| author | paulson | 
| Fri, 17 Mar 2023 10:42:50 +0000 | |
| changeset 77685 | 05329cd9db4b | 
| parent 77172 | 816959264c32 | 
| child 78099 | 4d9349989d94 | 
| permissions | -rw-r--r-- | 
| 923 | 1  | 
(* Title: HOL/HOL.thy  | 
| 11750 | 2  | 
Author: Tobias Nipkow, Markus Wenzel, and Larry Paulson  | 
3  | 
*)  | 
|
| 923 | 4  | 
|
| 60758 | 5  | 
section \<open>The basis of Higher-Order Logic\<close>  | 
| 923 | 6  | 
|
| 15131 | 7  | 
theory HOL  | 
| 70853 | 8  | 
imports Pure Tools.Code_Generator  | 
| 
46950
 
d0181abdbdac
declare command keywords via theory header, including strict checking outside Pure;
 
wenzelm 
parents: 
46497 
diff
changeset
 | 
9  | 
keywords  | 
| 52432 | 10  | 
"try" "solve_direct" "quickcheck" "print_coercions" "print_claset"  | 
11  | 
"print_induct_rules" :: diag and  | 
|
| 
47657
 
1ba213363d0c
moved modules with only vague relation to the code generator to theory HOL rather than theory Code_Generator
 
haftmann 
parents: 
46973 
diff
changeset
 | 
12  | 
"quickcheck_params" :: thy_decl  | 
| 
71833
 
ff6f3b09b8b4
abbrevs for the Uniq quantifier; trying Sup_nat_def to allow zero (experimentally)
 
paulson <lp15@cam.ac.uk> 
parents: 
71827 
diff
changeset
 | 
13  | 
abbrevs "?<" = "\<exists>\<^sub>\<le>\<^sub>1"  | 
| 15131 | 14  | 
begin  | 
| 2260 | 15  | 
|
| 69605 | 16  | 
ML_file \<open>~~/src/Tools/misc_legacy.ML\<close>  | 
17  | 
ML_file \<open>~~/src/Tools/try.ML\<close>  | 
|
18  | 
ML_file \<open>~~/src/Tools/quickcheck.ML\<close>  | 
|
19  | 
ML_file \<open>~~/src/Tools/solve_direct.ML\<close>  | 
|
20  | 
ML_file \<open>~~/src/Tools/IsaPlanner/zipper.ML\<close>  | 
|
21  | 
ML_file \<open>~~/src/Tools/IsaPlanner/isand.ML\<close>  | 
|
22  | 
ML_file \<open>~~/src/Tools/IsaPlanner/rw_inst.ML\<close>  | 
|
23  | 
ML_file \<open>~~/src/Provers/hypsubst.ML\<close>  | 
|
24  | 
ML_file \<open>~~/src/Provers/splitter.ML\<close>  | 
|
25  | 
ML_file \<open>~~/src/Provers/classical.ML\<close>  | 
|
26  | 
ML_file \<open>~~/src/Provers/blast.ML\<close>  | 
|
27  | 
ML_file \<open>~~/src/Provers/clasimp.ML\<close>  | 
|
28  | 
ML_file \<open>~~/src/Tools/eqsubst.ML\<close>  | 
|
29  | 
ML_file \<open>~~/src/Provers/quantifier1.ML\<close>  | 
|
30  | 
ML_file \<open>~~/src/Tools/atomize_elim.ML\<close>  | 
|
31  | 
ML_file \<open>~~/src/Tools/cong_tac.ML\<close>  | 
|
32  | 
ML_file \<open>~~/src/Tools/intuitionistic.ML\<close> setup \<open>Intuitionistic.method_setup \<^binding>\<open>iprover\<close>\<close>  | 
|
33  | 
ML_file \<open>~~/src/Tools/project_rule.ML\<close>  | 
|
34  | 
ML_file \<open>~~/src/Tools/subtyping.ML\<close>  | 
|
35  | 
ML_file \<open>~~/src/Tools/case_product.ML\<close>  | 
|
| 48891 | 36  | 
|
| 
30165
 
6ee87f67d9cd
moved generic intuitionistic prover to src/Tools/intuitionistic.ML;
 
wenzelm 
parents: 
30160 
diff
changeset
 | 
37  | 
|
| 67149 | 38  | 
ML \<open>Plugin_Name.declare_setup \<^binding>\<open>extraction\<close>\<close>  | 
| 
58659
 
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
 
wenzelm 
parents: 
57964 
diff
changeset
 | 
39  | 
|
| 
 
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
 
wenzelm 
parents: 
57964 
diff
changeset
 | 
40  | 
ML \<open>  | 
| 67149 | 41  | 
Plugin_Name.declare_setup \<^binding>\<open>quickcheck_random\<close>;  | 
42  | 
Plugin_Name.declare_setup \<^binding>\<open>quickcheck_exhaustive\<close>;  | 
|
43  | 
Plugin_Name.declare_setup \<^binding>\<open>quickcheck_bounded_forall\<close>;  | 
|
44  | 
Plugin_Name.declare_setup \<^binding>\<open>quickcheck_full_exhaustive\<close>;  | 
|
45  | 
Plugin_Name.declare_setup \<^binding>\<open>quickcheck_narrowing\<close>;  | 
|
| 
58659
 
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
 
wenzelm 
parents: 
57964 
diff
changeset
 | 
46  | 
\<close>  | 
| 
 
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
 
wenzelm 
parents: 
57964 
diff
changeset
 | 
47  | 
ML \<open>  | 
| 67149 | 48  | 
Plugin_Name.define_setup \<^binding>\<open>quickcheck\<close>  | 
| 69593 | 49  | 
[\<^plugin>\<open>quickcheck_exhaustive\<close>,  | 
50  | 
\<^plugin>\<open>quickcheck_random\<close>,  | 
|
51  | 
\<^plugin>\<open>quickcheck_bounded_forall\<close>,  | 
|
52  | 
\<^plugin>\<open>quickcheck_full_exhaustive\<close>,  | 
|
53  | 
\<^plugin>\<open>quickcheck_narrowing\<close>]  | 
|
| 
58659
 
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
 
wenzelm 
parents: 
57964 
diff
changeset
 | 
54  | 
\<close>  | 
| 
 
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
 
wenzelm 
parents: 
57964 
diff
changeset
 | 
55  | 
|
| 
 
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
 
wenzelm 
parents: 
57964 
diff
changeset
 | 
56  | 
|
| 60758 | 57  | 
subsection \<open>Primitive logic\<close>  | 
| 11750 | 58  | 
|
| 
66893
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
59  | 
text \<open>  | 
| 77172 | 60  | 
The definition of the logic is based on Mike Gordon's technical report \<^cite>\<open>"Gordon-TR68"\<close> that  | 
| 
66893
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
61  | 
describes the first implementation of HOL. However, there are a number of differences.  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
62  | 
In particular, we start with the definite description operator and introduce Hilbert's \<open>\<epsilon>\<close> operator  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
63  | 
only much later. Moreover, axiom \<open>(P \<longrightarrow> Q) \<longrightarrow> (Q \<longrightarrow> P) \<longrightarrow> (P = Q)\<close> is derived from the other  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
64  | 
axioms. The fact that this axiom is derivable was first noticed by Bruno Barras (for Mike Gordon's  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
65  | 
line of HOL systems) and later independently by Alexander Maletzky (for Isabelle/HOL).  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
66  | 
\<close>  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
67  | 
|
| 60758 | 68  | 
subsubsection \<open>Core syntax\<close>  | 
| 2260 | 69  | 
|
| 67149 | 70  | 
setup \<open>Axclass.class_axiomatization (\<^binding>\<open>type\<close>, [])\<close>  | 
| 36452 | 71  | 
default_sort type  | 
| 69593 | 72  | 
setup \<open>Object_Logic.add_base_sort \<^sort>\<open>type\<close>\<close>  | 
| 
25460
 
b80087af2274
interpretation of typedecls: instantiation to class type
 
haftmann 
parents: 
25388 
diff
changeset
 | 
73  | 
|
| 70879 | 74  | 
setup \<open>Proofterm.set_preproc (Proof_Rewrite_Rules.standard_preproc [])\<close>  | 
| 70849 | 75  | 
|
| 55383 | 76  | 
axiomatization where fun_arity: "OFCLASS('a \<Rightarrow> 'b, type_class)"
 | 
77  | 
instance "fun" :: (type, type) type by (rule fun_arity)  | 
|
78  | 
||
79  | 
axiomatization where itself_arity: "OFCLASS('a itself, type_class)"
 | 
|
80  | 
instance itself :: (type) type by (rule itself_arity)  | 
|
| 
25460
 
b80087af2274
interpretation of typedecls: instantiation to class type
 
haftmann 
parents: 
25388 
diff
changeset
 | 
81  | 
|
| 7357 | 82  | 
typedecl bool  | 
| 923 | 83  | 
|
| 62151 | 84  | 
judgment Trueprop :: "bool \<Rightarrow> prop"  ("(_)" 5)
 | 
85  | 
||
86  | 
axiomatization implies :: "[bool, bool] \<Rightarrow> bool" (infixr "\<longrightarrow>" 25)  | 
|
| 
68973
 
a1e26440efb8
tuned "=" syntax declarations; made "~=" uniformly "infix"
 
nipkow 
parents: 
68072 
diff
changeset
 | 
87  | 
and eq :: "['a, 'a] \<Rightarrow> bool"  | 
| 62151 | 88  | 
  and The :: "('a \<Rightarrow> bool) \<Rightarrow> 'a"
 | 
89  | 
||
| 
68973
 
a1e26440efb8
tuned "=" syntax declarations; made "~=" uniformly "infix"
 
nipkow 
parents: 
68072 
diff
changeset
 | 
90  | 
notation (input)  | 
| 
 
a1e26440efb8
tuned "=" syntax declarations; made "~=" uniformly "infix"
 
nipkow 
parents: 
68072 
diff
changeset
 | 
91  | 
eq (infixl "=" 50)  | 
| 
 
a1e26440efb8
tuned "=" syntax declarations; made "~=" uniformly "infix"
 
nipkow 
parents: 
68072 
diff
changeset
 | 
92  | 
notation (output)  | 
| 
 
a1e26440efb8
tuned "=" syntax declarations; made "~=" uniformly "infix"
 
nipkow 
parents: 
68072 
diff
changeset
 | 
93  | 
eq (infix "=" 50)  | 
| 
 
a1e26440efb8
tuned "=" syntax declarations; made "~=" uniformly "infix"
 
nipkow 
parents: 
68072 
diff
changeset
 | 
94  | 
|
| 
 
a1e26440efb8
tuned "=" syntax declarations; made "~=" uniformly "infix"
 
nipkow 
parents: 
68072 
diff
changeset
 | 
95  | 
text \<open>The input syntax for \<open>eq\<close> is more permissive than the output syntax  | 
| 
 
a1e26440efb8
tuned "=" syntax declarations; made "~=" uniformly "infix"
 
nipkow 
parents: 
68072 
diff
changeset
 | 
96  | 
because of the large amount of material that relies on infixl.\<close>  | 
| 923 | 97  | 
|
| 62151 | 98  | 
subsubsection \<open>Defined connectives and quantifiers\<close>  | 
99  | 
||
100  | 
definition True :: bool  | 
|
101  | 
where "True \<equiv> ((\<lambda>x::bool. x) = (\<lambda>x. x))"  | 
|
102  | 
||
103  | 
definition All :: "('a \<Rightarrow> bool) \<Rightarrow> bool"  (binder "\<forall>" 10)
 | 
|
104  | 
where "All P \<equiv> (P = (\<lambda>x. True))"  | 
|
| 46973 | 105  | 
|
| 62151 | 106  | 
definition Ex :: "('a \<Rightarrow> bool) \<Rightarrow> bool"  (binder "\<exists>" 10)
 | 
107  | 
where "Ex P \<equiv> \<forall>Q. (\<forall>x. P x \<longrightarrow> Q) \<longrightarrow> Q"  | 
|
108  | 
||
109  | 
definition False :: bool  | 
|
110  | 
where "False \<equiv> (\<forall>P. P)"  | 
|
111  | 
||
112  | 
definition Not :: "bool \<Rightarrow> bool"  ("\<not> _" [40] 40)
 | 
|
113  | 
where not_def: "\<not> P \<equiv> P \<longrightarrow> False"  | 
|
| 
38795
 
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
 
haftmann 
parents: 
38786 
diff
changeset
 | 
114  | 
|
| 62151 | 115  | 
definition conj :: "[bool, bool] \<Rightarrow> bool" (infixr "\<and>" 35)  | 
116  | 
where and_def: "P \<and> Q \<equiv> \<forall>R. (P \<longrightarrow> Q \<longrightarrow> R) \<longrightarrow> R"  | 
|
| 38555 | 117  | 
|
| 62151 | 118  | 
definition disj :: "[bool, bool] \<Rightarrow> bool" (infixr "\<or>" 30)  | 
119  | 
where or_def: "P \<or> Q \<equiv> \<forall>R. (P \<longrightarrow> R) \<longrightarrow> (Q \<longrightarrow> R) \<longrightarrow> R"  | 
|
120  | 
||
| 71827 | 121  | 
definition Uniq :: "('a \<Rightarrow> bool) \<Rightarrow> bool"
 | 
122  | 
where "Uniq P \<equiv> (\<forall>x y. P x \<longrightarrow> P y \<longrightarrow> y = x)"  | 
|
123  | 
||
| 63909 | 124  | 
definition Ex1 :: "('a \<Rightarrow> bool) \<Rightarrow> bool"
 | 
| 62151 | 125  | 
where "Ex1 P \<equiv> \<exists>x. P x \<and> (\<forall>y. P y \<longrightarrow> y = x)"  | 
| 923 | 126  | 
|
| 
19656
 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 
wenzelm 
parents: 
19607 
diff
changeset
 | 
127  | 
|
| 60758 | 128  | 
subsubsection \<open>Additional concrete syntax\<close>  | 
| 2260 | 129  | 
|
| 71827 | 130  | 
syntax (ASCII) "_Uniq" :: "pttrn \<Rightarrow> bool \<Rightarrow> bool"  ("(4?< _./ _)" [0, 10] 10)
 | 
131  | 
syntax "_Uniq" :: "pttrn \<Rightarrow> bool \<Rightarrow> bool"  ("(2\<exists>\<^sub>\<le>\<^sub>1 _./ _)" [0, 10] 10)
 | 
|
132  | 
translations "\<exists>\<^sub>\<le>\<^sub>1x. P" \<rightleftharpoons> "CONST Uniq (\<lambda>x. P)"  | 
|
133  | 
||
134  | 
print_translation \<open>  | 
|
135  | 
[Syntax_Trans.preserve_binder_abs_tr' \<^const_syntax>\<open>Uniq\<close> \<^syntax_const>\<open>_Uniq\<close>]  | 
|
136  | 
\<close> \<comment> \<open>to avoid eta-contraction of body\<close>  | 
|
137  | 
||
138  | 
||
| 63909 | 139  | 
syntax (ASCII)  | 
140  | 
  "_Ex1" :: "pttrn \<Rightarrow> bool \<Rightarrow> bool"  ("(3EX! _./ _)" [0, 10] 10)
 | 
|
141  | 
syntax (input)  | 
|
142  | 
  "_Ex1" :: "pttrn \<Rightarrow> bool \<Rightarrow> bool"  ("(3?! _./ _)" [0, 10] 10)
 | 
|
143  | 
syntax "_Ex1" :: "pttrn \<Rightarrow> bool \<Rightarrow> bool"  ("(3\<exists>!_./ _)" [0, 10] 10)
 | 
|
144  | 
translations "\<exists>!x. P" \<rightleftharpoons> "CONST Ex1 (\<lambda>x. P)"  | 
|
145  | 
||
146  | 
print_translation \<open>  | 
|
| 69593 | 147  | 
[Syntax_Trans.preserve_binder_abs_tr' \<^const_syntax>\<open>Ex1\<close> \<^syntax_const>\<open>_Ex1\<close>]  | 
| 63909 | 148  | 
\<close> \<comment> \<open>to avoid eta-contraction of body\<close>  | 
149  | 
||
150  | 
||
| 
63912
 
