| 
61640
 | 
     1  | 
(* Author: Tobias Nipkow *)
  | 
| 
 | 
     2  | 
  | 
| 
 | 
     3  | 
section \<open>A 2-3 Tree Implementation of Maps\<close>
  | 
| 
 | 
     4  | 
  | 
| 
 | 
     5  | 
theory Tree23_Map
  | 
| 
 | 
     6  | 
imports
  | 
| 
 | 
     7  | 
  Tree23_Set
  | 
| 
 | 
     8  | 
  Map_by_Ordered
  | 
| 
 | 
     9  | 
begin
  | 
| 
 | 
    10  | 
  | 
| 
 | 
    11  | 
fun lookup :: "('a::cmp * 'b) tree23 \<Rightarrow> 'a \<Rightarrow> 'b option" where
 | 
| 
 | 
    12  | 
"lookup Leaf x = None" |
  | 
| 
 | 
    13  | 
"lookup (Node2 l (a,b) r) x = (case cmp x a of
  | 
| 
 | 
    14  | 
  LT \<Rightarrow> lookup l x |
  | 
| 
 | 
    15  | 
  GT \<Rightarrow> lookup r x |
  | 
| 
 | 
    16  | 
  EQ \<Rightarrow> Some b)" |
  | 
| 
 | 
    17  | 
"lookup (Node3 l (a1,b1) m (a2,b2) r) x = (case cmp x a1 of
  | 
| 
 | 
    18  | 
  LT \<Rightarrow> lookup l x |
  | 
| 
 | 
    19  | 
  EQ \<Rightarrow> Some b1 |
  | 
| 
 | 
    20  | 
  GT \<Rightarrow> (case cmp x a2 of
  | 
| 
 | 
    21  | 
          LT \<Rightarrow> lookup m x |
  | 
| 
 | 
    22  | 
          EQ \<Rightarrow> Some b2 |
  | 
| 
 | 
    23  | 
          GT \<Rightarrow> lookup r x))"
  | 
| 
 | 
    24  | 
  | 
| 
 | 
    25  | 
fun upd :: "'a::cmp \<Rightarrow> 'b \<Rightarrow> ('a*'b) tree23 \<Rightarrow> ('a*'b) up\<^sub>i" where
 | 
| 
 | 
    26  | 
"upd x y Leaf = Up\<^sub>i Leaf (x,y) Leaf" |
  | 
| 
 | 
    27  | 
"upd x y (Node2 l ab r) = (case cmp x (fst ab) of
  | 
| 
 | 
    28  | 
   LT \<Rightarrow> (case upd x y l of
  | 
| 
 | 
    29  | 
           T\<^sub>i l' => T\<^sub>i (Node2 l' ab r)
  | 
| 
 | 
    30  | 
         | Up\<^sub>i l1 ab' l2 => T\<^sub>i (Node3 l1 ab' l2 ab r)) |
  | 
| 
 | 
    31  | 
   EQ \<Rightarrow> T\<^sub>i (Node2 l (x,y) r) |
  | 
| 
 | 
    32  | 
   GT \<Rightarrow> (case upd x y r of
  | 
| 
 | 
    33  | 
           T\<^sub>i r' => T\<^sub>i (Node2 l ab r')
  | 
| 
 | 
    34  | 
         | Up\<^sub>i r1 ab' r2 => T\<^sub>i (Node3 l ab r1 ab' r2)))" |
  | 
| 
 | 
    35  | 
"upd x y (Node3 l ab1 m ab2 r) = (case cmp x (fst ab1) of
  | 
| 
 | 
    36  | 
   LT \<Rightarrow> (case upd x y l of
  | 
| 
 | 
    37  | 
           T\<^sub>i l' => T\<^sub>i (Node3 l' ab1 m ab2 r)
  | 
| 
 | 
    38  | 
         | Up\<^sub>i l1 ab' l2 => Up\<^sub>i (Node2 l1 ab' l2) ab1 (Node2 m ab2 r)) |
  | 
| 
 | 
    39  | 
   EQ \<Rightarrow> T\<^sub>i (Node3 l (x,y) m ab2 r) |
  | 
| 
 | 
    40  | 
   GT \<Rightarrow> (case cmp x (fst ab2) of
  | 
| 
 | 
    41  | 
           LT \<Rightarrow> (case upd x y m of
  | 
| 
 | 
    42  | 
                   T\<^sub>i m' => T\<^sub>i (Node3 l ab1 m' ab2 r)
  | 
| 
 | 
    43  | 
                 | Up\<^sub>i m1 ab' m2 => Up\<^sub>i (Node2 l ab1 m1) ab' (Node2 m2 ab2 r)) |
  | 
| 
 | 
    44  | 
           EQ \<Rightarrow> T\<^sub>i (Node3 l ab1 m (x,y) r) |
  | 
| 
 | 
    45  | 
           GT \<Rightarrow> (case upd x y r of
  | 
| 
 | 
