| author | haftmann | 
| Mon, 06 Feb 2006 11:01:28 +0100 | |
| changeset 18928 | 042608ffa2ec | 
| parent 17429 | e8d6ed3aacfe | 
| child 19279 | 48b527d0331b | 
| permissions | -rw-r--r-- | 
| 10751 | 1 | (* Title : HSeries.thy | 
| 2 | Author : Jacques D. Fleuriot | |
| 3 | Copyright : 1998 University of Cambridge | |
| 14413 | 4 | |
| 5 | Converted to Isar and polished by lcp | |
| 10751 | 6 | *) | 
| 7 | ||
| 14413 | 8 | header{*Finite Summation and Infinite Series for Hyperreals*}
 | 
| 10751 | 9 | |
| 15131 | 10 | theory HSeries | 
| 15140 | 11 | imports Series | 
| 15131 | 12 | begin | 
| 10751 | 13 | |
| 14413 | 14 | constdefs | 
| 15 | sumhr :: "(hypnat * hypnat * (nat=>real)) => hypreal" | |
| 17318 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 16 | "sumhr == | 
| 17429 
e8d6ed3aacfe
merged Transfer.thy and StarType.thy into StarDef.thy; renamed Ifun2_of to starfun2; cleaned up
 huffman parents: 
17318diff
changeset | 17 |       %(M,N,f). starfun2 (%m n. setsum f {m..<n}) M N"
 | 
| 10751 | 18 | |
| 14413 | 19 | NSsums :: "[nat=>real,real] => bool" (infixr "NSsums" 80) | 
| 15539 | 20 |    "f NSsums s  == (%n. setsum f {0..<n}) ----NS> s"
 | 
| 10751 | 21 | |
| 14413 | 22 | NSsummable :: "(nat=>real) => bool" | 
| 23 | "NSsummable f == (\<exists>s. f NSsums s)" | |
| 10751 | 24 | |
| 14413 | 25 | NSsuminf :: "(nat=>real) => real" | 
| 10751 | 26 | "NSsuminf f == (@s. f NSsums s)" | 
| 27 | ||
| 14413 | 28 | |
| 17318 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 29 | lemma sumhr: | 
| 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 30 | "sumhr(star_n M, star_n N, f) = | 
| 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 31 |       star_n (%n. setsum f {M n..<N n})"
 | 
| 17429 
e8d6ed3aacfe
merged Transfer.thy and StarType.thy into StarDef.thy; renamed Ifun2_of to starfun2; cleaned up
 huffman parents: 
17318diff
changeset | 32 | by (simp add: sumhr_def starfun2_star_n) | 
| 14413 | 33 | |
| 34 | text{*Base case in definition of @{term sumr}*}
 | |
| 35 | lemma sumhr_zero [simp]: "sumhr (m,0,f) = 0" | |
| 17318 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 36 | apply (cases m) | 
| 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 37 | apply (simp add: star_n_zero_num sumhr symmetric) | 
| 14413 | 38 | done | 
| 39 | ||
| 40 | text{*Recursive case in definition of @{term sumr}*}
 | |
| 41 | lemma sumhr_if: | |
| 42 | "sumhr(m,n+1,f) = | |
| 17318 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 43 | (if n + 1 \<le> m then 0 else sumhr(m,n,f) + ( *f* f) n)" | 
| 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 44 | apply (cases m, cases n) | 
| 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 45 | apply (auto simp add: star_n_one_num sumhr star_n_add star_n_le starfun | 
| 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 46 | star_n_zero_num star_n_eq_iff, ultra+) | 
| 14413 | 47 | done | 
| 48 | ||
| 49 | lemma sumhr_Suc_zero [simp]: "sumhr (n + 1, n, f) = 0" | |
| 17318 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 50 | apply (cases n) | 
| 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 51 | apply (simp add: star_n_one_num sumhr star_n_add star_n_zero_num) | 