9f8325206465
clarified notation: iterated quantifier is negated as one chunk;
 
wenzelm 
parents: 
63909 
diff
changeset
 | 
151  | 
syntax  | 
| 
 
9f8325206465
clarified notation: iterated quantifier is negated as one chunk;
 
wenzelm 
parents: 
63909 
diff
changeset
 | 
152  | 
  "_Not_Ex" :: "idts \<Rightarrow> bool \<Rightarrow> bool"  ("(3\<nexists>_./ _)" [0, 10] 10)
 | 
| 
 
9f8325206465
clarified notation: iterated quantifier is negated as one chunk;
 
wenzelm 
parents: 
63909 
diff
changeset
 | 
153  | 
  "_Not_Ex1" :: "pttrn \<Rightarrow> bool \<Rightarrow> bool"  ("(3\<nexists>!_./ _)" [0, 10] 10)
 | 
| 
 
9f8325206465
clarified notation: iterated quantifier is negated as one chunk;
 
wenzelm 
parents: 
63909 
diff
changeset
 | 
154  | 
translations  | 
| 
 
9f8325206465
clarified notation: iterated quantifier is negated as one chunk;
 
wenzelm 
parents: 
63909 
diff
changeset
 | 
155  | 
"\<nexists>x. P" \<rightleftharpoons> "\<not> (\<exists>x. P)"  | 
| 
 
9f8325206465
clarified notation: iterated quantifier is negated as one chunk;
 
wenzelm 
parents: 
63909 
diff
changeset
 | 
156  | 
"\<nexists>!x. P" \<rightleftharpoons> "\<not> (\<exists>!x. P)"  | 
| 62522 | 157  | 
|
158  | 
||
| 
68973
 
a1e26440efb8
tuned "=" syntax declarations; made "~=" uniformly "infix"
 
nipkow 
parents: 
68072 
diff
changeset
 | 
159  | 
abbreviation not_equal :: "['a, 'a] \<Rightarrow> bool" (infix "\<noteq>" 50)  | 
| 
61955
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61941 
diff
changeset
 | 
160  | 
where "x \<noteq> y \<equiv> \<not> (x = y)"  | 
| 
19656
 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 
wenzelm 
parents: 
19607 
diff
changeset
 | 
161  | 
|
| 
61955
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61941 
diff
changeset
 | 
162  | 
notation (ASCII)  | 
| 
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61941 
diff
changeset
 | 
163  | 
  Not  ("~ _" [40] 40) and
 | 
| 
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61941 
diff
changeset
 | 
164  | 
conj (infixr "&" 35) and  | 
| 
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61941 
diff
changeset
 | 
165  | 
disj (infixr "|" 30) and  | 
| 
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61941 
diff
changeset
 | 
166  | 
implies (infixr "-->" 25) and  | 
| 
68973
 
a1e26440efb8
tuned "=" syntax declarations; made "~=" uniformly "infix"
 
nipkow 
parents: 
68072 
diff
changeset
 | 
167  | 
not_equal (infix "~=" 50)  | 
| 
19656
 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 
wenzelm 
parents: 
19607 
diff
changeset
 | 
168  | 
|
| 
 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 
wenzelm 
parents: 
19607 
diff
changeset
 | 
169  | 
abbreviation (iff)  | 
| 
61955
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61941 
diff
changeset
 | 
170  | 
iff :: "[bool, bool] \<Rightarrow> bool" (infixr "\<longleftrightarrow>" 25)  | 
| 
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61941 
diff
changeset
 | 
171  | 
where "A \<longleftrightarrow> B \<equiv> A = B"  | 
| 
19656
 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 
wenzelm 
parents: 
19607 
diff
changeset
 | 
172  | 
|
| 60759 | 173  | 
syntax "_The" :: "[pttrn, bool] \<Rightarrow> 'a"  ("(3THE _./ _)" [0, 10] 10)
 | 
174  | 
translations "THE x. P" \<rightleftharpoons> "CONST The (\<lambda>x. P)"  | 
|
| 60758 | 175  | 
print_translation \<open>  | 
| 69593 | 176  | 
[(\<^const_syntax>\<open>The\<close>, fn _ => fn [Abs abs] =>  | 
| 
46125
 
00cd193a48dc
improved case syntax: more careful treatment of position constraints, which enables PIDE markup;
 
wenzelm 
parents: 
45654 
diff
changeset
 | 
177  | 
let val (x, t) = Syntax_Trans.atomic_abs_tr' abs  | 
| 69593 | 178  | 
in Syntax.const \<^syntax_const>\<open>_The\<close> $ x $ t end)]  | 
| 61799 | 179  | 
\<close> \<comment> \<open>To avoid eta-contraction of body\<close>  | 
| 923 | 180  | 
|
| 
46125
 
00cd193a48dc
improved case syntax: more careful treatment of position constraints, which enables PIDE markup;
 
wenzelm 
parents: 
45654 
diff
changeset
 | 
181  | 
nonterminal letbinds and letbind  | 
| 923 | 182  | 
syntax  | 
| 60759 | 183  | 
  "_bind"       :: "[pttrn, 'a] \<Rightarrow> letbind"              ("(2_ =/ _)" 10)
 | 
184  | 
  ""            :: "letbind \<Rightarrow> letbinds"                 ("_")
 | 
|
185  | 
  "_binds"      :: "[letbind, letbinds] \<Rightarrow> letbinds"     ("_;/ _")
 | 
|
186  | 
  "_Let"        :: "[letbinds, 'a] \<Rightarrow> 'a"                ("(let (_)/ in (_))" [0, 10] 10)
 | 
|
| 923 | 187  | 
|
| 
46125
 
00cd193a48dc
improved case syntax: more careful treatment of position constraints, which enables PIDE markup;
 
wenzelm 
parents: 
45654 
diff
changeset
 | 
188  | 
nonterminal case_syn and cases_syn  | 
| 
 
00cd193a48dc
improved case syntax: more careful treatment of position constraints, which enables PIDE markup;
 
wenzelm 
parents: 
45654 
diff
changeset
 | 
189  | 
syntax  | 
| 60759 | 190  | 
  "_case_syntax" :: "['a, cases_syn] \<Rightarrow> 'b"  ("(case _ of/ _)" 10)
 | 
| 
61955
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61941 
diff
changeset
 | 
191  | 
  "_case1" :: "['a, 'b] \<Rightarrow> case_syn"  ("(2_ \<Rightarrow>/ _)" 10)
 | 
| 60759 | 192  | 
  "" :: "case_syn \<Rightarrow> cases_syn"  ("_")
 | 
193  | 
  "_case2" :: "[case_syn, cases_syn] \<Rightarrow> cases_syn"  ("_/ | _")
 | 
|
| 
61955
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61941 
diff
changeset
 | 
194  | 
syntax (ASCII)  | 
| 
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61941 
diff
changeset
 | 
195  | 
  "_case1" :: "['a, 'b] \<Rightarrow> case_syn"  ("(2_ =>/ _)" 10)
 | 
| 
13763
 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 
nipkow 
parents: 
13723 
diff
changeset
 | 
196  | 
|
| 
61955
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61941 
diff
changeset
 | 
197  | 
notation (ASCII)  | 
| 
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61941 
diff
changeset
 | 
198  | 
All (binder "ALL " 10) and  | 
| 63909 | 199  | 
Ex (binder "EX " 10)  | 
| 2372 | 200  | 
|
| 62521 | 201  | 
notation (input)  | 
| 21524 | 202  | 
All (binder "! " 10) and  | 
| 63909 | 203  | 
Ex (binder "? " 10)  | 
| 
7238
 
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
 
wenzelm 
parents: 
7220 
diff
changeset
 | 
204  | 
|
| 
 
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
 
wenzelm 
parents: 
7220 
diff
changeset
 | 
205  | 
|
| 60758 | 206  | 
subsubsection \<open>Axioms and basic definitions\<close>  | 
| 2260 | 207  | 
|
| 46973 | 208  | 
axiomatization where  | 
209  | 
refl: "t = (t::'a)" and  | 
|
210  | 
subst: "s = t \<Longrightarrow> P s \<Longrightarrow> P t" and  | 
|
| 60759 | 211  | 
ext: "(\<And>x::'a. (f x ::'b) = g x) \<Longrightarrow> (\<lambda>x. f x) = (\<lambda>x. g x)"  | 
| 61799 | 212  | 
\<comment> \<open>Extensionality is built into the meta-logic, and this rule expresses  | 
| 15380 | 213  | 
a related property. It is an eta-expanded version of the traditional  | 
| 60758 | 214  | 
rule, and similar to the ABS rule of HOL\<close> and  | 
| 6289 | 215  | 
|
| 
11432
 
8a203ae6efe3
added "The" (definite description operator) (by Larry);
 
wenzelm 
parents: 
10489 
diff
changeset
 | 
216  | 
the_eq_trivial: "(THE x. x = a) = (a::'a)"  | 
| 923 | 217  | 
|
| 46973 | 218  | 
axiomatization where  | 
| 60759 | 219  | 
impI: "(P \<Longrightarrow> Q) \<Longrightarrow> P \<longrightarrow> Q" and  | 
220  | 
mp: "\<lbrakk>P \<longrightarrow> Q; P\<rbrakk> \<Longrightarrow> Q" and  | 
|
| 15380 | 221  | 
|
| 60759 | 222  | 
True_or_False: "(P = True) \<or> (P = False)"  | 
| 15380 | 223  | 
|
| 46973 | 224  | 
definition If :: "bool \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a" ("(if (_)/ then (_)/ else (_))" [0, 0, 10] 10)
 | 
| 60759 | 225  | 
where "If P x y \<equiv> (THE z::'a. (P = True \<longrightarrow> z = x) \<and> (P = False \<longrightarrow> z = y))"  | 
| 923 | 226  | 
|
| 46973 | 227  | 
definition Let :: "'a \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'b"
 | 
228  | 
where "Let s f \<equiv> f s"  | 
|
| 38525 | 229  | 
|
230  | 
translations  | 
|
| 60759 | 231  | 
"_Let (_binds b bs) e" \<rightleftharpoons> "_Let b (_Let bs e)"  | 
232  | 
"let x = a in e" \<rightleftharpoons> "CONST Let a (\<lambda>x. e)"  | 
|
| 38525 | 233  | 
|
| 46973 | 234  | 
axiomatization undefined :: 'a  | 
| 
22481
 
79c2724c36b5
added class "default" and expansion axioms for undefined
 
haftmann 
parents: 
22473 
diff
changeset
 | 
235  | 
|
| 46973 | 236  | 
class default = fixes default :: 'a  | 
| 4868 | 237  | 
|
| 11750 | 238  | 
|
| 60758 | 239  | 
subsection \<open>Fundamental rules\<close>  | 
| 20944 | 240  | 
|
| 60758 | 241  | 
subsubsection \<open>Equality\<close>  | 
| 20944 | 242  | 
|
| 60759 | 243  | 
lemma sym: "s = t \<Longrightarrow> t = s"  | 
| 18457 | 244  | 
by (erule subst) (rule refl)  | 
| 15411 | 245  | 
|
| 60759 | 246  | 
lemma ssubst: "t = s \<Longrightarrow> P s \<Longrightarrow> P t"  | 
| 18457 | 247  | 
by (drule sym) (erule subst)  | 
| 15411 | 248  | 
|
| 60759 | 249  | 
lemma trans: "\<lbrakk>r = s; s = t\<rbrakk> \<Longrightarrow> r = t"  | 
| 18457 | 250  | 
by (erule subst)  | 
| 15411 | 251  | 
|
| 60759 | 252  | 
lemma trans_sym [Pure.elim?]: "r = s \<Longrightarrow> t = s \<Longrightarrow> r = t"  | 
| 
40715
 
3ba17f07b23c
lemma trans_sym allows single-step "normalization" in Isar, e.g. via moreover/ultimately;
 
wenzelm 
parents: 
40582 
diff
changeset
 | 
253  | 
by (rule trans [OF _ sym])  | 
| 
 
3ba17f07b23c
lemma trans_sym allows single-step "normalization" in Isar, e.g. via moreover/ultimately;
 
wenzelm 
parents: 
40582 
diff
changeset
 | 
254  | 
|
| 58826 | 255  | 
lemma meta_eq_to_obj_eq:  | 
| 63575 | 256  | 
assumes "A \<equiv> B"  | 
| 20944 | 257  | 
shows "A = B"  | 
| 63575 | 258  | 
unfolding assms by (rule refl)  | 
| 15411 | 259  | 
|
| 61799 | 260  | 
text \<open>Useful with \<open>erule\<close> for proving equalities from known equalities.\<close>  | 
| 20944 | 261  | 
(* a = b  | 
| 15411 | 262  | 
| |  | 
263  | 
c = d *)  | 
|
| 60759 | 264  | 
lemma box_equals: "\<lbrakk>a = b; a = c; b = d\<rbrakk> \<Longrightarrow> c = d"  | 
| 
71608
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
265  | 
by (iprover intro: sym trans)  | 
| 15411 | 266  | 
|
| 60758 | 267  | 
text \<open>For calculational reasoning:\<close>  | 
| 
15524
 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 
nipkow 
parents: 
15481 
diff
changeset
 | 
268  | 
|
| 60759 | 269  | 
lemma forw_subst: "a = b \<Longrightarrow> P b \<Longrightarrow> P a"  | 
| 
15524
 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 
nipkow 
parents: 
15481 
diff
changeset
 | 
270  | 
by (rule ssubst)  | 
| 
 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 
nipkow 
parents: 
15481 
diff
changeset
 | 
271  | 
|
| 60759 | 272  | 
lemma back_subst: "P a \<Longrightarrow> a = b \<Longrightarrow> P b"  | 
| 
15524
 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 
nipkow 
parents: 
15481 
diff
changeset
 | 
273  | 
by (rule subst)  | 
| 
 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 
nipkow 
parents: 
15481 
diff
changeset
 | 
274  | 
|
| 15411 | 275  | 
|
| 60758 | 276  | 
subsubsection \<open>Congruence rules for application\<close>  | 
| 15411 | 277  | 
|
| 61799 | 278  | 
text \<open>Similar to \<open>AP_THM\<close> in Gordon's HOL.\<close>  | 
| 60759 | 279  | 
lemma fun_cong: "(f :: 'a \<Rightarrow> 'b) = g \<Longrightarrow> f x = g x"  | 
| 
71608
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
280  | 
by (iprover intro: refl elim: subst)  | 
| 15411 | 281  | 
|
| 61799 | 282  | 
text \<open>Similar to \<open>AP_TERM\<close> in Gordon's HOL and FOL's \<open>subst_context\<close>.\<close>  | 
| 60759 | 283  | 
lemma arg_cong: "x = y \<Longrightarrow> f x = f y"  | 
| 
71608
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
284  | 
by (iprover intro: refl elim: subst)  | 
| 15411 | 285  | 
|
| 60759 | 286  | 
lemma arg_cong2: "\<lbrakk>a = b; c = d\<rbrakk> \<Longrightarrow> f a c = f b d"  | 
| 
71608
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
287  | 
by (iprover intro: refl elim: subst)  | 
| 15655 | 288  | 
|
| 60759 | 289  | 
lemma cong: "\<lbrakk>f = g; (x::'a) = y\<rbrakk> \<Longrightarrow> f x = g y"  | 
| 
71608
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
290  | 
by (iprover intro: refl elim: subst)  | 
| 15411 | 291  | 
|
| 60758 | 292  | 
ML \<open>fun cong_tac ctxt = Cong_Tac.cong_tac ctxt @{thm cong}\<close>
 | 
| 15411 | 293  | 
|
| 
32733
 
