \ |
|
303 |
\ |] ==> P"; |
|
304 |
by (cut_facts_tac [major] 1); |
|
305 |
by (REPEAT (eresolve_tac [asm_rl,singletonE,UN_E] 1 |
|
306 |
ORELSE resolve_tac prems 1)); |
|
307 |
qed "uprodE"; |
|
308 |
||
309 |
(*Elimination of a pair -- introduces no eigenvariables*) |
|
310 |
val prems = Goal |
|
311 |
"[| Scons M N : uprod A B; [| M:A; N:B |] ==> P \ |
|
312 |
\ |] ==> P"; |
|
313 |
by (rtac uprodE 1); |
|
314 |
by (REPEAT (ares_tac prems 1 ORELSE eresolve_tac [Scons_inject,ssubst] 1)); |
|
315 |
qed "uprodE2"; |
|
316 |
||
317 |
||
318 |
(*** Disjoint Sum ***) |
|
319 |
||
320 |
Goalw [usum_def] "M:A ==> In0(M) : usum A B"; |
|
321 |
by (Blast_tac 1); |
|
322 |
qed "usum_In0I"; |
|
323 |
||
324 |
Goalw [usum_def] "N:B ==> In1(N) : usum A B"; |
|
325 |
by (Blast_tac 1); |
|
326 |
qed "usum_In1I"; |
|
327 |
||
328 |
val major::prems = Goalw [usum_def] |
|
329 |
"[| u : usum A B; \ |
|
330 |
\ !!x. [| x:A; u=In0(x) |] ==> P; \ |
|
331 |
\ !!y. [| y:B; u=In1(y) |] ==> P \ |
|
332 |
\ |] ==> P"; |
|
333 |
by (rtac (major RS UnE) 1); |
|
334 |
by (REPEAT (rtac refl 1 |
|
335 |
ORELSE eresolve_tac (prems@[imageE,ssubst]) 1)); |
|
336 |
qed "usumE"; |
|
337 |
||
338 |
||
339 |
(** Injection **) |
|
340 |
||
341 |
Goalw [In0_def,In1_def] "In0(M) ~= In1(N)"; |
|
342 |
by (rtac notI 1); |
|
343 |
by (etac (Scons_inject1 RS Numb_inject RS Zero_neq_Suc) 1); |
|
344 |
qed "In0_not_In1"; |
|
345 |
||
346 |
bind_thm ("In1_not_In0", In0_not_In1 RS not_sym); |
|
347 |
||
348 |
AddIffs [In0_not_In1, In1_not_In0]; |
|
349 |
||
350 |
Goalw [In0_def] "In0(M) = In0(N) ==> M=N"; |
|
351 |
by (etac (Scons_inject2) 1); |
|
352 |
qed "In0_inject"; |
|
353 |
||
354 |
Goalw [In1_def] "In1(M) = In1(N) ==> M=N"; |
|
355 |
by (etac (Scons_inject2) 1); |
|
356 |
qed "In1_inject"; |
|
357 |
||
358 |
Goal "(In0 M = In0 N) = (M=N)"; |
|
359 |
by (blast_tac (claset() addSDs [In0_inject]) 1); |
|
360 |
qed "In0_eq"; |
|
361 |
||
362 |
Goal "(In1 M = In1 N) = (M=N)"; |
|
363 |
by (blast_tac (claset() addSDs [In1_inject]) 1); |
|
364 |
qed "In1_eq"; |
|
365 |
||
366 |
AddIffs [In0_eq, In1_eq]; |
|
367 |
||
368 |
Goal "inj In0"; |
|
369 |
by (blast_tac (claset() addSIs [injI]) 1); |
|
370 |
qed "inj_In0"; |
|
371 |
||
372 |
Goal "inj In1"; |
|
373 |
by (blast_tac (claset() addSIs [injI]) 1); |
|
374 |
qed "inj_In1"; |
|
375 |
||
376 |
||
377 |
(*** Function spaces ***) |
|
378 |
||
379 |
Goalw [Lim_def] "Lim f = Lim g ==> f = g"; |
|
380 |
by (rtac ext 1); |
|
381 |