    46  | 
                   T\<^sub>i r' => T\<^sub>i (Node3 l ab1 m ab2 r')
  | 
| 
 | 
    47  | 
                 | Up\<^sub>i r1 ab' r2 => Up\<^sub>i (Node2 l ab1 m) ab2 (Node2 r1 ab' r2))))"
  | 
| 
 | 
    48  | 
  | 
| 
 | 
    49  | 
definition update :: "'a::cmp \<Rightarrow> 'b \<Rightarrow> ('a*'b) tree23 \<Rightarrow> ('a*'b) tree23" where
 | 
| 
 | 
    50  | 
"update a b t = tree\<^sub>i(upd a b t)"
  | 
| 
 | 
    51  | 
  | 
| 
 | 
    52  | 
fun del :: "'a::cmp \<Rightarrow> ('a*'b) tree23 \<Rightarrow> ('a*'b) up\<^sub>d" where
 | 
| 
 | 
    53  | 
"del x Leaf = T\<^sub>d Leaf" |
  | 
| 
 | 
    54  | 
"del x (Node2 Leaf ab1 Leaf) = (if x=fst ab1 then Up\<^sub>d Leaf else T\<^sub>d(Node2 Leaf ab1 Leaf))" |
  | 
| 
 | 
    55  | 
"del x (Node3 Leaf ab1 Leaf ab2 Leaf) = T\<^sub>d(if x=fst ab1 then Node2 Leaf ab2 Leaf
  | 
| 
 | 
    56  | 
  else if x=fst ab2 then Node2 Leaf ab1 Leaf else Node3 Leaf ab1 Leaf ab2 Leaf)" |
  | 
| 
 | 
    57  | 
"del x (Node2 l ab1 r) = (case cmp x (fst ab1) of
  | 
| 
 | 
    58  | 
  LT \<Rightarrow> node21 (del x l) ab1 r |
  | 
| 
 | 
    59  | 
  GT \<Rightarrow> node22 l ab1 (del x r) |
  | 
| 
 | 
    60  | 
  EQ \<Rightarrow> let (ab1',t) = del_min r in node22 l ab1' t)" |
  | 
| 
 | 
    61  | 
"del x (Node3 l ab1 m ab2 r) = (case cmp x (fst ab1) of
  | 
| 
 | 
    62  | 
  LT \<Rightarrow> node31 (del x l) ab1 m ab2 r |
  | 
| 
 | 
    63  | 
  EQ \<Rightarrow> let (ab1',m') = del_min m in node32 l ab1' m' ab2 r |
  | 
| 
 | 
    64  | 
  GT \<Rightarrow> (case cmp x (fst ab2) of
  | 
| 
 | 
    65  | 
           LT \<Rightarrow> node32 l ab1 (del x m) ab2 r |
  | 
| 
 | 
    66  | 
           EQ \<Rightarrow> let (ab2',r') = del_min r in node33 l ab1 m ab2' r' |
  | 
| 
 | 
    67  | 
           GT \<Rightarrow> node33 l ab1 m ab2 (del x r)))"
  | 
| 
 | 
    68  | 
  | 
| 
 | 
    69  | 
definition delete :: "'a::cmp \<Rightarrow> ('a*'b) tree23 \<Rightarrow> ('a*'b) tree23" where
 | 
| 
 | 
    70  | 
"delete x t = tree\<^sub>d(del x t)"
  | 
| 
 | 
    71  | 
  | 
| 
 | 
    72  | 
  | 
| 
 | 
    73  | 
subsection \<open>Functional Correctness\<close>
  | 
| 
 | 
    74  | 
  | 
| 
61790
 | 
    75  | 
lemma lookup_map_of:
  | 
| 
 | 
    76  | 
  "sorted1(inorder t) \<Longrightarrow> lookup t x = map_of (inorder t) x"
  | 
| 
61640
 | 
    77  | 
by (induction t) (auto simp: map_of_simps split: option.split)
  | 
| 
 | 
    78  | 
  | 
| 
 | 
    79  | 
  | 
| 
 | 
    80  | 
lemma inorder_upd:
  | 
| 
61789
 | 
    81  | 
  "sorted1(inorder t) \<Longrightarrow> inorder(tree\<^sub>i(upd x y t)) = upd_list x y (inorder t)"
  | 
| 
61640
 | 
    82  | 
by(induction t) (auto simp: upd_list_simps split: up\<^sub>i.splits)
  | 
| 
 | 
    83  | 
  | 
| 
 | 
    84  | 
corollary inorder_update:
  | 
| 
61789
 | 
    85  | 
  "sorted1(inorder t) \<Longrightarrow> inorder(update x y t) = upd_list x y (inorder t)"
  | 
| 
61640
 | 
    86  | 