71618deaf777
moved generic cong_tac from HOL/Tools/datatype_aux.ML to Tools/cong_tac.ML, proper subgoal selection (failure, not exception);
 
wenzelm 
parents: 
32668 
diff
changeset
 | 
294  | 
|
| 60758 | 295  | 
subsubsection \<open>Equality of booleans -- iff\<close>  | 
| 15411 | 296  | 
|
| 60759 | 297  | 
lemma iffD2: "\<lbrakk>P = Q; Q\<rbrakk> \<Longrightarrow> P"  | 
| 18457 | 298  | 
by (erule ssubst)  | 
| 15411 | 299  | 
|
| 60759 | 300  | 
lemma rev_iffD2: "\<lbrakk>Q; P = Q\<rbrakk> \<Longrightarrow> P"  | 
| 18457 | 301  | 
by (erule iffD2)  | 
| 15411 | 302  | 
|
| 21504 | 303  | 
lemma iffD1: "Q = P \<Longrightarrow> Q \<Longrightarrow> P"  | 
304  | 
by (drule sym) (rule iffD2)  | 
|
305  | 
||
306  | 
lemma rev_iffD1: "Q \<Longrightarrow> Q = P \<Longrightarrow> P"  | 
|
307  | 
by (drule sym) (rule rev_iffD2)  | 
|
| 15411 | 308  | 
|
309  | 
lemma iffE:  | 
|
| 60759 | 310  | 
assumes major: "P = Q"  | 
311  | 
and minor: "\<lbrakk>P \<longrightarrow> Q; Q \<longrightarrow> P\<rbrakk> \<Longrightarrow> R"  | 
|
| 18457 | 312  | 
shows R  | 
313  | 
by (iprover intro: minor impI major [THEN iffD2] major [THEN iffD1])  | 
|
| 15411 | 314  | 
|
315  | 
||
| 
66893
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
316  | 
subsubsection \<open>True (1)\<close>  | 
| 15411 | 317  | 
|
| 63575 | 318  | 
lemma TrueI: True  | 
| 21504 | 319  | 
unfolding True_def by (rule refl)  | 
| 15411 | 320  | 
|
| 60759 | 321  | 
lemma eqTrueE: "P = True \<Longrightarrow> P"  | 
| 21504 | 322  | 
by (erule iffD2) (rule TrueI)  | 
| 15411 | 323  | 
|
324  | 
||
| 
66893
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
325  | 
subsubsection \<open>Universal quantifier (1)\<close>  | 
| 15411 | 326  | 
|
| 60759 | 327  | 
lemma spec: "\<forall>x::'a. P x \<Longrightarrow> P x"  | 
| 
71608
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
328  | 
unfolding All_def by (iprover intro: eqTrueE fun_cong)  | 
| 15411 | 329  | 
|
330  | 
lemma allE:  | 
|
| 
71608
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
331  | 
assumes major: "\<forall>x. P x" and minor: "P x \<Longrightarrow> R"  | 
| 21504 | 332  | 
shows R  | 
333  | 
by (iprover intro: minor major [THEN spec])  | 
|
| 15411 | 334  | 
|
335  | 
lemma all_dupE:  | 
|
| 
71608
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
336  | 
assumes major: "\<forall>x. P x" and minor: "\<lbrakk>P x; \<forall>x. P x\<rbrakk> \<Longrightarrow> R"  | 
| 21504 | 337  | 
shows R  | 
338  | 
by (iprover intro: minor major major [THEN spec])  | 
|
| 15411 | 339  | 
|
340  | 
||
| 60758 | 341  | 
subsubsection \<open>False\<close>  | 
| 21504 | 342  | 
|
| 60758 | 343  | 
text \<open>  | 
| 61799 | 344  | 
Depends upon \<open>spec\<close>; it is impossible to do propositional  | 
| 21504 | 345  | 
logic before quantifiers!  | 
| 60758 | 346  | 
\<close>  | 
| 15411 | 347  | 
|
| 60759 | 348  | 
lemma FalseE: "False \<Longrightarrow> P"  | 
| 
71608
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
349  | 
unfolding False_def by (erule spec)  | 
| 15411 | 350  | 
|
| 60759 | 351  | 
lemma False_neq_True: "False = True \<Longrightarrow> P"  | 
| 21504 | 352  | 
by (erule eqTrueE [THEN FalseE])  | 
| 15411 | 353  | 
|
354  | 
||
| 60758 | 355  | 
subsubsection \<open>Negation\<close>  | 
| 15411 | 356  | 
|
357  | 
lemma notI:  | 
|
| 60759 | 358  | 
assumes "P \<Longrightarrow> False"  | 
359  | 
shows "\<not> P"  | 
|
| 
71608
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
360  | 
unfolding not_def by (iprover intro: impI assms)  | 
| 15411 | 361  | 
|
| 60759 | 362  | 
lemma False_not_True: "False \<noteq> True"  | 
| 
71608
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
363  | 
by (iprover intro: notI elim: False_neq_True)  | 
| 15411 | 364  | 
|
| 60759 | 365  | 
lemma True_not_False: "True \<noteq> False"  | 
| 
71608
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
366  | 
by (iprover intro: notI dest: sym elim: False_neq_True)  | 
| 15411 | 367  | 
|
| 60759 | 368  | 
lemma notE: "\<lbrakk>\<not> P; P\<rbrakk> \<Longrightarrow> R"  | 
| 
71608
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
369  | 
unfolding not_def  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
370  | 
by (iprover intro: mp [THEN FalseE])  | 
| 15411 | 371  | 
|
372  | 
||
| 60758 | 373  | 
subsubsection \<open>Implication\<close>  | 
| 15411 | 374  | 
|
375  | 
lemma impE:  | 
|
| 60759 | 376  | 
assumes "P \<longrightarrow> Q" P "Q \<Longrightarrow> R"  | 
377  | 
shows R  | 
|
| 63575 | 378  | 
by (iprover intro: assms mp)  | 
| 15411 | 379  | 
|
| 63575 | 380  | 
text \<open>Reduces \<open>Q\<close> to \<open>P \<longrightarrow> Q\<close>, allowing substitution in \<open>P\<close>.\<close>  | 
| 60759 | 381  | 
lemma rev_mp: "\<lbrakk>P; P \<longrightarrow> Q\<rbrakk> \<Longrightarrow> Q"  | 
| 
71608
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
382  | 
by (rule mp)  | 
| 15411 | 383  | 
|
384  | 
lemma contrapos_nn:  | 
|
| 60759 | 385  | 
assumes major: "\<not> Q"  | 
| 63575 | 386  | 
and minor: "P \<Longrightarrow> Q"  | 
| 60759 | 387  | 
shows "\<not> P"  | 
| 63575 | 388  | 
by (iprover intro: notI minor major [THEN notE])  | 
| 15411 | 389  | 
|
| 63575 | 390  | 
text \<open>Not used at all, but we already have the other 3 combinations.\<close>  | 
| 15411 | 391  | 
lemma contrapos_pn:  | 
392  | 
assumes major: "Q"  | 
|
| 63575 | 393  | 
and minor: "P \<Longrightarrow> \<not> Q"  | 
| 60759 | 394  | 
shows "\<not> P"  | 
| 63575 | 395  | 
by (iprover intro: notI minor major notE)  | 
| 15411 | 396  | 
|
| 60759 | 397  | 
lemma not_sym: "t \<noteq> s \<Longrightarrow> s \<noteq> t"  | 
| 21250 | 398  | 
by (erule contrapos_nn) (erule sym)  | 
399  | 
||
| 60759 | 400  | 
lemma eq_neq_eq_imp_neq: "\<lbrakk>x = a; a \<noteq> b; b = y\<rbrakk> \<Longrightarrow> x \<noteq> y"  | 
| 21250 | 401  | 
by (erule subst, erule ssubst, assumption)  | 
| 15411 | 402  | 
|
403  | 
||
| 
66893
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
404  | 
subsubsection \<open>Disjunction (1)\<close>  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
405  | 
|
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
406  | 
lemma disjE:  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
407  | 
assumes major: "P \<or> Q"  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
408  | 
and minorP: "P \<Longrightarrow> R"  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
409  | 
and minorQ: "Q \<Longrightarrow> R"  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
410  | 
shows R  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
411  | 
by (iprover intro: minorP minorQ impI  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
412  | 
major [unfolded or_def, THEN spec, THEN mp, THEN mp])  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
413  | 
|
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
414  | 
|
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
415  | 
subsubsection \<open>Derivation of \<open>iffI\<close>\<close>  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
416  | 
|
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
417  | 
text \<open>In an intuitionistic version of HOL \<open>iffI\<close> needs to be an axiom.\<close>  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
418  | 
|
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
419  | 
lemma iffI:  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
420  | 
assumes "P \<Longrightarrow> Q" and "Q \<Longrightarrow> P"  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
421  | 
shows "P = Q"  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
422  | 
proof (rule disjE[OF True_or_False[of P]])  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
423  | 
assume 1: "P = True"  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
424  | 
note Q = assms(1)[OF eqTrueE[OF this]]  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
425  | 
from 1 show ?thesis  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
426  | 
proof (rule ssubst)  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
427  | 
from True_or_False[of Q] show "True = Q"  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
428  | 
proof (rule disjE)  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
429  | 
assume "Q = True"  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
430  | 
thus ?thesis by(rule sym)  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
431  | 
next  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
432  | 
assume "Q = False"  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
433  | 
with Q have False by (rule rev_iffD1)  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
434  | 
thus ?thesis by (rule FalseE)  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
435  | 
qed  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
436  | 
qed  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
437  | 
next  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
438  | 
assume 2: "P = False"  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
439  | 
thus ?thesis  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
440  | 
proof (rule ssubst)  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
441  | 
from True_or_False[of Q] show "False = Q"  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
442  | 
proof (rule disjE)  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
443  | 
assume "Q = True"  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
444  | 
from 2 assms(2)[OF eqTrueE[OF this]] have False by (rule iffD1)  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
445  | 
thus ?thesis by (rule FalseE)  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
446  | 
next  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
447  | 
assume "Q = False"  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
448  | 
thus ?thesis by(rule sym)  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
449  | 
qed  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
450  | 
qed  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
451  | 
qed  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
452  | 
|
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
453  | 
|
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
454  | 
subsubsection \<open>True (2)\<close>  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
455  | 
|
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
456  | 
lemma eqTrueI: "P \<Longrightarrow> P = True"  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
457  | 
by (iprover intro: iffI TrueI)  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
458  | 
|
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
459  | 
|
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
460  | 
subsubsection \<open>Universal quantifier (2)\<close>  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
461  | 
|
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
462  | 
lemma allI:  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
463  | 
assumes "\<And>x::'a. P x"  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
464  | 
shows "\<forall>x. P x"  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
465  | 
unfolding All_def by (iprover intro: ext eqTrueI assms)  | 
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
466  | 
|
| 
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
467  | 
|
| 60758 | 468  | 
subsubsection \<open>Existential quantifier\<close>  | 
| 15411 | 469  | 
|
| 60759 | 470  | 
lemma exI: "P x \<Longrightarrow> \<exists>x::'a. P x"  | 
| 63575 | 471  | 
unfolding Ex_def by (iprover intro: allI allE impI mp)  | 
| 15411 | 472  | 
|
473  | 
lemma exE:  | 
|
| 60759 | 474  | 
assumes major: "\<exists>x::'a. P x"  | 
| 63575 | 475  | 
and minor: "\<And>x. P x \<Longrightarrow> Q"  | 
| 15411 | 476  | 
shows "Q"  | 
| 63575 | 477  | 
by (rule major [unfolded Ex_def, THEN spec, THEN mp]) (iprover intro: impI [THEN allI] minor)  | 
| 15411 | 478  | 
|
479  | 
||
| 60758 | 480  | 
subsubsection \<open>Conjunction\<close>  | 
| 15411 | 481  | 
|
| 60759 | 482  | 
lemma conjI: "\<lbrakk>P; Q\<rbrakk> \<Longrightarrow> P \<and> Q"  | 
| 63575 | 483  | 
unfolding and_def by (iprover intro: impI [THEN allI] mp)  | 
| 15411 | 484  | 
|
| 60759 | 485  | 
lemma conjunct1: "\<lbrakk>P \<and> Q\<rbrakk> \<Longrightarrow> P"  | 
| 63575 | 486  | 
unfolding and_def by (iprover intro: impI dest: spec mp)  | 
| 15411 | 487  | 
|
| 60759 | 488  | 
lemma conjunct2: "\<lbrakk>P \<and> Q\<rbrakk> \<Longrightarrow> Q"  | 
| 63575 | 489  | 
unfolding and_def by (iprover intro: impI dest: spec mp)  | 
| 15411 | 490  | 
|
491  | 
lemma conjE:  | 
|
| 60759 | 492  | 
assumes major: "P \<and> Q"  | 
| 63575 | 493  | 
and minor: "\<lbrakk>P; Q\<rbrakk> \<Longrightarrow> R"  | 
| 60759 | 494  | 
shows R  | 
| 
71608
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
495  | 
proof (rule minor)  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
496  | 
show P by (rule major [THEN conjunct1])  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
497  | 
show Q by (rule major [THEN conjunct2])  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
498  | 
qed  | 
| 15411 | 499  | 
|
500  | 
lemma context_conjI:  | 
|
| 63575 | 501  | 
assumes P "P \<Longrightarrow> Q"  | 
502  | 
shows "P \<and> Q"  | 
|
503  | 
by (iprover intro: conjI assms)  | 
|
| 15411 | 504  | 
|
505  | 
||
| 
66893
 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 
nipkow 
parents: 
66836 
diff
changeset
 | 
506  | 
subsubsection \<open>Disjunction (2)\<close>  | 
| 15411 | 507  | 
|
| 60759 | 508  | 
lemma disjI1: "P \<Longrightarrow> P \<or> Q"  | 
| 63575 | 509  | 
unfolding or_def by (iprover intro: allI impI mp)  | 
| 15411 | 510  | 
|
| 60759 | 511  | 
lemma disjI2: "Q \<Longrightarrow> P \<or> Q"  | 
| 63575 | 512  | 
unfolding or_def by (iprover intro: allI impI mp)  | 
| 15411 | 513  | 
|
514  | 
||
| 60758 | 515  | 
subsubsection \<open>Classical logic\<close>  | 
| 15411 | 516  | 
|
517  | 
lemma classical:  | 
|
| 
71608
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
518  | 
assumes "\<not> P \<Longrightarrow> P"  | 
| 60759 | 519  | 
shows P  | 
| 
71608
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
520  | 
proof (rule True_or_False [THEN disjE])  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
521  | 
show P if "P = True"  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
522  | 
using that by (iprover intro: eqTrueE)  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
523  | 
show P if "P = False"  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
524  | 
proof (intro notI assms)  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
525  | 
assume P  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
526  | 
with that show False  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
527  | 
by (iprover elim: subst)  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
528  | 
qed  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
529  | 
qed  | 
| 15411 | 530  | 
|
| 45607 | 531  | 
lemmas ccontr = FalseE [THEN classical]  | 
| 15411 | 532  | 
|
| 63575 | 533  | 
text \<open>\<open>notE\<close> with premises exchanged; it discharges \<open>\<not> R\<close> so that it can be used to  | 
534  | 
make elimination rules.\<close>  | 
|
| 15411 | 535  | 
lemma rev_notE:  | 
| 60759 | 536  | 
assumes premp: P  | 
| 63575 | 537  | 
and premnot: "\<not> R \<Longrightarrow> \<not> P"  | 
| 60759 | 538  | 
shows R  | 
| 
71608
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
539  | 
by (iprover intro: ccontr notE [OF premnot premp])  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
540  | 
|
| 15411 | 541  | 
|
| 63575 | 542  | 
text \<open>Double negation law.\<close>  | 
| 60759 | 543  | 
lemma notnotD: "\<not>\<not> P \<Longrightarrow> P"  | 
| 
71608
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
544  | 
by (iprover intro: ccontr notE )  | 
| 15411 | 545  | 
|
546  | 
lemma contrapos_pp:  | 
|
| 60759 | 547  | 
assumes p1: Q  | 
| 63575 | 548  | 
and p2: "\<not> P \<Longrightarrow> \<not> Q"  | 
| 60759 | 549  | 
shows P  | 
| 63575 | 550  | 
by (iprover intro: classical p1 p2 notE)  | 
| 15411 | 551  | 
|
552  | 
||
| 60758 | 553  | 
subsubsection \<open>Unique existence\<close>  | 
| 15411 | 554  | 
|
| 71827 | 555  | 
lemma Uniq_I [intro?]:  | 
556  | 
assumes "\<And>x y. \<lbrakk>P x; P y\<rbrakk> \<Longrightarrow> y = x"  | 
|
557  | 
shows "Uniq P"  | 
|
558  | 
unfolding Uniq_def by (iprover intro: assms allI impI)  | 
|
559  | 
||
560  | 
lemma Uniq_D [dest?]: "\<lbrakk>Uniq P; P a; P b\<rbrakk> \<Longrightarrow> a=b"  | 
|
561  | 
unfolding Uniq_def by (iprover dest: spec mp)  | 
|
562  | 
||
| 15411 | 563  | 
lemma ex1I:  | 
| 60759 | 564  | 
assumes "P a" "\<And>x. P x \<Longrightarrow> x = a"  | 
565  | 
shows "\<exists>!x. P x"  | 
|
| 63575 | 566  | 
unfolding Ex1_def by (iprover intro: assms exI conjI allI impI)  | 
| 15411 | 567  | 
|
| 63575 | 568  | 
text \<open>Sometimes easier to use: the premises have no shared variables. Safe!\<close>  | 
| 15411 | 569  | 
lemma ex_ex1I:  | 
| 60759 | 570  | 
assumes ex_prem: "\<exists>x. P x"  | 
| 63575 | 571  | 
and eq: "\<And>x y. \<lbrakk>P x; P y\<rbrakk> \<Longrightarrow> x = y"  | 
| 60759 | 572  | 
shows "\<exists>!x. P x"  | 
| 63575 | 573  | 
by (iprover intro: ex_prem [THEN exE] ex1I eq)  | 
| 15411 | 574  | 
|
575  | 
lemma ex1E:  | 
|
| 
71608
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
576  | 
assumes major: "\<exists>!x. P x" and minor: "\<And>x. \<lbrakk>P x; \<forall>y. P y \<longrightarrow> y = x\<rbrakk> \<Longrightarrow> R"  | 
| 60759 | 577  | 
shows R  | 
| 
71608
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
578  | 
proof (rule major [unfolded Ex1_def, THEN exE])  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
579  | 
show "\<And>x. P x \<and> (\<forall>y. P y \<longrightarrow> y = x) \<Longrightarrow> R"  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
580  | 
by (iprover intro: minor elim: conjE)  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
581  | 
qed  | 
| 15411 | 582  | 
|
| 60759 | 583  | 
lemma ex1_implies_ex: "\<exists>!x. P x \<Longrightarrow> \<exists>x. P x"  | 
| 
71608
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
584  | 
by (iprover intro: exI elim: ex1E)  | 
| 15411 | 585  | 
|
| 60758 | 586  | 
subsubsection \<open>Classical intro rules for disjunction and existential quantifiers\<close>  | 
| 15411 | 587  | 
|
588  | 
lemma disjCI:  | 
|
| 63575 | 589  | 
assumes "\<not> Q \<Longrightarrow> P"  | 
590  | 
shows "P \<or> Q"  | 
|
591  | 
by (rule classical) (iprover intro: assms disjI1 disjI2 notI elim: notE)  | 
|
| 15411 | 592  | 
|
| 60759 | 593  | 
lemma excluded_middle: "\<not> P \<or> P"  | 
| 63575 | 594  | 
by (iprover intro: disjCI)  | 
| 15411 | 595  | 
|
| 60758 | 596  | 
text \<open>  | 
| 20944 | 597  | 
case distinction as a natural deduction rule.  | 
| 63575 | 598  | 
Note that \<open>\<not> P\<close> is the second case, not the first.  | 
| 60758 | 599  | 
\<close>  | 
| 
27126
 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 
wenzelm 
parents: 
27107 
diff
changeset
 | 
600  | 
lemma case_split [case_names True False]:  | 
| 
71608
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
601  | 
assumes "P \<Longrightarrow> Q" "\<not> P \<Longrightarrow> Q"  | 
| 60759 | 602  | 
shows Q  | 
| 
71608
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
603  | 
using excluded_middle [of P]  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
604  | 
by (iprover intro: assms elim: disjE)  | 
| 
27126
 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 
wenzelm 
parents: 
27107 
diff
changeset
 | 
605  | 
|
| 63575 | 606  | 
text \<open>Classical implies (\<open>\<longrightarrow>\<close>) elimination.\<close>  | 
| 15411 | 607  | 
lemma impCE:  | 
| 60759 | 608  | 
assumes major: "P \<longrightarrow> Q"  | 
| 63575 | 609  | 
and minor: "\<not> P \<Longrightarrow> R" "Q \<Longrightarrow> R"  | 
| 60759 | 610  | 
shows R  | 
| 
71608
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
611  | 
using excluded_middle [of P]  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
612  | 
by (iprover intro: minor major [THEN mp] elim: disjE)+  | 
| 15411 | 613  | 
|
| 63575 | 614  | 
text \<open>  | 
615  | 
This version of \<open>\<longrightarrow>\<close> elimination works on \<open>Q\<close> before \<open>P\<close>. It works best for  | 
|
616  | 
those cases in which \<open>P\<close> holds "almost everywhere". Can't install as  | 
|
617  | 
default: would break old proofs.  | 
|
618  | 
\<close>  | 
|
| 15411 | 619  | 
lemma impCE':  | 
| 60759 | 620  | 
assumes major: "P \<longrightarrow> Q"  | 
| 63575 | 621  | 
and minor: "Q \<Longrightarrow> R" "\<not> P \<Longrightarrow> R"  | 
| 60759 | 622  | 
shows R  | 
| 
71608
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
623  | 
using assms by (elim impCE)  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
624  | 
|
| 15411 | 625  | 
|
| 63575 | 626  | 
text \<open>Classical \<open>\<longleftrightarrow>\<close> elimination.\<close>  | 
| 15411 | 627  | 
lemma iffCE:  | 
| 60759 | 628  | 
assumes major: "P = Q"  | 
| 63575 | 629  | 
and minor: "\<lbrakk>P; Q\<rbrakk> \<Longrightarrow> R" "\<lbrakk>\<not> P; \<not> Q\<rbrakk> \<Longrightarrow> R"  | 
| 60759 | 630  | 
shows R  | 
| 63575 | 631  | 
by (rule major [THEN iffE]) (iprover intro: minor elim: impCE notE)  | 
| 15411 | 632  | 
|
633  | 
lemma exCI:  | 
|
| 60759 | 634  | 
assumes "\<forall>x. \<not> P x \<Longrightarrow> P a"  | 
635  | 
shows "\<exists>x. P x"  | 
|
| 63575 | 636  | 
by (rule ccontr) (iprover intro: assms exI allI notI notE [of "\<exists>x. P x"])  | 
| 15411 | 637  | 
|
638  | 
||
| 60758 | 639  | 
subsubsection \<open>Intuitionistic Reasoning\<close>  | 
| 12386 | 640  | 
|
641  | 
lemma impE':  | 
|
| 60759 | 642  | 
assumes 1: "P \<longrightarrow> Q"  | 
643  | 
and 2: "Q \<Longrightarrow> R"  | 
|
644  | 
and 3: "P \<longrightarrow> Q \<Longrightarrow> P"  | 
|
| 
12937
 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 
wenzelm 
parents: 
12892 
diff
changeset
 | 
645  | 
shows R  | 
| 12386 | 646  | 
proof -  | 
647  | 
from 3 and 1 have P .  | 
|
648  | 
with 1 have Q by (rule impE)  | 
|
649  | 
with 2 show R .  | 
|
650  | 
qed  | 
|
651  | 
||
652  | 
lemma allE':  | 
|
| 60759 | 653  | 
assumes 1: "\<forall>x. P x"  | 
654  | 
and 2: "P x \<Longrightarrow> \<forall>x. P x \<Longrightarrow> Q"  | 
|
| 
12937
 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 
wenzelm 
parents: 
12892 
diff
changeset
 | 
655  | 
shows Q  | 
| 12386 | 656  | 
proof -  | 
657  | 
from 1 have "P x" by (rule spec)  | 
|
658  | 
from this and 1 show Q by (rule 2)  | 
|
659  | 
qed  | 
|
660  | 
||
| 
12937
 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 
wenzelm 
parents: 
12892 
diff
changeset
 | 
661  | 
lemma notE':  | 
| 60759 | 662  | 
assumes 1: "\<not> P"  | 
663  | 
and 2: "\<not> P \<Longrightarrow> P"  | 
|
| 
12937
 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 
wenzelm 
parents: 
12892 
diff
changeset
 | 
664  | 
shows R  | 
| 12386 | 665  | 
proof -  | 
666  | 
from 2 and 1 have P .  | 
|
667  | 
with 1 show R by (rule notE)  | 
|
668  | 
qed  | 
|
669  | 
||
| 60759 | 670  | 
lemma TrueE: "True \<Longrightarrow> P \<Longrightarrow> P" .  | 
671  | 
lemma notFalseE: "\<not> False \<Longrightarrow> P \<Longrightarrow> P" .  | 
|
| 
22444
 
