| author | blanchet | 
| Wed, 17 Sep 2014 08:23:53 +0200 | |
| changeset 58354 | 04ac60da613e | 
| parent 57512 | cc97b347b301 | 
| child 58889 | 5b7a9633cfa8 | 
| permissions | -rw-r--r-- | 
| 41959 | 1 | (* Title: HOL/Number_Theory/Fib.thy | 
| 2 | Author: Lawrence C. Paulson | |
| 3 | Author: Jeremy Avigad | |
| 31719 | 4 | |
| 5 | Defines the fibonacci function. | |
| 6 | ||
| 7 | The original "Fib" is due to Lawrence C. Paulson, and was adapted by | |
| 8 | Jeremy Avigad. | |
| 9 | *) | |
| 10 | ||
| 11 | header {* Fib *}
 | |
| 12 | ||
| 13 | theory Fib | |
| 14 | imports Binomial | |
| 15 | begin | |
| 16 | ||
| 17 | ||
| 18 | subsection {* Main definitions *}
 | |
| 19 | ||
| 54713 | 20 | fun fib :: "nat \<Rightarrow> nat" | 
| 31719 | 21 | where | 
| 54713 | 22 | fib0: "fib 0 = 0" | 
| 23 | | fib1: "fib (Suc 0) = 1" | |
| 24 | | fib2: "fib (Suc (Suc n)) = fib (Suc n) + fib n" | |
| 31719 | 25 | |
| 26 | subsection {* Fibonacci numbers *}
 | |
| 27 | ||
| 54713 | 28 | lemma fib_1 [simp]: "fib (1::nat) = 1" | 
| 29 | by (metis One_nat_def fib1) | |
| 31719 | 30 | |
| 54713 | 31 | lemma fib_2 [simp]: "fib (2::nat) = 1" | 
| 32 | using fib.simps(3) [of 0] | |
| 33 | by (simp add: numeral_2_eq_2) | |
| 31719 | 34 | |
| 54713 | 35 | lemma fib_plus_2: "fib (n + 2) = fib (n + 1) + fib n" | 
| 36 | by (metis Suc_eq_plus1 add_2_eq_Suc' fib.simps(3)) | |
| 31719 | 37 | |
| 54713 | 38 | lemma fib_add: "fib (Suc (n+k)) = fib (Suc k) * fib (Suc n) + fib k * fib n" | 
| 39 | by (induct n rule: fib.induct) (auto simp add: field_simps) | |
| 31719 | 40 | |
| 54713 | 41 | lemma fib_neq_0_nat: "n > 0 \<Longrightarrow> fib n > 0" | 
| 42 | by (induct n rule: fib.induct) (auto simp add: ) | |
| 31719 | 43 | |
| 44 | text {*
 | |
| 45 | \medskip Concrete Mathematics, page 278: Cassini's identity. The proof is | |
| 46 | much easier using integers, not natural numbers! | |
| 47 | *} | |
| 48 | ||
| 54713 | 49 | lemma fib_Cassini_int: "int (fib (Suc (Suc n)) * fib n) - int((fib (Suc n))\<^sup>2) = - ((-1)^n)" | 
| 50 | by (induction n rule: fib.induct) (auto simp add: field_simps power2_eq_square power_add) | |
| 31719 | 51 | |
| 54713 | 52 | lemma fib_Cassini_nat: | 
| 53 | "fib (Suc (Suc n)) * fib n = | |
| 54 | (if even n then (fib (Suc n))\<^sup>2 - 1 else (fib (Suc n))\<^sup>2 + 1)" | |
| 55 | using fib_Cassini_int [of n] by auto | |
| 31719 | 56 | |
| 57 | ||
| 58 | text {* \medskip Toward Law 6.111 of Concrete Mathematics *}
 | |
| 59 | ||
| 54713 | 60 | lemma coprime_fib_Suc_nat: "coprime (fib (n::nat)) (fib (Suc n))" | 
| 61 | apply (induct n rule: fib.induct) | |
| 31719 | 62 | apply auto | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
54713diff
changeset | 63 | apply (metis gcd_add1_nat add.commute) | 
| 44872 | 64 | done | 
| 31719 | 65 | |
| 54713 | 66 | lemma gcd_fib_add: "gcd (fib m) (fib (n + m)) = gcd (fib m) (fib n)" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 67 | apply (simp add: gcd_commute_nat [of "fib m"]) | 
| 54713 | 68 | apply (cases m) | 
| 69 | apply (auto simp add: fib_add) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 70 | apply (subst gcd_commute_nat) | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
54713diff
changeset | 71 | apply (subst mult.commute) | 
| 54713 | 72 | apply (metis coprime_fib_Suc_nat gcd_add_mult_nat gcd_mult_cancel_nat gcd_nat.commute) | 
| 44872 | 73 | done | 
| 31719 | 74 | |
| 54713 | 75 | lemma gcd_fib_diff: "m \<le> n \<Longrightarrow> | 
| 31719 | 76 | gcd (fib m) (fib (n - m)) = gcd (fib m) (fib n)" | 
| 54713 | 77 | by (simp add: gcd_fib_add [symmetric, of _ "n-m"]) | 
| 31719 | 78 | |
| 54713 | 79 | lemma gcd_fib_mod: "0 < m \<Longrightarrow> | 
| 31719 | 80 | gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)" | 
| 81 | proof (induct n rule: less_induct) | |
| 82 | case (less n) | |
| 83 | from less.prems have pos_m: "0 < m" . | |
| 84 | show "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)" | |
| 85 | proof (cases "m < n") | |
| 44872 | 86 | case True | 
| 87 | then have "m \<le> n" by auto | |
| 31719 | 88 | with pos_m have pos_n: "0 < n" by auto | 
| 44872 | 89 | with pos_m `m < n` have diff: "n - m < n" by auto | 
| 31719 | 90 | have "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib ((n - m) mod m))" | 
| 44872 | 91 | by (simp add: mod_if [of n]) (insert `m < n`, auto) | 
| 92 | also have "\<dots> = gcd (fib m) (fib (n - m))" | |
| 31719 | 93 | by (simp add: less.hyps diff pos_m) | 
| 44872 | 94 | also have "\<dots> = gcd (fib m) (fib n)" | 
| 54713 | 95 | by (simp add: gcd_fib_diff `m \<le> n`) | 
| 31719 | 96 | finally show "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)" . | 
| 97 | next | |
| 44872 | 98 | case False | 
| 99 | then show "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)" | |
| 100 | by (cases "m = n") auto | |
| 31719 | 101 | qed | 
| 102 | qed | |
| 103 | ||
| 54713 | 104 | lemma fib_gcd: "fib (gcd m n) = gcd (fib m) (fib n)" | 
| 31719 | 105 |     -- {* Law 6.111 *}
 | 
| 54713 | 106 | by (induct m n rule: gcd_nat_induct) (simp_all add: gcd_non_0_nat gcd_commute_nat gcd_fib_mod) | 
| 31719 | 107 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 108 | theorem fib_mult_eq_setsum_nat: | 
| 31719 | 109 |     "fib (Suc n) * fib n = (\<Sum>k \<in> {..n}. fib k * fib k)"
 | 
| 54713 | 110 | by (induct n rule: nat.induct) (auto simp add: field_simps) | 
| 31719 | 111 | |
| 112 | end | |
| 54713 | 113 |