by (blast_tac (claset() addSEs [Push_Node_inject]) 1); |
|
382 |
qed "Lim_inject"; |
|
383 |
||
384 |
Goalw [Funs_def] "S <= T ==> Funs S <= Funs T"; |
|
385 |
by (Blast_tac 1); |
|
386 |
qed "Funs_mono"; |
|
387 |
||
388 |
val [prem] = Goalw [Funs_def] "(!!x. f x : S) ==> f : Funs S"; |
|
389 |
by (blast_tac (claset() addIs [prem]) 1); |
|
390 |
qed "FunsI"; |
|
391 |
||
392 |
Goalw [Funs_def] "f : Funs S ==> f x : S"; |
|
393 |
by (etac CollectE 1); |
|
394 |
by (etac subsetD 1); |
|
395 |
by (rtac rangeI 1); |
|
396 |
qed "FunsD"; |
|
397 |
||
398 |
val [p1, p2] = Goalw [o_def] |
|
399 |
"[| f : Funs R; !!x. x : R ==> r (a x) = x |] ==> r o (a o f) = f"; |
|
400 |
by (rtac (p2 RS ext) 1); |
|
401 |
by (rtac (p1 RS FunsD) 1); |
|
402 |
qed "Funs_inv"; |
|
403 |
||
404 |
val [p1, p2] = Goalw [o_def] |
|
405 |
"[| f : Funs (range g); !!h. f = g o h ==> P |] ==> P"; |
|
406 |
by (res_inst_tac [("h", "%x. @y. (f::'a=>'b) x = g y")] p2 1); |
|
407 |
by (rtac ext 1); |
|
408 |
by (rtac (p1 RS FunsD RS rangeE) 1); |
|
409 |
by (etac (exI RS (some_eq_ex RS iffD2)) 1); |
|
410 |
qed "Funs_rangeE"; |
|
411 |
||
412 |
Goal "a : S ==> (%x. a) : Funs S"; |
|
413 |
by (rtac FunsI 1); |
|
414 |
by (assume_tac 1); |
|
415 |
qed "Funs_nonempty"; |
|
416 |
||
417 |
||
418 |
(*** proving equality of sets and functions using ntrunc ***) |
|
419 |
||
420 |
Goalw [ntrunc_def] "ntrunc k M <= M"; |
|
421 |
by (Blast_tac 1); |
|
422 |
qed "ntrunc_subsetI"; |
|
423 |
||
424 |
val [major] = Goalw [ntrunc_def] "(!!k. ntrunc k M <= N) ==> M<=N"; |
|
425 |
by (blast_tac (claset() addIs [less_add_Suc1, less_add_Suc2, |
|
426 |
major RS subsetD]) 1); |
|
427 |
qed "ntrunc_subsetD"; |
|
428 |
||
429 |
(*A generalized form of the take-lemma*) |
|
430 |
val [major] = Goal "(!!k. ntrunc k M = ntrunc k N) ==> M=N"; |
|
431 |
by (rtac equalityI 1); |
|
432 |
by (ALLGOALS (rtac ntrunc_subsetD)); |
|
433 |
by (ALLGOALS (rtac (ntrunc_subsetI RSN (2, subset_trans)))); |
|
434 |
by (rtac (major RS equalityD1) 1); |
|
435 |
by (rtac (major RS equalityD2) 1); |
|
436 |
qed "ntrunc_equality"; |
|
437 |
||
438 |
val [major] = Goalw [o_def] |
|
439 |
"[| !!k. (ntrunc(k) o h1) = (ntrunc(k) o h2) |] ==> h1=h2"; |
|
440 |
by (rtac (ntrunc_equality RS ext) 1); |
|
441 |
by (rtac (major RS fun_cong) 1); |
|
442 |
qed "ntrunc_o_equality"; |
|
443 |
||
444 |
(*** Monotonicity ***) |
|
445 |
||
446 |
Goalw [uprod_def] "[| A<=A'; B<=B' |] ==> uprod A B <= uprod A' B'"; |
|
447 |
by (Blast_tac 1); |