fb80fedd192d
added safe intro rules for removing "True" subgoals as well as "~ False" ones.
 
dixon 
parents: 
22377 
diff
changeset
 | 
672  | 
|
| 
22467
 
c9357ef01168
TrueElim and notTrueElim tested and added as safe elim rules.
 
dixon 
parents: 
22445 
diff
changeset
 | 
673  | 
lemmas [Pure.elim!] = disjE iffE FalseE conjE exE TrueE notFalseE  | 
| 15801 | 674  | 
and [Pure.intro!] = iffI conjI impI TrueI notI allI refl  | 
675  | 
and [Pure.elim 2] = allE notE' impE'  | 
|
676  | 
and [Pure.intro] = exI disjI2 disjI1  | 
|
| 12386 | 677  | 
|
678  | 
lemmas [trans] = trans  | 
|
679  | 
and [sym] = sym not_sym  | 
|
| 15801 | 680  | 
and [Pure.elim?] = iffD1 iffD2 impE  | 
| 11750 | 681  | 
|
| 
11438
 
3d9222b80989
declare trans [trans]  (*overridden in theory Calculation*);
 
wenzelm 
parents: 
11432 
diff
changeset
 | 
682  | 
|
| 60758 | 683  | 
subsubsection \<open>Atomizing meta-level connectives\<close>  | 
| 11750 | 684  | 
|
| 28513 | 685  | 
axiomatization where  | 
| 63575 | 686  | 
eq_reflection: "x = y \<Longrightarrow> x \<equiv> y" \<comment> \<open>admissible axiom\<close>  | 
| 28513 | 687  | 
|
| 60759 | 688  | 
lemma atomize_all [atomize]: "(\<And>x. P x) \<equiv> Trueprop (\<forall>x. P x)"  | 
| 12003 | 689  | 
proof  | 
| 60759 | 690  | 
assume "\<And>x. P x"  | 
691  | 
then show "\<forall>x. P x" ..  | 
|
| 9488 | 692  | 
next  | 
| 60759 | 693  | 
assume "\<forall>x. P x"  | 
694  | 
then show "\<And>x. P x" by (rule allE)  | 
|
| 9488 | 695  | 
qed  | 
696  | 
||
| 60759 | 697  | 
lemma atomize_imp [atomize]: "(A \<Longrightarrow> B) \<equiv> Trueprop (A \<longrightarrow> B)"  | 
| 12003 | 698  | 
proof  | 
| 60759 | 699  | 
assume r: "A \<Longrightarrow> B"  | 
700  | 
show "A \<longrightarrow> B" by (rule impI) (rule r)  | 
|
| 9488 | 701  | 
next  | 
| 60759 | 702  | 
assume "A \<longrightarrow> B" and A  | 
| 23553 | 703  | 
then show B by (rule mp)  | 
| 9488 | 704  | 
qed  | 
705  | 
||
| 60759 | 706  | 
lemma atomize_not: "(A \<Longrightarrow> False) \<equiv> Trueprop (\<not> A)"  | 
| 14749 | 707  | 
proof  | 
| 60759 | 708  | 
assume r: "A \<Longrightarrow> False"  | 
709  | 
show "\<not> A" by (rule notI) (rule r)  | 
|
| 14749 | 710  | 
next  | 
| 60759 | 711  | 
assume "\<not> A" and A  | 
| 23553 | 712  | 
then show False by (rule notE)  | 
| 14749 | 713  | 
qed  | 
714  | 
||
| 60759 | 715  | 
lemma atomize_eq [atomize, code]: "(x \<equiv> y) \<equiv> Trueprop (x = y)"  | 
| 12003 | 716  | 
proof  | 
| 60759 | 717  | 
assume "x \<equiv> y"  | 
718  | 
show "x = y" by (unfold \<open>x \<equiv> y\<close>) (rule refl)  | 
|
| 
10432
 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 
wenzelm 
parents: 
10383 
diff
changeset
 | 
719  | 
next  | 
| 
 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 
wenzelm 
parents: 
10383 
diff
changeset
 | 
720  | 
assume "x = y"  | 
| 60759 | 721  | 
then show "x \<equiv> y" by (rule eq_reflection)  | 
| 
10432
 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 
wenzelm 
parents: 
10383 
diff
changeset
 | 
722  | 
qed  | 
| 
 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 
wenzelm 
parents: 
10383 
diff
changeset
 | 
723  | 
|
| 60759 | 724  | 
lemma atomize_conj [atomize]: "(A &&& B) \<equiv> Trueprop (A \<and> B)"  | 
| 12003 | 725  | 
proof  | 
| 
28856
 
5e009a80fe6d
Pure syntax: more coherent treatment of aprop, permanent TERM and &&&;
 
wenzelm 
parents: 
28741 
diff
changeset
 | 
726  | 
assume conj: "A &&& B"  | 
| 60759 | 727  | 
show "A \<and> B"  | 
| 19121 | 728  | 
proof (rule conjI)  | 
729  | 
from conj show A by (rule conjunctionD1)  | 
|
730  | 
from conj show B by (rule conjunctionD2)  | 
|
731  | 
qed  | 
|
| 11953 | 732  | 
next  | 
| 60759 | 733  | 
assume conj: "A \<and> B"  | 
| 
28856
 
5e009a80fe6d
Pure syntax: more coherent treatment of aprop, permanent TERM and &&&;
 
wenzelm 
parents: 
28741 
diff
changeset
 | 
734  | 
show "A &&& B"  | 
| 19121 | 735  | 
proof -  | 
736  | 
from conj show A ..  | 
|
737  | 
from conj show B ..  | 
|
| 11953 | 738  | 
qed  | 
739  | 
qed  | 
|
740  | 
||
| 12386 | 741  | 
lemmas [symmetric, rulify] = atomize_all atomize_imp  | 
| 18832 | 742  | 
and [symmetric, defn] = atomize_all atomize_imp atomize_eq  | 
| 12386 | 743  | 
|
| 11750 | 744  | 
|
| 60758 | 745  | 
subsubsection \<open>Atomizing elimination rules\<close>  | 
| 
26580
 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 
krauss 
parents: 
26555 
diff
changeset
 | 
746  | 
|
| 60759 | 747  | 
lemma atomize_exL[atomize_elim]: "(\<And>x. P x \<Longrightarrow> Q) \<equiv> ((\<exists>x. P x) \<Longrightarrow> Q)"  | 
| 
75669
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
74741 
diff
changeset
 | 
748  | 
by (rule equal_intr_rule) iprover+  | 
| 
26580
 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 
krauss 
parents: 
26555 
diff
changeset
 | 
749  | 
|
| 60759 | 750  | 
lemma atomize_conjL[atomize_elim]: "(A \<Longrightarrow> B \<Longrightarrow> C) \<equiv> (A \<and> B \<Longrightarrow> C)"  | 
| 
75669
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
74741 
diff
changeset
 | 
751  | 
by (rule equal_intr_rule) iprover+  | 
| 
26580
 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 
krauss 
parents: 
26555 
diff
changeset
 | 
752  | 
|
| 60759 | 753  | 
lemma atomize_disjL[atomize_elim]: "((A \<Longrightarrow> C) \<Longrightarrow> (B \<Longrightarrow> C) \<Longrightarrow> C) \<equiv> ((A \<or> B \<Longrightarrow> C) \<Longrightarrow> C)"  | 
| 
75669
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
74741 
diff
changeset
 | 
754  | 
by (rule equal_intr_rule) iprover+  | 
| 
26580
 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 
krauss 
parents: 
26555 
diff
changeset
 | 
755  | 
|
| 60759 | 756  | 
lemma atomize_elimL[atomize_elim]: "(\<And>B. (A \<Longrightarrow> B) \<Longrightarrow> B) \<equiv> Trueprop A" ..  | 
| 
26580
 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 
krauss 
parents: 
26555 
diff
changeset
 | 
757  | 
|
| 
 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 
krauss 
parents: 
26555 
diff
changeset
 | 
758  | 
|
| 60758 | 759  | 
subsection \<open>Package setup\<close>  | 
| 20944 | 760  | 
|
| 69605 | 761  | 
ML_file \<open>Tools/hologic.ML\<close>  | 
| 70847 | 762  | 
ML_file \<open>Tools/rewrite_hol_proof.ML\<close>  | 
| 
51314
 
eac4bb5adbf9
just one HOLogic.Trueprop_conv, with regular exception CTERM;
 
wenzelm 
parents: 
51304 
diff
changeset
 | 
763  | 
|
| 70879 | 764  | 
setup \<open>Proofterm.set_preproc (Proof_Rewrite_Rules.standard_preproc Rewrite_HOL_Proof.rews)\<close>  | 
| 70849 | 765  | 
|
| 
51314
 