| 14413 | 52 | done | 
| 53 | ||
| 54 | lemma sumhr_eq_bounds [simp]: "sumhr (n,n,f) = 0" | |
| 17318 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 55 | apply (cases n) | 
| 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 56 | apply (simp add: sumhr star_n_zero_num) | 
| 14413 | 57 | done | 
| 58 | ||
| 17318 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 59 | lemma sumhr_Suc [simp]: "sumhr (m,m + 1,f) = ( *f* f) m" | 
| 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 60 | apply (cases m) | 
| 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 61 | apply (simp add: sumhr star_n_one_num star_n_add starfun) | 
| 14413 | 62 | done | 
| 63 | ||
| 64 | lemma sumhr_add_lbound_zero [simp]: "sumhr(m+k,k,f) = 0" | |
| 17318 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 65 | apply (cases m, cases k) | 
| 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 66 | apply (simp add: sumhr star_n_add star_n_zero_num) | 
| 14413 | 67 | done | 
| 68 | ||
| 69 | lemma sumhr_add: "sumhr (m,n,f) + sumhr(m,n,g) = sumhr(m,n,%i. f i + g i)" | |
| 17318 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 70 | apply (cases m, cases n) | 
| 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 71 | apply (simp add: sumhr star_n_add setsum_addf) | 
| 14413 | 72 | done | 
| 73 | ||
| 74 | lemma sumhr_mult: "hypreal_of_real r * sumhr(m,n,f) = sumhr(m,n,%n. r * f n)" | |
| 17318 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 75 | apply (cases m, cases n) | 
| 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 76 | apply (simp add: sumhr star_of_def star_n_mult setsum_mult) | 
| 14413 | 77 | done | 
| 78 | ||
| 79 | lemma sumhr_split_add: "n < p ==> sumhr(0,n,f) + sumhr(n,p,f) = sumhr(0,p,f)" | |
| 17318 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 80 | apply (cases n, cases p) | 
| 14413 | 81 | apply (auto elim!: FreeUltrafilterNat_subset simp | 
| 17318 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 82 | add: star_n_zero_num sumhr star_n_add star_n_less setsum_add_nat_ivl star_n_eq_iff) | 
| 14413 | 83 | done | 
| 84 | ||
| 85 | lemma sumhr_split_diff: "n<p ==> sumhr(0,p,f) - sumhr(0,n,f) = sumhr(n,p,f)" | |
| 86 | by (drule_tac f1 = f in sumhr_split_add [symmetric], simp) | |
| 87 | ||
| 88 | lemma sumhr_hrabs: "abs(sumhr(m,n,f)) \<le> sumhr(m,n,%i. abs(f i))" | |
| 17318 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 89 | apply (cases n, cases m) | 
| 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 90 | apply (simp add: sumhr star_n_le star_n_abs setsum_abs) | 
| 14413 | 91 | done | 
| 92 | ||
| 93 | text{* other general version also needed *}
 | |
| 94 | lemma sumhr_fun_hypnat_eq: | |
| 95 | "(\<forall>r. m \<le> r & r < n --> f r = g r) --> | |
| 96 | sumhr(hypnat_of_nat m, hypnat_of_nat n, f) = | |
| 97 | sumhr(hypnat_of_nat m, hypnat_of_nat n, g)" | |
| 15536 | 98 | by (fastsimp simp add: sumhr hypnat_of_nat_eq intro:setsum_cong) | 
| 99 | ||
| 14413 | 100 | |
| 15047 | 101 | lemma sumhr_const: | 
| 102 | "sumhr(0, n, %i. r) = hypreal_of_hypnat n * hypreal_of_real r" | |
| 17318 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 103 | apply (cases n) | 