|
448 |
qed "uprod_mono"; |
|
449 |
||
450 |
Goalw [usum_def] "[| A<=A'; B<=B' |] ==> usum A B <= usum A' B'"; |
|
451 |
by (Blast_tac 1); |
|
452 |
qed "usum_mono"; |
|
453 |
||
454 |
Goalw [Scons_def] "[| M<=M'; N<=N' |] ==> Scons M N <= Scons M' N'"; |
|
455 |
by (Blast_tac 1); |
|
456 |
qed "Scons_mono"; |
|
457 |
||
458 |
Goalw [In0_def] "M<=N ==> In0(M) <= In0(N)"; |
|
459 |
by (REPEAT (ares_tac [subset_refl,Scons_mono] 1)); |
|
460 |
qed "In0_mono"; |
|
461 |
||
462 |
Goalw [In1_def] "M<=N ==> In1(M) <= In1(N)"; |
|
463 |
by (REPEAT (ares_tac [subset_refl,Scons_mono] 1)); |
|
464 |
qed "In1_mono"; |
|
465 |
||
466 |
||
467 |
(*** Split and Case ***) |
|
468 |
||
469 |
Goalw [Split_def] "Split c (Scons M N) = c M N"; |
|
470 |
by (Blast_tac 1); |
|
471 |
qed "Split"; |
|
472 |
||
473 |
Goalw [Case_def] "Case c d (In0 M) = c(M)"; |
|
474 |
by (Blast_tac 1); |
|
475 |
qed "Case_In0"; |
|
476 |
||
477 |
Goalw [Case_def] "Case c d (In1 N) = d(N)"; |
|
478 |
by (Blast_tac 1); |
|
479 |
qed "Case_In1"; |
|
480 |
||
481 |
Addsimps [Split, Case_In0, Case_In1]; |
|
482 |
||
483 |
||
484 |
(**** UN x. B(x) rules ****) |
|
485 |
||
486 |
Goalw [ntrunc_def] "ntrunc k (UN x. f(x)) = (UN x. ntrunc k (f x))"; |
|
487 |
by (Blast_tac 1); |
|
488 |
qed "ntrunc_UN1"; |
|
489 |
||
490 |
Goalw [Scons_def] "Scons (UN x. f x) M = (UN x. Scons (f x) M)"; |
|
491 |
by (Blast_tac 1); |
|
492 |
qed "Scons_UN1_x"; |
|
493 |
||
494 |
Goalw [Scons_def] "Scons M (UN x. f x) = (UN x. Scons M (f x))"; |
|
495 |
by (Blast_tac 1); |
|
496 |
qed "Scons_UN1_y"; |
|
497 |
||
498 |
Goalw [In0_def] "In0(UN x. f(x)) = (UN x. In0(f(x)))"; |
|
499 |
by (rtac Scons_UN1_y 1); |
|
500 |
qed "In0_UN1"; |
|
501 |
||
502 |
Goalw [In1_def] "In1(UN x. f(x)) = (UN x. In1(f(x)))"; |
|
503 |
by (rtac Scons_UN1_y 1); |
|
504 |
qed "In1_UN1"; |
|
505 |
||
506 |
||
507 |
(*** Equality for Cartesian Product ***) |
|
508 |
||
509 |
Goalw [dprod_def] |
|
510 |
"[| (M,M'):r; (N,N'):s |] ==> (Scons M N, Scons M' N') : dprod r s"; |
|
511 |
by (Blast_tac 1); |
|
512 |
qed "dprodI"; |
|
513 |
||
514 |
(*The general elimination rule*) |
|
515 |
val major::prems = Goalw [dprod_def] |
|
516 |
"[| c : dprod r s; \ |
|
517 |
\ !!x y x' y'. [| (x,x') : r; (y,y') : s; c = (Scons x y, Scons x' y') |] ==> P \ |
|
518 |
\ |] ==> P"; |
|
519 |
by (cut_facts_tac [major] 1); |
|
520 |
by (REPEAT_FIRST (eresolve_tac [asm_rl, UN_E, mem_splitE, singletonE])); |
|
521 |
by (REPEAT (ares_tac prems 1 ORELSE hyp_subst_tac 1)); |