eac4bb5adbf9
just one HOLogic.Trueprop_conv, with regular exception CTERM;
 
wenzelm 
parents: 
51304 
diff
changeset
 | 
766  | 
|
| 60758 | 767  | 
subsubsection \<open>Sledgehammer setup\<close>  | 
| 
35828
 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 
blanchet 
parents: 
35808 
diff
changeset
 | 
768  | 
|
| 60758 | 769  | 
text \<open>  | 
| 63575 | 770  | 
Theorems blacklisted to Sledgehammer. These theorems typically produce clauses  | 
771  | 
that are prolific (match too many equality or membership literals) and relate to  | 
|
772  | 
seldom-used facts. Some duplicate other rules.  | 
|
| 60758 | 773  | 
\<close>  | 
| 
35828
 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 
blanchet 
parents: 
35808 
diff
changeset
 | 
774  | 
|
| 57963 | 775  | 
named_theorems no_atp "theorems that should be filtered out by Sledgehammer"  | 
| 
35828
 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 
blanchet 
parents: 
35808 
diff
changeset
 | 
776  | 
|
| 
 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 
blanchet 
parents: 
35808 
diff
changeset
 | 
777  | 
|
| 60758 | 778  | 
subsubsection \<open>Classical Reasoner setup\<close>  | 
| 9529 | 779  | 
|
| 60759 | 780  | 
lemma imp_elim: "P \<longrightarrow> Q \<Longrightarrow> (\<not> R \<Longrightarrow> P) \<Longrightarrow> (Q \<Longrightarrow> R) \<Longrightarrow> R"  | 
| 26411 | 781  | 
by (rule classical) iprover  | 
782  | 
||
| 60759 | 783  | 
lemma swap: "\<not> P \<Longrightarrow> (\<not> R \<Longrightarrow> P) \<Longrightarrow> R"  | 
| 26411 | 784  | 
by (rule classical) iprover  | 
785  | 
||
| 
62958
 
b41c1cb5e251
Type_Infer.object_logic controls improvement of type inference result;
 
wenzelm 
parents: 
62913 
diff
changeset
 | 
786  | 
lemma thin_refl: "\<lbrakk>x = x; PROP W\<rbrakk> \<Longrightarrow> PROP W" .  | 
| 20944 | 787  | 
|
| 60758 | 788  | 
ML \<open>  | 
| 42799 | 789  | 
structure Hypsubst = Hypsubst  | 
790  | 
(  | 
|
| 21218 | 791  | 
val dest_eq = HOLogic.dest_eq  | 
| 21151 | 792  | 
val dest_Trueprop = HOLogic.dest_Trueprop  | 
793  | 
val dest_imp = HOLogic.dest_imp  | 
|
| 26411 | 794  | 
  val eq_reflection = @{thm eq_reflection}
 | 
795  | 
  val rev_eq_reflection = @{thm meta_eq_to_obj_eq}
 | 
|
796  | 
  val imp_intr = @{thm impI}
 | 
|
797  | 
  val rev_mp = @{thm rev_mp}
 | 
|
798  | 
  val subst = @{thm subst}
 | 
|
799  | 
  val sym = @{thm sym}
 | 
|
| 22129 | 800  | 
  val thin_refl = @{thm thin_refl};
 | 
| 42799 | 801  | 
);  | 
| 21671 | 802  | 
open Hypsubst;  | 
| 21151 | 803  | 
|
| 42799 | 804  | 
structure Classical = Classical  | 
805  | 
(  | 
|
| 26411 | 806  | 
  val imp_elim = @{thm imp_elim}
 | 
807  | 
  val not_elim = @{thm notE}
 | 
|
808  | 
  val swap = @{thm swap}
 | 
|
809  | 
  val classical = @{thm classical}
 | 
|
| 21151 | 810  | 
val sizef = Drule.size_of_thm  | 
811  | 
val hyp_subst_tacs = [Hypsubst.hyp_subst_tac]  | 
|
| 42799 | 812  | 
);  | 
| 21151 | 813  | 
|
| 58826 | 814  | 
structure Basic_Classical: BASIC_CLASSICAL = Classical;  | 
| 
33308
 
cf62d1690d04
separate ResBlacklist, based on scalable persistent data -- avoids inefficient hashing later on;
 
wenzelm 
parents: 
33185 
diff
changeset
 | 
815  | 
open Basic_Classical;  | 
| 60758 | 816  | 
\<close>  | 
| 22129 | 817  | 
|
| 60758 | 818  | 
setup \<open>  | 
| 35389 | 819  | 
(*prevent substitution on bool*)  | 
| 58826 | 820  | 
let  | 
| 69593 | 821  | 
fun non_bool_eq (\<^const_name>\<open>HOL.eq\<close>, Type (_, [T, _])) = T <> \<^typ>\<open>bool\<close>  | 
| 58826 | 822  | 
| non_bool_eq _ = false;  | 
823  | 
fun hyp_subst_tac' ctxt =  | 
|
824  | 
SUBGOAL (fn (goal, i) =>  | 
|
825  | 
if Term.exists_Const non_bool_eq goal  | 
|
826  | 
then Hypsubst.hyp_subst_tac ctxt i  | 
|
827  | 
else no_tac);  | 
|
828  | 
in  | 
|
829  | 
Context_Rules.addSWrapper (fn ctxt => fn tac => hyp_subst_tac' ctxt ORELSE' tac)  | 
|
830  | 
end  | 
|
| 60758 | 831  | 
\<close>  | 
| 21009 | 832  | 
|
833  | 
declare iffI [intro!]  | 
|
834  | 
and notI [intro!]  | 
|
835  | 
and impI [intro!]  | 
|
836  | 
and disjCI [intro!]  | 
|
837  | 
and conjI [intro!]  | 
|
838  | 
and TrueI [intro!]  | 
|
839  | 
and refl [intro!]  | 
|
840  | 
||
841  | 
declare iffCE [elim!]  | 
|
842  | 
and FalseE [elim!]  | 
|
843  | 
and impCE [elim!]  | 
|
844  | 
and disjE [elim!]  | 
|
845  | 
and conjE [elim!]  | 
|
846  | 
||
847  | 
declare ex_ex1I [intro!]  | 
|
848  | 
and allI [intro!]  | 
|
849  | 
and exI [intro]  | 
|
850  | 
||
851  | 
declare exE [elim!]  | 
|
852  | 
allE [elim]  | 
|
853  | 
||
| 69593 | 854  | 
ML \<open>val HOL_cs = claset_of \<^context>\<close>  | 
| 19162 | 855  | 
|
| 60759 | 856  | 
lemma contrapos_np: "\<not> Q \<Longrightarrow> (\<not> P \<Longrightarrow> Q) \<Longrightarrow> P"  | 
| 
71608
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
857  | 
by (erule swap)  | 
| 10383 | 858  | 
|
| 
18689
 
a50587cd8414
prefer ex1I over ex_ex1I in single-step reasoning;
 
wenzelm 
parents: 
18595 
diff
changeset
 | 
859  | 
declare ex_ex1I [rule del, intro! 2]  | 
| 
 
a50587cd8414
prefer ex1I over ex_ex1I in single-step reasoning;
 
wenzelm 
parents: 
18595 
diff
changeset
 | 
860  | 
and ex1I [intro]  | 
| 
 
a50587cd8414
prefer ex1I over ex_ex1I in single-step reasoning;
 
wenzelm 
parents: 
18595 
diff
changeset
 | 
861  | 
|
| 
41865
 
4e8483cc2cc5
declare ext [intro]: Extensionality now available by default
 
paulson 
parents: 
41827 
diff
changeset
 | 
862  | 
declare ext [intro]  | 
| 
 
4e8483cc2cc5
declare ext [intro]: Extensionality now available by default
 
paulson 
parents: 
41827 
diff
changeset
 | 
863  | 
|
| 12386 | 864  | 
lemmas [intro?] = ext  | 
865  | 
and [elim?] = ex1_implies_ex  | 
|
| 11977 | 866  | 
|
| 63575 | 867  | 
text \<open>Better than \<open>ex1E\<close> for classical reasoner: needs no quantifier duplication!\<close>  | 
| 20973 | 868  | 
lemma alt_ex1E [elim!]:  | 
| 20944 | 869  | 
assumes major: "\<exists>!x. P x"  | 
| 
71608
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
870  | 
and minor: "\<And>x. \<lbrakk>P x; \<forall>y y'. P y \<and> P y' \<longrightarrow> y = y'\<rbrakk> \<Longrightarrow> R"  | 
| 20944 | 871  | 
shows R  | 
| 
71608
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
872  | 
proof (rule ex1E [OF major minor])  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
873  | 
show "\<forall>y y'. P y \<and> P y' \<longrightarrow> y = y'" if "P x" and \<section>: "\<forall>y. P y \<longrightarrow> y = x" for x  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
874  | 
using \<open>P x\<close> \<section> \<section> by fast  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
875  | 
qed assumption  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
876  | 
|
| 71827 | 877  | 
text \<open>And again using Uniq\<close>  | 
878  | 
lemma alt_ex1E':  | 
|
879  | 
assumes "\<exists>!x. P x" "\<And>x. \<lbrakk>P x; \<exists>\<^sub>\<le>\<^sub>1x. P x\<rbrakk> \<Longrightarrow> R"  | 
|
880  | 
shows R  | 
|
881  | 
using assms unfolding Uniq_def by fast  | 
|
882  | 
||
883  | 
lemma ex1_iff_ex_Uniq: "(\<exists>!x. P x) \<longleftrightarrow> (\<exists>x. P x) \<and> (\<exists>\<^sub>\<le>\<^sub>1x. P x)"  | 
|
884  | 
unfolding Uniq_def by fast  | 
|
885  | 
||
| 20944 | 886  | 
|
| 60758 | 887  | 
ML \<open>  | 
| 42477 | 888  | 
structure Blast = Blast  | 
889  | 
(  | 
|
890  | 
structure Classical = Classical  | 
|
| 74383 | 891  | 
val Trueprop_const = dest_Const \<^Const>\<open>Trueprop\<close>  | 
| 69593 | 892  | 
val equality_name = \<^const_name>\<open>HOL.eq\<close>  | 
893  | 
val not_name = \<^const_name>\<open>Not\<close>  | 
|
| 42477 | 894  | 
    val notE = @{thm notE}
 | 
895  | 
    val ccontr = @{thm ccontr}
 | 
|
896  | 
val hyp_subst_tac = Hypsubst.blast_hyp_subst_tac  | 
|
897  | 
);  | 
|
898  | 
val blast_tac = Blast.blast_tac;  | 
|
| 60758 | 899  | 
\<close>  | 
| 20944 | 900  | 
|
901  | 
||
| 60758 | 902  | 
subsubsection \<open>THE: definite description operator\<close>  | 
| 
59504
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
59028 
diff
changeset
 | 
903  | 
|
| 
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
59028 
diff
changeset
 | 
904  | 
lemma the_equality [intro]:  | 
| 
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
59028 
diff
changeset
 | 
905  | 
assumes "P a"  | 
| 63575 | 906  | 
and "\<And>x. P x \<Longrightarrow> x = a"  | 
| 
59504
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
59028 
diff
changeset
 | 
907  | 
shows "(THE x. P x) = a"  | 
| 
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
59028 
diff
changeset
 | 
908  | 
by (blast intro: assms trans [OF arg_cong [where f=The] the_eq_trivial])  | 
| 
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
59028 
diff
changeset
 | 
909  | 
|
| 
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
59028 
diff
changeset
 | 
910  | 
lemma theI:  | 
| 63575 | 911  | 
assumes "P a"  | 
912  | 
and "\<And>x. P x \<Longrightarrow> x = a"  | 
|
| 
59504
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
59028 
diff
changeset
 | 
913  | 
shows "P (THE x. P x)"  | 
| 63575 | 914  | 
by (iprover intro: assms the_equality [THEN ssubst])  | 
| 
59504
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
59028 
diff
changeset
 | 
915  | 
|
| 60759 | 916  | 
lemma theI': "\<exists>!x. P x \<Longrightarrow> P (THE x. P x)"  | 
| 
59504
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
59028 
diff
changeset
 | 
917  | 
by (blast intro: theI)  | 
| 
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
59028 
diff
changeset
 | 
918  | 
|
| 63575 | 919  | 
text \<open>Easier to apply than \<open>theI\<close>: only one occurrence of \<open>P\<close>.\<close>  | 
| 
59504
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
59028 
diff
changeset
 | 
920  | 
lemma theI2:  | 
| 60759 | 921  | 
assumes "P a" "\<And>x. P x \<Longrightarrow> x = a" "\<And>x. P x \<Longrightarrow> Q x"  | 
| 
59504
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
59028 
diff
changeset
 | 
922  | 
shows "Q (THE x. P x)"  | 
| 63575 | 923  | 
by (iprover intro: assms theI)  | 
| 
59504
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
59028 
diff
changeset
 | 
924  | 
|
| 63575 | 925  | 
lemma the1I2:  | 
926  | 
assumes "\<exists>!x. P x" "\<And>x. P x \<Longrightarrow> Q x"  | 
|
927  | 
shows "Q (THE x. P x)"  | 
|
928  | 
by (iprover intro: assms(2) theI2[where P=P and Q=Q] ex1E[OF assms(1)] elim: allE impE)  | 
|
| 
59504
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
59028 
diff
changeset
 | 
929  | 
|
| 60759 | 930  | 
lemma the1_equality [elim?]: "\<lbrakk>\<exists>!x. P x; P a\<rbrakk> \<Longrightarrow> (THE x. P x) = a"  | 
| 
59504
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
59028 
diff
changeset
 | 
931  | 
by blast  | 
| 
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
59028 
diff
changeset
 | 
932  | 
|
| 71827 | 933  | 
lemma the1_equality': "\<lbrakk>\<exists>\<^sub>\<le>\<^sub>1x. P x; P a\<rbrakk> \<Longrightarrow> (THE x. P x) = a"  | 
934  | 
unfolding Uniq_def by blast  | 
|
935  | 
||
| 60759 | 936  | 
lemma the_sym_eq_trivial: "(THE y. x = y) = x"  | 
| 
59504
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
59028 
diff
changeset
 | 
937  | 
by blast  | 
| 
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
59028 
diff
changeset
 | 
938  | 
|
| 
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
59028 
diff
changeset
 | 
939  | 
|
| 60758 | 940  | 
subsubsection \<open>Simplifier\<close>  | 
| 12281 | 941  | 
|
| 60759 | 942  | 
lemma eta_contract_eq: "(\<lambda>s. f s) = f" ..  | 
| 12281 | 943  | 
|
| 71918 | 944  | 
lemma subst_all:  | 
945  | 
\<open>(\<And>x. x = a \<Longrightarrow> PROP P x) \<equiv> PROP P a\<close>  | 
|
946  | 
\<open>(\<And>x. a = x \<Longrightarrow> PROP P x) \<equiv> PROP P a\<close>  | 
|
| 71959 | 947  | 
proof -  | 
948  | 
show \<open>(\<And>x. x = a \<Longrightarrow> PROP P x) \<equiv> PROP P a\<close>  | 
|
949  | 
proof (rule equal_intr_rule)  | 
|
950  | 
assume *: \<open>\<And>x. x = a \<Longrightarrow> PROP P x\<close>  | 
|
951  | 
show \<open>PROP P a\<close>  | 
|
952  | 
by (rule *) (rule refl)  | 
|
953  | 
next  | 
|
954  | 
fix x  | 
|
955  | 
assume \<open>PROP P a\<close> and \<open>x = a\<close>  | 
|
956  | 
from \<open>x = a\<close> have \<open>x \<equiv> a\<close>  | 
|
957  | 
by (rule eq_reflection)  | 
|
958  | 
with \<open>PROP P a\<close> show \<open>PROP P x\<close>  | 
|
959  | 
by simp  | 
|
960  | 
qed  | 
|
961  | 
show \<open>(\<And>x. a = x \<Longrightarrow> PROP P x) \<equiv> PROP P a\<close>  | 
|
962  | 
proof (rule equal_intr_rule)  | 
|
963  | 
assume *: \<open>\<And>x. a = x \<Longrightarrow> PROP P x\<close>  | 
|
964  | 
show \<open>PROP P a\<close>  | 
|
965  | 
by (rule *) (rule refl)  | 
|
966  | 
next  | 
|
967  | 
fix x  | 
|
968  | 
assume \<open>PROP P a\<close> and \<open>a = x\<close>  | 
|
969  | 
from \<open>a = x\<close> have \<open>a \<equiv> x\<close>  | 
|
970  | 
by (rule eq_reflection)  | 
|
971  | 
with \<open>PROP P a\<close> show \<open>PROP P x\<close>  | 
|
972  | 
by simp  | 
|
973  | 
qed  | 
|
| 71918 | 974  | 
qed  | 
975  | 
||
| 12281 | 976  | 
lemma simp_thms:  | 
| 60759 | 977  | 
shows not_not: "(\<not> \<not> P) = P"  | 
978  | 
and Not_eq_iff: "((\<not> P) = (\<not> Q)) = (P = Q)"  | 
|
| 
12937
 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 
wenzelm 
parents: 
12892 
diff
changeset
 | 
979  | 
and  | 
| 60759 | 980  | 
"(P \<noteq> Q) = (P = (\<not> Q))"  | 
981  | 
"(P \<or> \<not>P) = True" "(\<not> P \<or> P) = True"  | 
|
| 12281 | 982  | 
"(x = x) = True"  | 
| 32068 | 983  | 
and not_True_eq_False [code]: "(\<not> True) = False"  | 
984  | 
and not_False_eq_True [code]: "(\<not> False) = True"  | 
|
| 20944 | 985  | 
and  | 
| 60759 | 986  | 
"(\<not> P) \<noteq> P" "P \<noteq> (\<not> P)"  | 
987  | 
"(True = P) = P"  | 
|
| 20944 | 988  | 
and eq_True: "(P = True) = P"  | 
| 60759 | 989  | 
and "(False = P) = (\<not> P)"  | 
| 20944 | 990  | 
and eq_False: "(P = False) = (\<not> P)"  | 
991  | 
and  | 
|
| 60759 | 992  | 
"(True \<longrightarrow> P) = P" "(False \<longrightarrow> P) = True"  | 
993  | 
"(P \<longrightarrow> True) = True" "(P \<longrightarrow> P) = True"  | 
|
994  | 
"(P \<longrightarrow> False) = (\<not> P)" "(P \<longrightarrow> \<not> P) = (\<not> P)"  | 
|
995  | 
"(P \<and> True) = P" "(True \<and> P) = P"  | 
|
996  | 
"(P \<and> False) = False" "(False \<and> P) = False"  | 
|
997  | 
"(P \<and> P) = P" "(P \<and> (P \<and> Q)) = (P \<and> Q)"  | 
|
998  | 
"(P \<and> \<not> P) = False" "(\<not> P \<and> P) = False"  | 
|
999  | 
"(P \<or> True) = True" "(True \<or> P) = True"  | 
|
1000  | 
"(P \<or> False) = P" "(False \<or> P) = P"  | 
|
1001  | 
"(P \<or> P) = P" "(P \<or> (P \<or> Q)) = (P \<or> Q)" and  | 
|
1002  | 
"(\<forall>x. P) = P" "(\<exists>x. P) = P" "\<exists>x. x = t" "\<exists>x. t = x"  | 
|
| 
31166
 