| 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 104 | apply (simp add: sumhr star_n_zero_num hypreal_of_hypnat | 
| 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 105 | star_of_def star_n_mult real_of_nat_def) | 
| 14413 | 106 | done | 
| 107 | ||
| 108 | lemma sumhr_less_bounds_zero [simp]: "n < m ==> sumhr(m,n,f) = 0" | |
| 17318 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 109 | apply (cases m, cases n) | 
| 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 110 | apply (auto elim: FreeUltrafilterNat_subset | 
| 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 111 | simp add: sumhr star_n_less star_n_zero_num star_n_eq_iff) | 
| 14413 | 112 | done | 
| 113 | ||
| 114 | lemma sumhr_minus: "sumhr(m, n, %i. - f i) = - sumhr(m, n, f)" | |
| 17318 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 115 | apply (cases m, cases n) | 
| 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 116 | apply (simp add: sumhr star_n_minus setsum_negf) | 
| 14413 | 117 | done | 
| 118 | ||
| 119 | lemma sumhr_shift_bounds: | |
| 120 | "sumhr(m+hypnat_of_nat k,n+hypnat_of_nat k,f) = sumhr(m,n,%i. f(i + k))" | |
| 17318 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 121 | apply (cases m, cases n) | 
| 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 122 | apply (simp add: sumhr star_n_add setsum_shift_bounds_nat_ivl hypnat_of_nat_eq) | 
| 14413 | 123 | done | 
| 124 | ||
| 125 | ||
| 126 | subsection{*Nonstandard Sums*}
 | |
| 127 | ||
| 128 | text{*Infinite sums are obtained by summing to some infinite hypernatural
 | |
| 129 |  (such as @{term whn})*}
 | |
| 130 | lemma sumhr_hypreal_of_hypnat_omega: | |
| 131 | "sumhr(0,whn,%i. 1) = hypreal_of_hypnat whn" | |
| 17318 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 132 | by (simp add: hypnat_omega_def star_n_zero_num sumhr hypreal_of_hypnat | 
| 15047 | 133 | real_of_nat_def) | 
| 14413 | 134 | |
| 135 | lemma sumhr_hypreal_omega_minus_one: "sumhr(0, whn, %i. 1) = omega - 1" | |
| 17318 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 136 | by (simp add: hypnat_omega_def star_n_zero_num omega_def star_n_one_num | 
| 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 137 | sumhr star_n_diff real_of_nat_def) | 
| 14413 | 138 | |
| 139 | lemma sumhr_minus_one_realpow_zero [simp]: | |
| 140 | "sumhr(0, whn + whn, %i. (-1) ^ (i+1)) = 0" | |
| 141 | by (simp del: realpow_Suc | |
| 17318 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 142 | add: sumhr star_n_add nat_mult_2 [symmetric] star_n_zero_num | 
| 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 143 | star_n_zero_num hypnat_omega_def) | 
| 14413 | 144 | |
| 145 | lemma sumhr_interval_const: | |
| 146 | "(\<forall>n. m \<le> Suc n --> f n = r) & m \<le> na | |
| 147 | ==> sumhr(hypnat_of_nat m,hypnat_of_nat na,f) = | |
| 148 | (hypreal_of_nat (na - m) * hypreal_of_real r)" | |
| 17318 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 149 | by(simp add: sumhr hypreal_of_nat_eq hypnat_of_nat_eq | 
| 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 150 | real_of_nat_def star_of_def star_n_mult cong: setsum_ivl_cong) | 
| 14413 | 151 | |