|
522 |
qed "dprodE"; |
|
523 |
||
524 |
||
525 |
(*** Equality for Disjoint Sum ***) |
|
526 |
||
527 |
Goalw [dsum_def] "(M,M'):r ==> (In0(M), In0(M')) : dsum r s"; |
|
528 |
by (Blast_tac 1); |
|
529 |
qed "dsum_In0I"; |
|
530 |
||
531 |
Goalw [dsum_def] "(N,N'):s ==> (In1(N), In1(N')) : dsum r s"; |
|
532 |
by (Blast_tac 1); |
|
533 |
qed "dsum_In1I"; |
|
534 |
||
535 |
val major::prems = Goalw [dsum_def] |
|
536 |
"[| w : dsum r s; \ |
|
537 |
\ !!x x'. [| (x,x') : r; w = (In0(x), In0(x')) |] ==> P; \ |
|
538 |
\ !!y y'. [| (y,y') : s; w = (In1(y), In1(y')) |] ==> P \ |
|
539 |
\ |] ==> P"; |
|
540 |
by (cut_facts_tac [major] 1); |
|
541 |
by (REPEAT_FIRST (eresolve_tac [asm_rl, UN_E, UnE, mem_splitE, singletonE])); |
|
542 |
by (DEPTH_SOLVE (ares_tac prems 1 ORELSE hyp_subst_tac 1)); |
|
543 |
qed "dsumE"; |
|
544 |
||
545 |
AddSIs [uprodI, dprodI]; |
|
546 |
AddIs [usum_In0I, usum_In1I, dsum_In0I, dsum_In1I]; |
|
547 |
AddSEs [uprodE, dprodE, usumE, dsumE]; |
|
548 |
||
549 |
||
550 |
(*** Monotonicity ***) |
|
551 |
||
552 |
Goal "[| r<=r'; s<=s' |] ==> dprod r s <= dprod r' s'"; |
|
553 |
by (Blast_tac 1); |
|
554 |
qed "dprod_mono"; |
|
555 |
||
556 |
Goal "[| r<=r'; s<=s' |] ==> dsum r s <= dsum r' s'"; |
|
557 |
by (Blast_tac 1); |
|
558 |
qed "dsum_mono"; |
|
559 |
||
560 |
||
561 |
(*** Bounding theorems ***) |
|
562 |
||
563 |
Goal "(dprod (A <*> B) (C <*> D)) <= (uprod A C) <*> (uprod B D)"; |
|
564 |
by (Blast_tac 1); |
|
565 |
qed "dprod_Sigma"; |
|
566 |
||
567 |
bind_thm ("dprod_subset_Sigma", [dprod_mono, dprod_Sigma] MRS subset_trans |> standard); |
|
568 |
||
569 |
(*Dependent version*) |
|
570 |
Goal "(dprod (Sigma A B) (Sigma C D)) <= Sigma (uprod A C) (Split (%x y. uprod (B x) (D y)))"; |
|
571 |
by Safe_tac; |
|
572 |
by (stac Split 1); |
|
573 |
by (Blast_tac 1); |
|
574 |
qed "dprod_subset_Sigma2"; |
|
575 |
||
576 |
Goal "(dsum (A <*> B) (C <*> D)) <= (usum A C) <*> (usum B D)"; |
|
577 |
by (Blast_tac 1); |
|
578 |
qed "dsum_Sigma"; |
|
579 |
||
580 |
bind_thm ("dsum_subset_Sigma", [dsum_mono, dsum_Sigma] MRS subset_trans |> standard); |
|
581 |
||
582 |
||
583 |
(*** Domain ***) |
|
584 |
||
585 |
Goal "Domain (dprod r s) = uprod (Domain r) (Domain s)"; |
|
586 |
by Auto_tac; |
|
587 |
qed "Domain_dprod"; |
|
588 |
||
589 |
Goal "Domain (dsum r s) = usum (Domain r) (Domain s)"; |
|
590 |
by Auto_tac; |
|
591 |
qed "Domain_dsum"; |
|
592 |
||
593 |
Addsimps [Domain_dprod, Domain_dsum]; |