a90fe83f58ea
"{x. P x & x=t & Q x}" is now rewritten to "if P t & Q t then {t} else {}"
 
nipkow 
parents: 
31156 
diff
changeset
 | 
1003  | 
and  | 
| 60759 | 1004  | 
"\<And>P. (\<exists>x. x = t \<and> P x) = P t"  | 
1005  | 
"\<And>P. (\<exists>x. t = x \<and> P x) = P t"  | 
|
1006  | 
"\<And>P. (\<forall>x. x = t \<longrightarrow> P x) = P t"  | 
|
1007  | 
"\<And>P. (\<forall>x. t = x \<longrightarrow> P x) = P t"  | 
|
| 66109 | 1008  | 
"(\<forall>x. x \<noteq> t) = False" "(\<forall>x. t \<noteq> x) = False"  | 
| 17589 | 1009  | 
by (blast, blast, blast, blast, blast, iprover+)  | 
| 13421 | 1010  | 
|
| 63575 | 1011  | 
lemma disj_absorb: "A \<or> A \<longleftrightarrow> A"  | 
| 14201 | 1012  | 
by blast  | 
1013  | 
||
| 63575 | 1014  | 
lemma disj_left_absorb: "A \<or> (A \<or> B) \<longleftrightarrow> A \<or> B"  | 
| 14201 | 1015  | 
by blast  | 
1016  | 
||
| 63575 | 1017  | 
lemma conj_absorb: "A \<and> A \<longleftrightarrow> A"  | 
| 14201 | 1018  | 
by blast  | 
1019  | 
||
| 63575 | 1020  | 
lemma conj_left_absorb: "A \<and> (A \<and> B) \<longleftrightarrow> A \<and> B"  | 
| 14201 | 1021  | 
by blast  | 
1022  | 
||
| 12281 | 1023  | 
lemma eq_ac:  | 
| 
57512
 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 
haftmann 
parents: 
56941 
diff
changeset
 | 
1024  | 
shows eq_commute: "a = b \<longleftrightarrow> b = a"  | 
| 
 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 
haftmann 
parents: 
56941 
diff
changeset
 | 
1025  | 
and iff_left_commute: "(P \<longleftrightarrow> (Q \<longleftrightarrow> R)) \<longleftrightarrow> (Q \<longleftrightarrow> (P \<longleftrightarrow> R))"  | 
| 63575 | 1026  | 
and iff_assoc: "((P \<longleftrightarrow> Q) \<longleftrightarrow> R) \<longleftrightarrow> (P \<longleftrightarrow> (Q \<longleftrightarrow> R))"  | 
1027  | 
by (iprover, blast+)  | 
|
1028  | 
||
| 
57512
 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 
haftmann 
parents: 
56941 
diff
changeset
 | 
1029  | 
lemma neq_commute: "a \<noteq> b \<longleftrightarrow> b \<noteq> a" by iprover  | 
| 12281 | 1030  | 
|
1031  | 
lemma conj_comms:  | 
|
| 63575 | 1032  | 
shows conj_commute: "P \<and> Q \<longleftrightarrow> Q \<and> P"  | 
1033  | 
and conj_left_commute: "P \<and> (Q \<and> R) \<longleftrightarrow> Q \<and> (P \<and> R)" by iprover+  | 
|
1034  | 
lemma conj_assoc: "(P \<and> Q) \<and> R \<longleftrightarrow> P \<and> (Q \<and> R)" by iprover  | 
|
| 12281 | 1035  | 
|
| 19174 | 1036  | 
lemmas conj_ac = conj_commute conj_left_commute conj_assoc  | 
1037  | 
||
| 12281 | 1038  | 
lemma disj_comms:  | 
| 63575 | 1039  | 
shows disj_commute: "P \<or> Q \<longleftrightarrow> Q \<or> P"  | 
1040  | 
and disj_left_commute: "P \<or> (Q \<or> R) \<longleftrightarrow> Q \<or> (P \<or> R)" by iprover+  | 
|
1041  | 
lemma disj_assoc: "(P \<or> Q) \<or> R \<longleftrightarrow> P \<or> (Q \<or> R)" by iprover  | 
|
| 12281 | 1042  | 
|
| 19174 | 1043  | 
lemmas disj_ac = disj_commute disj_left_commute disj_assoc  | 
1044  | 
||
| 63575 | 1045  | 
lemma conj_disj_distribL: "P \<and> (Q \<or> R) \<longleftrightarrow> P \<and> Q \<or> P \<and> R" by iprover  | 
1046  | 
lemma conj_disj_distribR: "(P \<or> Q) \<and> R \<longleftrightarrow> P \<and> R \<or> Q \<and> R" by iprover  | 
|
| 12281 | 1047  | 
|
| 63575 | 1048  | 
lemma disj_conj_distribL: "P \<or> (Q \<and> R) \<longleftrightarrow> (P \<or> Q) \<and> (P \<or> R)" by iprover  | 
1049  | 
lemma disj_conj_distribR: "(P \<and> Q) \<or> R \<longleftrightarrow> (P \<or> R) \<and> (Q \<or> R)" by iprover  | 
|
| 12281 | 1050  | 
|
| 60759 | 1051  | 
lemma imp_conjR: "(P \<longrightarrow> (Q \<and> R)) = ((P \<longrightarrow> Q) \<and> (P \<longrightarrow> R))" by iprover  | 
1052  | 
lemma imp_conjL: "((P \<and> Q) \<longrightarrow> R) = (P \<longrightarrow> (Q \<longrightarrow> R))" by iprover  | 
|
1053  | 
lemma imp_disjL: "((P \<or> Q) \<longrightarrow> R) = ((P \<longrightarrow> R) \<and> (Q \<longrightarrow> R))" by iprover  | 
|
| 12281 | 1054  | 
|
| 61799 | 1055  | 
text \<open>These two are specialized, but \<open>imp_disj_not1\<close> is useful in \<open>Auth/Yahalom\<close>.\<close>  | 
| 63575 | 1056  | 
lemma imp_disj_not1: "(P \<longrightarrow> Q \<or> R) \<longleftrightarrow> (\<not> Q \<longrightarrow> P \<longrightarrow> R)" by blast  | 
1057  | 
lemma imp_disj_not2: "(P \<longrightarrow> Q \<or> R) \<longleftrightarrow> (\<not> R \<longrightarrow> P \<longrightarrow> Q)" by blast  | 
|
| 12281 | 1058  | 
|
| 63575 | 1059  | 
lemma imp_disj1: "((P \<longrightarrow> Q) \<or> R) \<longleftrightarrow> (P \<longrightarrow> Q \<or> R)" by blast  | 
1060  | 
lemma imp_disj2: "(Q \<or> (P \<longrightarrow> R)) \<longleftrightarrow> (P \<longrightarrow> Q \<or> R)" by blast  | 
|
| 12281 | 1061  | 
|
| 63575 | 1062  | 
lemma imp_cong: "(P = P') \<Longrightarrow> (P' \<Longrightarrow> (Q = Q')) \<Longrightarrow> ((P \<longrightarrow> Q) \<longleftrightarrow> (P' \<longrightarrow> Q'))"  | 
| 21151 | 1063  | 
by iprover  | 
1064  | 
||
| 63575 | 1065  | 
lemma de_Morgan_disj: "\<not> (P \<or> Q) \<longleftrightarrow> \<not> P \<and> \<not> Q" by iprover  | 
1066  | 
lemma de_Morgan_conj: "\<not> (P \<and> Q) \<longleftrightarrow> \<not> P \<or> \<not> Q" by blast  | 
|
1067  | 
lemma not_imp: "\<not> (P \<longrightarrow> Q) \<longleftrightarrow> P \<and> \<not> Q" by blast  | 
|
1068  | 
lemma not_iff: "P \<noteq> Q \<longleftrightarrow> (P \<longleftrightarrow> \<not> Q)" by blast  | 
|
1069  | 
lemma disj_not1: "\<not> P \<or> Q \<longleftrightarrow> (P \<longrightarrow> Q)" by blast  | 
|
1070  | 
lemma disj_not2: "P \<or> \<not> Q \<longleftrightarrow> (Q \<longrightarrow> P)" by blast \<comment> \<open>changes orientation :-(\<close>  | 
|
1071  | 
lemma imp_conv_disj: "(P \<longrightarrow> Q) \<longleftrightarrow> (\<not> P) \<or> Q" by blast  | 
|
| 
63561
 
