|
1478
|
1 |
(* Title: ZF/Coind/Values.thy
|
|
916
|
2 |
ID: $Id$
|
|
1478
|
3 |
Author: Jacob Frost, Cambridge University Computer Laboratory
|
|
916
|
4 |
Copyright 1995 University of Cambridge
|
|
|
5 |
*)
|
|
|
6 |
|
|
12595
|
7 |
theory Values = Language + Map:
|
|
916
|
8 |
|
|
|
9 |
(* Values, values environments and associated operators *)
|
|
|
10 |
|
|
|
11 |
consts
|
|
12595
|
12 |
Val :: i
|
|
|
13 |
ValEnv :: i
|
|
|
14 |
Val_ValEnv :: i;
|
|
6112
|
15 |
|
|
|
16 |
codatatype
|
|
12595
|
17 |
"Val" = v_const ("c \<in> Const")
|
|
|
18 |
| v_clos ("x \<in> ExVar","e \<in> Exp","ve \<in> ValEnv")
|
|
933
|
19 |
and
|
|
12595
|
20 |
"ValEnv" = ve_mk ("m \<in> PMap(ExVar,Val)")
|
|
|
21 |
monos PMap_mono
|
|
|
22 |
type_intros A_into_univ mapQU
|
|
916
|
23 |
|
|
|
24 |
consts
|
|
12595
|
25 |
ve_owr :: "[i,i,i] => i"
|
|
|
26 |
ve_dom :: "i=>i"
|
|
|
27 |
ve_app :: "[i,i] => i"
|
|
6046
|
28 |
|
|
|
29 |
|
|
|
30 |
primrec "ve_owr(ve_mk(m), x, v) = ve_mk(map_owr(m,x,v))"
|
|
|
31 |
|
|
|
32 |
primrec "ve_dom(ve_mk(m)) = domain(m)"
|
|
|
33 |
|
|
|
34 |
primrec "ve_app(ve_mk(m), a) = map_app(m,a)"
|
|
|
35 |
|
|
|
36 |
constdefs
|
|
|
37 |
ve_emp :: i
|
|
|
38 |
"ve_emp == ve_mk(map_emp)"
|
|
916
|
39 |
|
|
12595
|
40 |
|
|
|
41 |
(* Elimination rules *)
|
|
|
42 |
|
|
|
43 |
lemma ValEnvE:
|
|
|
44 |
"[| ve \<in> ValEnv; !!m.[| ve=ve_mk(m); m \<in> PMap(ExVar,Val) |] ==> Q |] ==> Q"
|
|
|
45 |
apply (unfold Part_def Val_def ValEnv_def)
|
|
|
46 |
apply (clarify );
|
|
|
47 |
apply (erule Val_ValEnv.cases)
|
|
|
48 |
apply (auto simp add: Val_def Part_def Val_ValEnv.con_defs)
|
|
|
49 |
done
|
|
|
50 |
|
|
|
51 |
lemma ValE:
|
|
|
52 |
"[| v \<in> Val;
|
|
|
53 |
!!c. [| v = v_const(c); c \<in> Const |] ==> Q;
|
|
|
54 |
!!e ve x.
|
|
|
55 |
[| v = v_clos(x,e,ve); x \<in> ExVar; e \<in> Exp; ve \<in> ValEnv |] ==> Q
|
|
|
56 |
|] ==>
|
|
|
57 |
Q"
|
|
|
58 |
apply (unfold Part_def Val_def ValEnv_def)
|
|
|
59 |
apply (clarify );
|
|
|
60 |
apply (erule Val_ValEnv.cases)
|
|
|
61 |
apply (auto simp add: ValEnv_def Part_def Val_ValEnv.con_defs);
|
|
|
62 |
done
|
|
|
63 |
|
|
|
64 |
(* Nonempty sets *)
|
|
|
65 |
|
|
|
66 |
lemma v_closNE [simp]: "v_clos(x,e,ve) \<noteq> 0"
|
|
|
67 |
apply (unfold QPair_def QInl_def QInr_def Val_ValEnv.con_defs)
|
|
|
68 |
apply blast
|
|
|
69 |
done
|
|
|
70 |
|
|
|
71 |
declare v_closNE [THEN notE, elim!]
|
|
|
72 |
|
|
|
73 |
|
|
|
74 |
lemma v_constNE [simp]: "c \<in> Const ==> v_const(c) \<noteq> 0"
|
|
|
75 |
apply (unfold QPair_def QInl_def QInr_def Val_ValEnv.con_defs)
|
|
|
76 |
apply (drule constNEE)
|
|
|
77 |
apply auto
|
|
|
78 |
done
|
|
916
|
79 |
|
|
|
80 |
|
|
12595
|
81 |
(* Proving that the empty set is not a value *)
|
|
916
|
82 |
|
|
12595
|
83 |
lemma ValNEE: "v \<in> Val ==> v \<noteq> 0"
|
|
|
84 |
by (erule ValE, auto)
|
|
|
85 |
|
|
|
86 |
(* Equalities for value environments *)
|
|
|
87 |
|
|
|
88 |
lemma ve_dom_owr [simp]:
|
|
|
89 |
"[| ve \<in> ValEnv; v \<noteq>0 |] ==> ve_dom(ve_owr(ve,x,v)) = ve_dom(ve) Un {x}"
|
|
|
90 |
apply (erule ValEnvE)
|
|
|
91 |
apply (auto simp add: map_domain_owr)
|
|
|
92 |
done
|
|
|
93 |
|
|
|
94 |
lemma ve_app_owr [simp]:
|
|
|
95 |
"ve \<in> ValEnv
|
|
|
96 |
==> ve_app(ve_owr(ve,y,v),x) = (if x=y then v else ve_app(ve,x))"
|
|
|
97 |
by (erule ValEnvE, simp add: map_app_owr)
|
|
|
98 |
|
|
|
99 |
(* Introduction rules for operators on value environments *)
|
|
|
100 |
|
|
|
101 |
lemma ve_appI: "[| ve \<in> ValEnv; x \<in> ve_dom(ve) |] ==> ve_app(ve,x):Val"
|
|
|
102 |
by (erule ValEnvE, simp add: pmap_appI)
|
|
|
103 |
|
|
|
104 |
lemma ve_domI: "[| ve \<in> ValEnv; x \<in> ve_dom(ve) |] ==> x \<in> ExVar"
|
|
|
105 |
apply (erule ValEnvE)
|
|
|
106 |
apply (simp );
|
|
|
107 |
apply (blast dest: pmap_domainD)
|
|
|
108 |
done
|
|
|
109 |
|
|
|
110 |
lemma ve_empI: "ve_emp \<in> ValEnv"
|
|
|
111 |
apply (unfold ve_emp_def)
|
|
|
112 |
apply (rule Val_ValEnv.intros)
|
|
|
113 |
apply (rule pmap_empI)
|
|
|
114 |
done
|
|
|
115 |
|
|
|
116 |
lemma ve_owrI:
|
|
|
117 |
"[|ve \<in> ValEnv; x \<in> ExVar; v \<in> Val |] ==> ve_owr(ve,x,v):ValEnv"
|
|
|
118 |
apply (erule ValEnvE)
|
|
|
119 |
apply simp
|
|
|
120 |
apply (blast intro: pmap_owrI Val_ValEnv.intros)
|
|
|
121 |
done
|
|
|
122 |
|
|
|
123 |
end
|