by(simp add: update_def inorder_upd)
  | 
| 
 | 
    87  | 
  | 
| 
 | 
    88  | 
  | 
| 
 | 
    89  | 
lemma inorder_del: "\<lbrakk> bal t ; sorted1(inorder t) \<rbrakk> \<Longrightarrow>
  | 
| 
 | 
    90  | 
  inorder(tree\<^sub>d (del x t)) = del_list x (inorder t)"
  | 
| 
 | 
    91  | 
by(induction t rule: del.induct)
  | 
| 
 | 
    92  | 
  (auto simp: del_list_simps inorder_nodes del_minD split: prod.splits)
  | 
| 
 | 
    93  | 
  | 
| 
 | 
    94  | 
corollary inorder_delete: "\<lbrakk> bal t ; sorted1(inorder t) \<rbrakk> \<Longrightarrow>
  | 
| 
 | 
    95  | 
  inorder(delete x t) = del_list x (inorder t)"
  | 
| 
 | 
    96  | 
by(simp add: delete_def inorder_del)
  | 
| 
 | 
    97  | 
  | 
| 
 | 
    98  | 
  | 
| 
 | 
    99  | 
subsection \<open>Balancedness\<close>
  | 
| 
 | 
   100  | 
  | 
| 
61789
 | 
   101  | 
lemma bal_upd: "bal t \<Longrightarrow> bal (tree\<^sub>i(upd x y t)) \<and> height(upd x y t) = height t"
  | 
| 
61640
 | 
   102  | 
by (induct t) (auto split: up\<^sub>i.split)(* 16 secs in 2015 *)
  | 
| 
 | 
   103  | 
  | 
| 
61789
 | 
   104  | 
corollary bal_update: "bal t \<Longrightarrow> bal (update x y t)"
  | 
| 
61640
 | 
   105  | 
by (simp add: update_def bal_upd)
  | 
| 
 | 
   106  | 
  | 
| 
 | 
   107  | 
  | 
| 
 | 
   108  | 
lemma height_del: "bal t \<Longrightarrow> height(del x t) = height t"
  | 
| 
 | 
   109  | 
by(induction x t rule: del.induct)
  | 
| 
 | 
   110  | 
  (auto simp add: heights max_def height_del_min split: prod.split)
  | 
| 
 | 
   111  | 
  | 
| 
 | 
   112  | 
lemma bal_tree\<^sub>d_del: "bal t \<Longrightarrow> bal(tree\<^sub>d(del x t))"
  | 
| 
 | 
   113  | 
by(induction x t rule: del.induct)
  | 
| 
 | 
   114  | 
  (auto simp: bals bal_del_min height_del height_del_min split: prod.split)
  | 
| 
 | 
   115  | 
  | 
| 
 | 
   116  | 
corollary bal_delete: "bal t \<Longrightarrow> bal(delete x t)"
  | 
| 
 | 
   117  | 
by(simp add: delete_def bal_tree\<^sub>d_del)
  | 
| 
 | 
   118  | 
  | 
| 
 | 
   119  | 
  | 
| 
 | 
   120  | 
subsection \<open>Overall Correctness\<close>
  | 
| 
 | 
   121  | 
  | 
| 
61790
 | 
   122  | 
interpretation Map_by_Ordered
  | 
| 
61640
 | 
   123  | 
where empty = Leaf and lookup = lookup and update = update and delete = delete
  | 
| 
61686
 | 
   124  | 
and inorder = inorder and inv = bal
  | 
| 
61640
 | 
   125  | 
proof (standard, goal_cases)
  | 
| 
61790
 | 
   126  | 
  case 2 thus ?case by(simp add: lookup_map_of)
  | 
| 
61640
 | 
   127  | 
next
  | 
| 
 | 
   128  | 
  case 3 thus ?case by(simp add: inorder_update)
  | 
| 
 | 
   129  | 
next
  | 
| 
 | 
   130  | 
  case 4 thus ?case by(simp add: inorder_delete)
  | 
| 
 | 
   131  | 
next
  | 
| 
 | 
   132  | 
  case 6 thus ?case by(simp add: bal_update)
  | 
| 
 | 
   133  | 
next
  | 
| 
 | 
   134  | 
  case 7 thus ?case by(simp add: bal_delete)
  | 
| 
 | 
   135  | 
qed simp+
  | 
| 
 | 
   136  | 
  | 
| 
 | 
   137  | 
end
  |