fba08009ff3e
add lemmas contributed by Peter Gammie
 
Andreas Lochbihler 
parents: 
62958 
diff
changeset
 | 
1072  | 
lemma disj_imp: "P \<or> Q \<longleftrightarrow> \<not> P \<longrightarrow> Q" by blast  | 
| 12281 | 1073  | 
|
| 63575 | 1074  | 
lemma iff_conv_conj_imp: "(P \<longleftrightarrow> Q) \<longleftrightarrow> (P \<longrightarrow> Q) \<and> (Q \<longrightarrow> P)" by iprover  | 
| 12281 | 1075  | 
|
1076  | 
||
| 63575 | 1077  | 
lemma cases_simp: "(P \<longrightarrow> Q) \<and> (\<not> P \<longrightarrow> Q) \<longleftrightarrow> Q"  | 
| 62390 | 1078  | 
\<comment> \<open>Avoids duplication of subgoals after \<open>if_split\<close>, when the true and false\<close>  | 
| 61799 | 1079  | 
\<comment> \<open>cases boil down to the same thing.\<close>  | 
| 12281 | 1080  | 
by blast  | 
1081  | 
||
| 63575 | 1082  | 
lemma not_all: "\<not> (\<forall>x. P x) \<longleftrightarrow> (\<exists>x. \<not> P x)" by blast  | 
1083  | 
lemma imp_all: "((\<forall>x. P x) \<longrightarrow> Q) \<longleftrightarrow> (\<exists>x. P x \<longrightarrow> Q)" by blast  | 
|
1084  | 
lemma not_ex: "\<not> (\<exists>x. P x) \<longleftrightarrow> (\<forall>x. \<not> P x)" by iprover  | 
|
1085  | 
lemma imp_ex: "((\<exists>x. P x) \<longrightarrow> Q) \<longleftrightarrow> (\<forall>x. P x \<longrightarrow> Q)" by iprover  | 
|
1086  | 
lemma all_not_ex: "(\<forall>x. P x) \<longleftrightarrow> \<not> (\<exists>x. \<not> P x)" by blast  | 
|
| 12281 | 1087  | 
|
| 
35828
 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 
blanchet 
parents: 
35808 
diff
changeset
 | 
1088  | 
declare All_def [no_atp]  | 
| 
24286
 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 
paulson 
parents: 
24280 
diff
changeset
 | 
1089  | 
|
| 63575 | 1090  | 
lemma ex_disj_distrib: "(\<exists>x. P x \<or> Q x) \<longleftrightarrow> (\<exists>x. P x) \<or> (\<exists>x. Q x)" by iprover  | 
1091  | 
lemma all_conj_distrib: "(\<forall>x. P x \<and> Q x) \<longleftrightarrow> (\<forall>x. P x) \<and> (\<forall>x. Q x)" by iprover  | 
|
| 12281 | 1092  | 
|
| 60758 | 1093  | 
text \<open>  | 
| 63575 | 1094  | 
\<^medskip> The \<open>\<and>\<close> congruence rule: not included by default!  | 
| 60758 | 1095  | 
May slow rewrite proofs down by as much as 50\%\<close>  | 
| 12281 | 1096  | 
|
| 63575 | 1097  | 
lemma conj_cong: "P = P' \<Longrightarrow> (P' \<Longrightarrow> Q = Q') \<Longrightarrow> (P \<and> Q) = (P' \<and> Q')"  | 
| 17589 | 1098  | 
by iprover  | 
| 12281 | 1099  | 
|
| 63575 | 1100  | 
lemma rev_conj_cong: "Q = Q' \<Longrightarrow> (Q' \<Longrightarrow> P = P') \<Longrightarrow> (P \<and> Q) = (P' \<and> Q')"  | 
| 17589 | 1101  | 
by iprover  | 
| 12281 | 1102  | 
|
| 61799 | 1103  | 
text \<open>The \<open>|\<close> congruence rule: not included by default!\<close>  | 
| 12281 | 1104  | 
|
| 63575 | 1105  | 
lemma disj_cong: "P = P' \<Longrightarrow> (\<not> P' \<Longrightarrow> Q = Q') \<Longrightarrow> (P \<or> Q) = (P' \<or> Q')"  | 
| 12281 | 1106  | 
by blast  | 
1107  | 
||
1108  | 
||
| 63575 | 1109  | 
text \<open>\<^medskip> if-then-else rules\<close>  | 
| 12281 | 1110  | 
|
| 32068 | 1111  | 
lemma if_True [code]: "(if True then x else y) = x"  | 
| 63575 | 1112  | 
unfolding If_def by blast  | 
| 12281 | 1113  | 
|
| 32068 | 1114  | 
lemma if_False [code]: "(if False then x else y) = y"  | 
| 63575 | 1115  | 
unfolding If_def by blast  | 
| 12281 | 1116  | 
|
| 60759 | 1117  | 
lemma if_P: "P \<Longrightarrow> (if P then x else y) = x"  | 
| 63575 | 1118  | 
unfolding If_def by blast  | 
| 12281 | 1119  | 
|
| 60759 | 1120  | 
lemma if_not_P: "\<not> P \<Longrightarrow> (if P then x else y) = y"  | 
| 63575 | 1121  | 
unfolding If_def by blast  | 
| 12281 | 1122  | 
|
| 62390 | 1123  | 
lemma if_split: "P (if Q then x else y) = ((Q \<longrightarrow> P x) \<and> (\<not> Q \<longrightarrow> P y))"  | 
| 
71608
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
1124  | 
proof (rule case_split [of Q])  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
1125  | 
show ?thesis if Q  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
1126  | 
using that by (simplesubst if_P) blast+  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
1127  | 
show ?thesis if "\<not> Q"  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
1128  | 
using that by (simplesubst if_not_P) blast+  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
1129  | 
qed  | 
| 12281 | 1130  | 
|
| 62390 | 1131  | 
lemma if_split_asm: "P (if Q then x else y) = (\<not> ((Q \<and> \<not> P x) \<or> (\<not> Q \<and> \<not> P y)))"  | 
| 63575 | 1132  | 
by (simplesubst if_split) blast  | 
| 12281 | 1133  | 
|
| 62390 | 1134  | 
lemmas if_splits [no_atp] = if_split if_split_asm  | 
| 12281 | 1135  | 
|
1136  | 
lemma if_cancel: "(if c then x else x) = x"  | 
|
| 63575 | 1137  | 
by (simplesubst if_split) blast  | 
| 12281 | 1138  | 
|
1139  | 
lemma if_eq_cancel: "(if x = y then y else x) = x"  | 
|
| 63575 | 1140  | 
by (simplesubst if_split) blast  | 
| 12281 | 1141  | 
|
| 60759 | 1142  | 
lemma if_bool_eq_conj: "(if P then Q else R) = ((P \<longrightarrow> Q) \<and> (\<not> P \<longrightarrow> R))"  | 
| 61799 | 1143  | 
\<comment> \<open>This form is useful for expanding \<open>if\<close>s on the RIGHT of the \<open>\<Longrightarrow>\<close> symbol.\<close>  | 
| 62390 | 1144  | 
by (rule if_split)  | 
| 12281 | 1145  | 
|
| 60759 | 1146  | 
lemma if_bool_eq_disj: "(if P then Q else R) = ((P \<and> Q) \<or> (\<not> P \<and> R))"  | 
| 61799 | 1147  | 
\<comment> \<open>And this form is useful for expanding \<open>if\<close>s on the LEFT.\<close>  | 
| 62390 | 1148  | 
by (simplesubst if_split) blast  | 
| 12281 | 1149  | 
|
| 63575 | 1150  | 
lemma Eq_TrueI: "P \<Longrightarrow> P \<equiv> True" unfolding atomize_eq by iprover  | 
1151  | 
lemma Eq_FalseI: "\<not> P \<Longrightarrow> P \<equiv> False" unfolding atomize_eq by iprover  | 
|
| 12281 | 1152  | 
|
| 63575 | 1153  | 
text \<open>\<^medskip> let rules for simproc\<close>  | 
| 15423 | 1154  | 
|
| 60759 | 1155  | 
lemma Let_folded: "f x \<equiv> g x \<Longrightarrow> Let x f \<equiv> Let x g"  | 
| 15423 | 1156  | 
by (unfold Let_def)  | 
1157  | 
||
| 60759 | 1158  | 
lemma Let_unfold: "f x \<equiv> g \<Longrightarrow> Let x f \<equiv> g"  | 
| 15423 | 1159  | 
by (unfold Let_def)  | 
1160  | 
||
| 60758 | 1161  | 
text \<open>  | 
| 16999 | 1162  | 
The following copy of the implication operator is useful for  | 
1163  | 
fine-tuning congruence rules. It instructs the simplifier to simplify  | 
|
1164  | 
its premise.  | 
|
| 60758 | 1165  | 
\<close>  | 
| 
16633
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1166  | 
|
| 63575 | 1167  | 
definition simp_implies :: "prop \<Rightarrow> prop \<Rightarrow> prop" (infixr "=simp=>" 1)  | 
| 67399 | 1168  | 
where "simp_implies \<equiv> (\<Longrightarrow>)"  | 
| 
16633
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1169  | 
|
| 18457 | 1170  | 
lemma simp_impliesI:  | 
| 
16633
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1171  | 
assumes PQ: "(PROP P \<Longrightarrow> PROP Q)"  | 
| 
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1172  | 
shows "PROP P =simp=> PROP Q"  | 
| 
71608
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
1173  | 
unfolding simp_implies_def  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
1174  | 
by (iprover intro: PQ)  | 
| 
16633
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1175  | 
|
| 
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1176  | 
lemma simp_impliesE:  | 
| 25388 | 1177  | 
assumes PQ: "PROP P =simp=> PROP Q"  | 
| 63575 | 1178  | 
and P: "PROP P"  | 
1179  | 
and QR: "PROP Q \<Longrightarrow> PROP R"  | 
|
| 
16633
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1180  | 
shows "PROP R"  | 
| 
71608
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
1181  | 
by (iprover intro: QR P PQ [unfolded simp_implies_def])  | 
| 
16633
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1182  | 
|
| 
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1183  | 
lemma simp_implies_cong:  | 
| 60759 | 1184  | 
assumes PP' :"PROP P \<equiv> PROP P'"  | 
| 63575 | 1185  | 
and P'QQ': "PROP P' \<Longrightarrow> (PROP Q \<equiv> PROP Q')"  | 
| 60759 | 1186  | 
shows "(PROP P =simp=> PROP Q) \<equiv> (PROP P' =simp=> PROP Q')"  | 
| 63575 | 1187  | 
unfolding simp_implies_def  | 
1188  | 
proof (rule equal_intr_rule)  | 
|
| 
16633
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1189  | 
assume PQ: "PROP P \<Longrightarrow> PROP Q"  | 
| 63575 | 1190  | 
and P': "PROP P'"  | 
| 
16633
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1191  | 
from PP' [symmetric] and P' have "PROP P"  | 
| 
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1192  | 
by (rule equal_elim_rule1)  | 
| 23553 | 1193  | 
then have "PROP Q" by (rule PQ)  | 
| 
16633
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1194  | 
with P'QQ' [OF P'] show "PROP Q'" by (rule equal_elim_rule1)  | 
| 
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1195  | 
next  | 
| 
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1196  | 
assume P'Q': "PROP P' \<Longrightarrow> PROP Q'"  | 
| 63575 | 1197  | 
and P: "PROP P"  | 
| 
16633
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1198  | 
from PP' and P have P': "PROP P'" by (rule equal_elim_rule1)  | 
| 23553 | 1199  | 
then have "PROP Q'" by (rule P'Q')  | 
| 
16633
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1200  | 
with P'QQ' [OF P', symmetric] show "PROP Q"  | 
| 
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1201  | 
by (rule equal_elim_rule1)  | 
| 
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1202  | 
qed  | 
| 
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1203  | 
|
| 20944 | 1204  | 
lemma uncurry:  | 
1205  | 
assumes "P \<longrightarrow> Q \<longrightarrow> R"  | 
|
1206  | 
shows "P \<and> Q \<longrightarrow> R"  | 
|
| 23553 | 1207  | 
using assms by blast  | 
| 20944 | 1208  | 
|
1209  | 
lemma iff_allI:  | 
|
1210  | 
assumes "\<And>x. P x = Q x"  | 
|
1211  | 
shows "(\<forall>x. P x) = (\<forall>x. Q x)"  | 
|
| 23553 | 1212  | 
using assms by blast  | 
| 20944 | 1213  | 
|
1214  | 
lemma iff_exI:  | 
|
1215  | 
assumes "\<And>x. P x = Q x"  | 
|
1216  | 
shows "(\<exists>x. P x) = (\<exists>x. Q x)"  | 
|
| 23553 | 1217  | 
using assms by blast  | 
| 20944 | 1218  | 
|
| 63575 | 1219  | 
lemma all_comm: "(\<forall>x y. P x y) = (\<forall>y x. P x y)"  | 
| 20944 | 1220  | 
by blast  | 
1221  | 
||
| 63575 | 1222  | 
lemma ex_comm: "(\<exists>x y. P x y) = (\<exists>y x. P x y)"  | 
| 20944 | 1223  | 
by blast  | 
1224  | 
||
| 69605 | 1225  | 
ML_file \<open>Tools/simpdata.ML\<close>  | 
| 60758 | 1226  | 
ML \<open>open Simpdata\<close>  | 
| 42455 | 1227  | 
|
| 60758 | 1228  | 
setup \<open>  | 
| 58826 | 1229  | 
map_theory_simpset (put_simpset HOL_basic_ss) #>  | 
1230  | 
Simplifier.method_setup Splitter.split_modifiers  | 
|
| 60758 | 1231  | 
\<close>  | 
| 42455 | 1232  | 
|
| 71886 | 1233  | 
simproc_setup defined_Ex ("\<exists>x. P x") = \<open>K Quantifier1.rearrange_Ex\<close>
 | 
1234  | 
simproc_setup defined_All ("\<forall>x. P x") = \<open>K Quantifier1.rearrange_All\<close>
 | 
|
| 71914 | 1235  | 
simproc_setup defined_all("\<And>x. PROP P x") = \<open>K Quantifier1.rearrange_all\<close>
 | 
1236  | 
||
| 61799 | 1237  | 
text \<open>Simproc for proving \<open>(y = x) \<equiv> False\<close> from premise \<open>\<not> (x = y)\<close>:\<close>  | 
| 24035 | 1238  | 
|
| 60758 | 1239  | 
simproc_setup neq ("x = y") = \<open>fn _ =>
 | 
| 63575 | 1240  | 
let  | 
1241  | 
    val neq_to_EQ_False = @{thm not_sym} RS @{thm Eq_FalseI};
 | 
|
1242  | 
fun is_neq eq lhs rhs thm =  | 
|
1243  | 
(case Thm.prop_of thm of  | 
|
1244  | 
_ $ (Not $ (eq' $ l' $ r')) =>  | 
|
1245  | 
Not = HOLogic.Not andalso eq' = eq andalso  | 
|
1246  | 
r' aconv lhs andalso l' aconv rhs  | 
|
1247  | 
| _ => false);  | 
|
1248  | 
fun proc ss ct =  | 
|
1249  | 
(case Thm.term_of ct of  | 
|
1250  | 
eq $ lhs $ rhs =>  | 
|
1251  | 
(case find_first (is_neq eq lhs rhs) (Simplifier.prems_of ss) of  | 
|
1252  | 
SOME thm => SOME (thm RS neq_to_EQ_False)  | 
|
1253  | 
| NONE => NONE)  | 
|
1254  | 
| _ => NONE);  | 
|
| 
69216
 
1a52baa70aed
clarified ML_Context.expression: it is a closed expression, not a let-declaration -- thus source positions are more accurate (amending d8849cfad60f, 162a4c2e97bc);
 
wenzelm 
parents: 
68979 
diff
changeset
 | 
1255  | 
in proc end  | 
| 60758 | 1256  | 
\<close>  | 
| 24035 | 1257  | 
|
| 60758 | 1258  | 
simproc_setup let_simp ("Let x f") = \<open>
 | 
| 63575 | 1259  | 
let  | 
1260  | 
fun count_loose (Bound i) k = if i >= k then 1 else 0  | 
|
1261  | 
| count_loose (s $ t) k = count_loose s k + count_loose t k  | 
|
1262  | 
| count_loose (Abs (_, _, t)) k = count_loose t (k + 1)  | 
|
1263  | 
| count_loose _ _ = 0;  | 
|
| 69593 | 1264  | 
fun is_trivial_let (Const (\<^const_name>\<open>Let\<close>, _) $ x $ t) =  | 
| 63575 | 1265  | 
(case t of  | 
1266  | 
Abs (_, _, t') => count_loose t' 0 <= 1  | 
|
1267  | 
| _ => true);  | 
|
1268  | 
in  | 
|
1269  | 
fn _ => fn ctxt => fn ct =>  | 
|
1270  | 
if is_trivial_let (Thm.term_of ct)  | 
|
1271  | 
      then SOME @{thm Let_def} (*no or one ocurrence of bound variable*)
 | 
|
1272  | 
else  | 
|
1273  | 
let (*Norbert Schirmer's case*)  | 
|
1274  | 
val t = Thm.term_of ct;  | 
|
| 70326 | 1275  | 
val (t', ctxt') = yield_singleton (Variable.import_terms false) t ctxt;  | 
| 63575 | 1276  | 
in  | 
1277  | 
Option.map (hd o Variable.export ctxt' ctxt o single)  | 
|
| 69593 | 1278  | 
(case t' of Const (\<^const_name>\<open>Let\<close>,_) $ x $ f => (* x and f are already in normal form *)  | 
| 63575 | 1279  | 
if is_Free x orelse is_Bound x orelse is_Const x  | 
1280  | 
              then SOME @{thm Let_def}
 | 
|
1281  | 
else  | 
|
1282  | 
let  | 
|
1283  | 
val n = case f of (Abs (x, _, _)) => x | _ => "x";  | 
|
1284  | 
val cx = Thm.cterm_of ctxt x;  | 
|
1285  | 
val xT = Thm.typ_of_cterm cx;  | 
|
1286  | 
val cf = Thm.cterm_of ctxt f;  | 
|
1287  | 
val fx_g = Simplifier.rewrite ctxt (Thm.apply cf cx);  | 
|
1288  | 
val (_ $ _ $ g) = Thm.prop_of fx_g;  | 
|
1289  | 
val g' = abstract_over (x, g);  | 
|
1290  | 
val abs_g'= Abs (n, xT, g');  | 
|
1291  | 
in  | 
|
1292  | 
if g aconv g' then  | 
|
1293  | 
let  | 
|
1294  | 
val rl =  | 
|
1295  | 
                        infer_instantiate ctxt [(("f", 0), cf), (("x", 0), cx)] @{thm Let_unfold};
 | 
|
1296  | 
in SOME (rl OF [fx_g]) end  | 
|
1297  | 
else if (Envir.beta_eta_contract f) aconv (Envir.beta_eta_contract abs_g')  | 
|
1298  | 
then NONE (*avoid identity conversion*)  | 
|
1299  | 
else  | 
|
1300  | 
let  | 
|
1301  | 
val g'x = abs_g' $ x;  | 
|
1302  | 
val g_g'x = Thm.symmetric (Thm.beta_conversion false (Thm.cterm_of ctxt g'x));  | 
|
1303  | 
val rl =  | 
|
1304  | 
                        @{thm Let_folded} |> infer_instantiate ctxt
 | 
|
1305  | 
                          [(("f", 0), Thm.cterm_of ctxt f),
 | 
|
1306  | 
                           (("x", 0), cx),
 | 
|
1307  | 
                           (("g", 0), Thm.cterm_of ctxt abs_g')];
 | 
|
1308  | 
in SOME (rl OF [Thm.transitive fx_g g_g'x]) end  | 
|
1309  | 
end  | 
|
1310  | 
| _ => NONE)  | 
|
1311  | 
end  | 
|
1312  | 
end  | 
|
1313  | 
\<close>  | 
|
| 24035 | 1314  | 
|
| 21151 | 1315  | 
lemma True_implies_equals: "(True \<Longrightarrow> PROP P) \<equiv> PROP P"  | 
1316  | 
proof  | 
|
| 23389 | 1317  | 
assume "True \<Longrightarrow> PROP P"  | 
1318  | 
from this [OF TrueI] show "PROP P" .  | 
|
| 21151 | 1319  | 
next  | 
1320  | 
assume "PROP P"  | 
|
| 23389 | 1321  | 
then show "PROP P" .  | 
| 21151 | 1322  | 
qed  | 
1323  | 
||
| 59864 | 1324  | 
lemma implies_True_equals: "(PROP P \<Longrightarrow> True) \<equiv> Trueprop True"  | 
| 61169 | 1325  | 
by standard (intro TrueI)  | 
| 59864 | 1326  | 
|
1327  | 
lemma False_implies_equals: "(False \<Longrightarrow> P) \<equiv> Trueprop True"  | 
|
| 61169 | 1328  | 
by standard simp_all  | 
| 59864 | 1329  | 
|
| 
71842
 
db120661dded
new HOL simproc: eliminate_false_implies
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71833 
diff
changeset
 | 
1330  | 
(* It seems that making this a simp rule is slower than using the simproc below *)  | 
| 63575 | 1331  | 
lemma implies_False_swap:  | 
| 
71842
 
db120661dded
new HOL simproc: eliminate_false_implies
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71833 
diff
changeset
 | 
1332  | 
"(False \<Longrightarrow> PROP P \<Longrightarrow> PROP Q) \<equiv> (PROP P \<Longrightarrow> False \<Longrightarrow> PROP Q)"  | 
| 63575 | 1333  | 
by (rule swap_prems_eq)  | 
| 
60169
 