| 17318 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 152 | lemma starfunNat_sumr: "( *f* (%n. setsum f {0..<n})) N = sumhr(0,N,f)"
 | 
| 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 153 | apply (cases N) | 
| 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 154 | apply (simp add: star_n_zero_num starfun sumhr) | 
| 14413 | 155 | done | 
| 156 | ||
| 157 | lemma sumhr_hrabs_approx [simp]: "sumhr(0, M, f) @= sumhr(0, N, f) | |
| 158 | ==> abs (sumhr(M, N, f)) @= 0" | |
| 159 | apply (cut_tac x = M and y = N in linorder_less_linear) | |
| 160 | apply (auto simp add: approx_refl) | |
| 161 | apply (drule approx_sym [THEN approx_minus_iff [THEN iffD1]]) | |
| 162 | apply (auto dest: approx_hrabs | |
| 163 | simp add: sumhr_split_diff diff_minus [symmetric]) | |
| 164 | done | |
| 165 | ||
| 166 | (*---------------------------------------------------------------- | |
| 167 | infinite sums: Standard and NS theorems | |
| 168 | ----------------------------------------------------------------*) | |
| 169 | lemma sums_NSsums_iff: "(f sums l) = (f NSsums l)" | |
| 170 | by (simp add: sums_def NSsums_def LIMSEQ_NSLIMSEQ_iff) | |
| 171 | ||
| 172 | lemma summable_NSsummable_iff: "(summable f) = (NSsummable f)" | |
| 173 | by (simp add: summable_def NSsummable_def sums_NSsums_iff) | |
| 174 | ||
| 175 | lemma suminf_NSsuminf_iff: "(suminf f) = (NSsuminf f)" | |
| 176 | by (simp add: suminf_def NSsuminf_def sums_NSsums_iff) | |
| 177 | ||
| 178 | lemma NSsums_NSsummable: "f NSsums l ==> NSsummable f" | |
| 179 | by (simp add: NSsums_def NSsummable_def, blast) | |
| 180 | ||
| 181 | lemma NSsummable_NSsums: "NSsummable f ==> f NSsums (NSsuminf f)" | |
| 182 | apply (simp add: NSsummable_def NSsuminf_def) | |
| 183 | apply (blast intro: someI2) | |
| 184 | done | |
| 185 | ||
| 186 | lemma NSsums_unique: "f NSsums s ==> (s = NSsuminf f)" | |
| 187 | by (simp add: suminf_NSsuminf_iff [symmetric] sums_NSsums_iff sums_unique) | |
| 188 | ||
| 15539 | 189 | lemma NSseries_zero: | 
| 190 |   "\<forall>m. n \<le> Suc m --> f(m) = 0 ==> f NSsums (setsum f {0..<n})"
 | |
| 14413 | 191 | by (simp add: sums_NSsums_iff [symmetric] series_zero) | 
| 192 | ||
| 193 | lemma NSsummable_NSCauchy: | |
| 194 | "NSsummable f = | |
| 195 | (\<forall>M \<in> HNatInfinite. \<forall>N \<in> HNatInfinite. abs (sumhr(M,N,f)) @= 0)" | |
| 196 | apply (auto simp add: summable_NSsummable_iff [symmetric] | |
| 197 | summable_convergent_sumr_iff convergent_NSconvergent_iff | |
| 198 | NSCauchy_NSconvergent_iff [symmetric] NSCauchy_def starfunNat_sumr) | |
| 199 | apply (cut_tac x = M and y = N in linorder_less_linear) | |
| 200 | apply (auto simp add: approx_refl) | |
| 201 | apply (rule approx_minus_iff [THEN iffD2, THEN approx_sym]) | |
| 202 | apply (rule_tac [2] approx_minus_iff [THEN iffD2]) | |
| 203 | apply (auto dest: approx_hrabs_zero_cancel | |
| 204 | simp add: sumhr_split_diff diff_minus [symmetric]) | |
| 205 | done | |
| 206 | ||
| 207 | ||
| 208 | text{*Terms of a convergent series tend to zero*}
 | |
| 209 | lemma NSsummable_NSLIMSEQ_zero: "NSsummable f ==> f ----NS> 0" | |
| 210 | apply (auto simp add: NSLIMSEQ_def NSsummable_NSCauchy) | |
| 211 | apply (drule bspec, auto) | |
| 212 | apply (drule_tac x = "N + 1 " in bspec) | |
| 213 | apply (auto intro: HNatInfinite_add_one approx_hrabs_zero_cancel) | |
| 214 | done | |
| 215 | ||
| 216 | text{* Easy to prove stsandard case now *}
 | |
| 217 | lemma summable_LIMSEQ_zero: "summable f ==> f ----> 0" | |
| 218 | by (simp add: summable_NSsummable_iff LIMSEQ_NSLIMSEQ_iff NSsummable_NSLIMSEQ_zero) | |
| 219 | ||
| 220 | text{*Nonstandard comparison test*}
 | |
| 221 | lemma NSsummable_comparison_test: | |
| 222 | "[| \<exists>N. \<forall>n. N \<le> n --> abs(f n) \<le> g n; NSsummable g |] ==> NSsummable f" | |
| 223 | by (auto intro: summable_comparison_test | |
| 224 | simp add: summable_NSsummable_iff [symmetric]) | |
| 225 | ||
| 226 | lemma NSsummable_rabs_comparison_test: | |
| 227 | "[| \<exists>N. \<forall>n. N \<le> n --> abs(f n) \<le> g n; NSsummable g |] | |
| 228 | ==> NSsummable (%k. abs (f k))" | |
| 229 | apply (rule NSsummable_comparison_test) | |
| 15543 | 230 | apply (auto) | 
| 14413 | 231 | done | 
| 232 | ||
| 233 | ML | |
| 234 | {*
 | |
| 235 | val sumhr = thm "sumhr"; | |
| 236 | val sumhr_zero = thm "sumhr_zero"; | |
| 237 | val sumhr_if = thm "sumhr_if"; | |
| 238 | val sumhr_Suc_zero = thm "sumhr_Suc_zero"; | |
| 239 | val sumhr_eq_bounds = thm "sumhr_eq_bounds"; | |
| 240 | val sumhr_Suc = thm "sumhr_Suc"; | |
| 241 | val sumhr_add_lbound_zero = thm "sumhr_add_lbound_zero"; | |
| 242 | val sumhr_add = thm "sumhr_add"; | |
| 243 | val sumhr_mult = thm "sumhr_mult"; | |
| 244 | val sumhr_split_add = thm "sumhr_split_add"; | |
| 245 | val sumhr_split_diff = thm "sumhr_split_diff"; | |
| 246 | val sumhr_hrabs = thm "sumhr_hrabs"; | |
| 247 | val sumhr_fun_hypnat_eq = thm "sumhr_fun_hypnat_eq"; | |
| 248 | val sumhr_less_bounds_zero = thm "sumhr_less_bounds_zero"; | |
| 249 | val sumhr_minus = thm "sumhr_minus"; | |
| 250 | val sumhr_shift_bounds = thm "sumhr_shift_bounds"; | |
| 251 | val sumhr_hypreal_of_hypnat_omega = thm "sumhr_hypreal_of_hypnat_omega"; | |
| 252 | val sumhr_hypreal_omega_minus_one = thm "sumhr_hypreal_omega_minus_one"; | |
| 253 | val sumhr_minus_one_realpow_zero = thm "sumhr_minus_one_realpow_zero"; | |
| 254 | val sumhr_interval_const = thm "sumhr_interval_const"; | |
| 255 | val starfunNat_sumr = thm "starfunNat_sumr"; | |
| 256 | val sumhr_hrabs_approx = thm "sumhr_hrabs_approx"; | |
| 257 | val sums_NSsums_iff = thm "sums_NSsums_iff"; | |
| 258 | val summable_NSsummable_iff = thm "summable_NSsummable_iff"; | |
| 259 | val suminf_NSsuminf_iff = thm "suminf_NSsuminf_iff"; | |
| 260 | val NSsums_NSsummable = thm "NSsums_NSsummable"; | |
| 261 | val NSsummable_NSsums = thm "NSsummable_NSsums"; | |
| 262 | val NSsums_unique = thm "NSsums_unique"; | |
| 263 | val NSseries_zero = thm "NSseries_zero"; | |
| 264 | val NSsummable_NSCauchy = thm "NSsummable_NSCauchy"; | |
| 265 | val NSsummable_NSLIMSEQ_zero = thm "NSsummable_NSLIMSEQ_zero"; | |
| 266 | val summable_LIMSEQ_zero = thm "summable_LIMSEQ_zero"; | |
| 267 | val NSsummable_comparison_test = thm "NSsummable_comparison_test"; | |
| 268 | val NSsummable_rabs_comparison_test = thm "NSsummable_rabs_comparison_test"; | |
| 269 | *} | |
| 270 | ||
| 10751 | 271 | end |