5ef8ed685965
swap False to the right in assumptions to be eliminated at the right end
 
nipkow 
parents: 
60151 
diff
changeset
 | 
1334  | 
|
| 
71842
 
db120661dded
new HOL simproc: eliminate_false_implies
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71833 
diff
changeset
 | 
1335  | 
ML \<open>  | 
| 
 
db120661dded
new HOL simproc: eliminate_false_implies
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71833 
diff
changeset
 | 
1336  | 
fun eliminate_false_implies ct =  | 
| 
 
db120661dded
new HOL simproc: eliminate_false_implies
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71833 
diff
changeset
 | 
1337  | 
let  | 
| 
 
db120661dded
new HOL simproc: eliminate_false_implies
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71833 
diff
changeset
 | 
1338  | 
val (prems, concl) = Logic.strip_horn (Thm.term_of ct)  | 
| 
 
db120661dded
new HOL simproc: eliminate_false_implies
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71833 
diff
changeset
 | 
1339  | 
fun go n =  | 
| 
 
db120661dded
new HOL simproc: eliminate_false_implies
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71833 
diff
changeset
 | 
1340  | 
if n > 1 then  | 
| 
 
db120661dded
new HOL simproc: eliminate_false_implies
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71833 
diff
changeset
 | 
1341  | 
        Conv.rewr_conv @{thm Pure.swap_prems_eq}
 | 
| 
 
db120661dded
new HOL simproc: eliminate_false_implies
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71833 
diff
changeset
 | 
1342  | 
then_conv Conv.arg_conv (go (n - 1))  | 
| 
 
db120661dded
new HOL simproc: eliminate_false_implies
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71833 
diff
changeset
 | 
1343  | 
        then_conv Conv.rewr_conv @{thm HOL.implies_True_equals}
 | 
| 
 
db120661dded
new HOL simproc: eliminate_false_implies
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71833 
diff
changeset
 | 
1344  | 
else  | 
| 
 
db120661dded
new HOL simproc: eliminate_false_implies
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71833 
diff
changeset
 | 
1345  | 
        Conv.rewr_conv @{thm HOL.False_implies_equals}
 | 
| 
 
db120661dded
new HOL simproc: eliminate_false_implies
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71833 
diff
changeset
 | 
1346  | 
in  | 
| 
 
db120661dded
new HOL simproc: eliminate_false_implies
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71833 
diff
changeset
 | 
1347  | 
case concl of  | 
| 
 
db120661dded
new HOL simproc: eliminate_false_implies
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71833 
diff
changeset
 | 
1348  | 
      Const (@{const_name HOL.Trueprop}, _) $ _ => SOME (go (length prems) ct)
 | 
| 
 
db120661dded
new HOL simproc: eliminate_false_implies
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71833 
diff
changeset
 | 
1349  | 
| _ => NONE  | 
| 
 
db120661dded
new HOL simproc: eliminate_false_implies
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71833 
diff
changeset
 | 
1350  | 
end  | 
| 
 
db120661dded
new HOL simproc: eliminate_false_implies
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71833 
diff
changeset
 | 
1351  | 
\<close>  | 
| 
 
db120661dded
new HOL simproc: eliminate_false_implies
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71833 
diff
changeset
 | 
1352  | 
|
| 
 
db120661dded
new HOL simproc: eliminate_false_implies
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71833 
diff
changeset
 | 
1353  | 
simproc_setup eliminate_false_implies ("False \<Longrightarrow> PROP P") = \<open>K (K eliminate_false_implies)\<close>
 | 
| 
 
db120661dded
new HOL simproc: eliminate_false_implies
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71833 
diff
changeset
 | 
1354  | 
|
| 
 
db120661dded
new HOL simproc: eliminate_false_implies
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71833 
diff
changeset
 | 
1355  | 
|
| 21151 | 1356  | 
lemma ex_simps:  | 
| 60759 | 1357  | 
"\<And>P Q. (\<exists>x. P x \<and> Q) = ((\<exists>x. P x) \<and> Q)"  | 
1358  | 
"\<And>P Q. (\<exists>x. P \<and> Q x) = (P \<and> (\<exists>x. Q x))"  | 
|
1359  | 
"\<And>P Q. (\<exists>x. P x \<or> Q) = ((\<exists>x. P x) \<or> Q)"  | 
|
1360  | 
"\<And>P Q. (\<exists>x. P \<or> Q x) = (P \<or> (\<exists>x. Q x))"  | 
|
1361  | 
"\<And>P Q. (\<exists>x. P x \<longrightarrow> Q) = ((\<forall>x. P x) \<longrightarrow> Q)"  | 
|
1362  | 
"\<And>P Q. (\<exists>x. P \<longrightarrow> Q x) = (P \<longrightarrow> (\<exists>x. Q x))"  | 
|
| 61799 | 1363  | 
\<comment> \<open>Miniscoping: pushing in existential quantifiers.\<close>  | 
| 21151 | 1364  | 
by (iprover | blast)+  | 
1365  | 
||
1366  | 
lemma all_simps:  | 
|
| 60759 | 1367  | 
"\<And>P Q. (\<forall>x. P x \<and> Q) = ((\<forall>x. P x) \<and> Q)"  | 
1368  | 
"\<And>P Q. (\<forall>x. P \<and> Q x) = (P \<and> (\<forall>x. Q x))"  | 
|
1369  | 
"\<And>P Q. (\<forall>x. P x \<or> Q) = ((\<forall>x. P x) \<or> Q)"  | 
|
1370  | 
"\<And>P Q. (\<forall>x. P \<or> Q x) = (P \<or> (\<forall>x. Q x))"  | 
|
1371  | 
"\<And>P Q. (\<forall>x. P x \<longrightarrow> Q) = ((\<exists>x. P x) \<longrightarrow> Q)"  | 
|
1372  | 
"\<And>P Q. (\<forall>x. P \<longrightarrow> Q x) = (P \<longrightarrow> (\<forall>x. Q x))"  | 
|
| 61799 | 1373  | 
\<comment> \<open>Miniscoping: pushing in universal quantifiers.\<close>  | 
| 21151 | 1374  | 
by (iprover | blast)+  | 
| 15481 | 1375  | 
|
| 21671 | 1376  | 
lemmas [simp] =  | 
| 63575 | 1377  | 
triv_forall_equality \<comment> \<open>prunes params\<close>  | 
1378  | 
True_implies_equals implies_True_equals \<comment> \<open>prune \<open>True\<close> in asms\<close>  | 
|
1379  | 
False_implies_equals \<comment> \<open>prune \<open>False\<close> in asms\<close>  | 
|
| 21671 | 1380  | 
if_True  | 
1381  | 
if_False  | 
|
1382  | 
if_cancel  | 
|
1383  | 
if_eq_cancel  | 
|
| 
67443
 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 
wenzelm 
parents: 
67405 
diff
changeset
 | 
1384  | 
imp_disjL \<comment> \<open>In general it seems wrong to add distributive laws by default: they  | 
| 63575 | 1385  | 
might cause exponential blow-up. But \<open>imp_disjL\<close> has been in for a while  | 
| 20973 | 1386  | 
and cannot be removed without affecting existing proofs. Moreover,  | 
| 63575 | 1387  | 
rewriting by \<open>(P \<or> Q \<longrightarrow> R) = ((P \<longrightarrow> R) \<and> (Q \<longrightarrow> R))\<close> might be justified on the  | 
1388  | 
grounds that it allows simplification of \<open>R\<close> in the two cases.\<close>  | 
|
| 21671 | 1389  | 
conj_assoc  | 
1390  | 
disj_assoc  | 
|
1391  | 
de_Morgan_conj  | 
|
1392  | 
de_Morgan_disj  | 
|
1393  | 
imp_disj1  | 
|
1394  | 
imp_disj2  | 
|
1395  | 
not_imp  | 
|
1396  | 
disj_not1  | 
|
1397  | 
not_all  | 
|
1398  | 
not_ex  | 
|
1399  | 
cases_simp  | 
|
1400  | 
the_eq_trivial  | 
|
1401  | 
the_sym_eq_trivial  | 
|
1402  | 
ex_simps  | 
|
1403  | 
all_simps  | 
|
1404  | 
simp_thms  | 
|
| 71918 | 1405  | 
subst_all  | 
| 21671 | 1406  | 
|
1407  | 
lemmas [cong] = imp_cong simp_implies_cong  | 
|
| 62390 | 1408  | 
lemmas [split] = if_split  | 
| 20973 | 1409  | 
|
| 69593 | 1410  | 
ML \<open>val HOL_ss = simpset_of \<^context>\<close>  | 
| 20973 | 1411  | 
|
| 63575 | 1412  | 
text \<open>Simplifies \<open>x\<close> assuming \<open>c\<close> and \<open>y\<close> assuming \<open>\<not> c\<close>.\<close>  | 
| 20944 | 1413  | 
lemma if_cong:  | 
1414  | 
assumes "b = c"  | 
|
| 63575 | 1415  | 
and "c \<Longrightarrow> x = u"  | 
1416  | 
and "\<not> c \<Longrightarrow> y = v"  | 
|
| 20944 | 1417  | 
shows "(if b then x else y) = (if c then u else v)"  | 
| 38525 | 1418  | 
using assms by simp  | 
| 20944 | 1419  | 
|
| 63575 | 1420  | 
text \<open>Prevents simplification of \<open>x\<close> and \<open>y\<close>:  | 
| 60758 | 1421  | 
faster and allows the execution of functional programs.\<close>  | 
| 20944 | 1422  | 
lemma if_weak_cong [cong]:  | 
1423  | 
assumes "b = c"  | 
|
1424  | 
shows "(if b then x else y) = (if c then x else y)"  | 
|
| 23553 | 1425  | 
using assms by (rule arg_cong)  | 
| 20944 | 1426  | 
|
| 60758 | 1427  | 
text \<open>Prevents simplification of t: much faster\<close>  | 
| 20944 | 1428  | 
lemma let_weak_cong:  | 
1429  | 
assumes "a = b"  | 
|
1430  | 
shows "(let x = a in t x) = (let x = b in t x)"  | 
|
| 23553 | 1431  | 
using assms by (rule arg_cong)  | 
| 20944 | 1432  | 
|
| 60758 | 1433  | 
text \<open>To tidy up the result of a simproc. Only the RHS will be simplified.\<close>  | 
| 20944 | 1434  | 
lemma eq_cong2:  | 
1435  | 
assumes "u = u'"  | 
|
1436  | 
shows "(t \<equiv> u) \<equiv> (t \<equiv> u')"  | 
|
| 23553 | 1437  | 
using assms by simp  | 
| 20944 | 1438  | 
|
| 63575 | 1439  | 
lemma if_distrib: "f (if c then x else y) = (if c then f x else f y)"  | 
| 20944 | 1440  | 
by simp  | 
1441  | 
||
| 
68072
 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 
immler 
parents: 
67719 
diff
changeset
 | 
1442  | 
lemma if_distribR: "(if b then f else g) x = (if b then f x else g x)"  | 
| 
 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 
immler 
parents: 
67719 
diff
changeset
 | 
1443  | 
by simp  | 
| 
 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 
immler 
parents: 
67719 
diff
changeset
 | 
1444  | 
|
| 
67673
 
c8caefb20564
lots of new material, ultimately related to measure theory
 
paulson <lp15@cam.ac.uk> 
parents: 
67443 
diff
changeset
 | 
1445  | 
lemma all_if_distrib: "(\<forall>x. if x = a then P x else Q x) \<longleftrightarrow> P a \<and> (\<forall>x. x\<noteq>a \<longrightarrow> Q x)"  | 
| 
 
c8caefb20564
lots of new material, ultimately related to measure theory
 
paulson <lp15@cam.ac.uk> 
parents: 
67443 
diff
changeset
 | 
1446  | 
by auto  | 
| 
 
c8caefb20564
lots of new material, ultimately related to measure theory
 
paulson <lp15@cam.ac.uk> 
parents: 
67443 
diff
changeset
 | 
1447  | 
|
| 
 
c8caefb20564
lots of new material, ultimately related to measure theory
 
paulson <lp15@cam.ac.uk> 
parents: 
67443 
diff
changeset
 | 
1448  | 
lemma ex_if_distrib: "(\<exists>x. if x = a then P x else Q x) \<longleftrightarrow> P a \<or> (\<exists>x. x\<noteq>a \<and> Q x)"  | 
| 
 
c8caefb20564
lots of new material, ultimately related to measure theory
 
paulson <lp15@cam.ac.uk> 
parents: 
67443 
diff
changeset
 | 
1449  | 
by auto  | 
| 
 
c8caefb20564
lots of new material, ultimately related to measure theory
 
paulson <lp15@cam.ac.uk> 
parents: 
67443 
diff
changeset
 | 
1450  | 
|
| 
67719
 
bffb7482faaa
new material on matrices, etc., and consolidating duplicate results about of_nat
 
paulson <lp15@cam.ac.uk> 
parents: 
67673 
diff
changeset
 | 
1451  | 
lemma if_if_eq_conj: "(if P then if Q then x else y else y) = (if P \<and> Q then x else y)"  | 
| 
 
bffb7482faaa
new material on matrices, etc., and consolidating duplicate results about of_nat
 
paulson <lp15@cam.ac.uk> 
parents: 
67673 
diff
changeset
 | 
1452  | 
by simp  | 
| 
 
bffb7482faaa
new material on matrices, etc., and consolidating duplicate results about of_nat
 
paulson <lp15@cam.ac.uk> 
parents: 
67673 
diff
changeset
 | 
1453  | 
|
| 63575 | 1454  | 
text \<open>As a simplification rule, it replaces all function equalities by  | 
| 60758 | 1455  | 
first-order equalities.\<close>  | 
| 
44277
 
bcb696533579
moved fundamental lemma fun_eq_iff to theory HOL; tuned whitespace
 
haftmann 
parents: 
44121 
diff
changeset
 | 
1456  | 
lemma fun_eq_iff: "f = g \<longleftrightarrow> (\<forall>x. f x = g x)"  | 
| 
 
bcb696533579
moved fundamental lemma fun_eq_iff to theory HOL; tuned whitespace
 
haftmann 
parents: 
44121 
diff
changeset
 | 
1457  | 
by auto  | 
| 
 
bcb696533579
moved fundamental lemma fun_eq_iff to theory HOL; tuned whitespace
 
haftmann 
parents: 
44121 
diff
changeset
 | 
1458  | 
|
| 17459 | 1459  | 
|
| 60758 | 1460  | 
subsubsection \<open>Generic cases and induction\<close>  | 
| 17459 | 1461  | 
|
| 60758 | 1462  | 
text \<open>Rule projections:\<close>  | 
1463  | 
ML \<open>  | 
|
| 32172 | 1464  | 
structure Project_Rule = Project_Rule  | 
| 25388 | 1465  | 
(  | 
| 
27126
 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 
wenzelm 
parents: 
27107 
diff
changeset
 | 
1466  | 
  val conjunct1 = @{thm conjunct1}
 | 
| 
 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 
wenzelm 
parents: 
27107 
diff
changeset
 | 
1467  | 
  val conjunct2 = @{thm conjunct2}
 | 
| 
 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 
wenzelm 
parents: 
27107 
diff
changeset
 | 
1468  | 
  val mp = @{thm mp}
 | 
| 59929 | 1469  | 
);  | 
| 60758 | 1470  | 
\<close>  | 
| 17459 | 1471  | 
|
| 
59940
 
087d81f5213e
local setup of induction tools, with restricted access to auxiliary consts;
 
wenzelm 
parents: 
59929 
diff
changeset
 | 
1472  | 
context  | 
| 
 
087d81f5213e
local setup of induction tools, with restricted access to auxiliary consts;
 
wenzelm 
parents: 
59929 
diff
changeset
 | 
1473  | 
begin  | 
| 
 
087d81f5213e
local setup of induction tools, with restricted access to auxiliary consts;
 
wenzelm 
parents: 
59929 
diff
changeset
 | 
1474  | 
|
| 
59990
 
a81dc82ecba3
clarified keyword 'qualified' in accordance to a similar keyword from Haskell (despite unrelated Binding.qualified in Isabelle/ML);
 
wenzelm 
parents: 
59970 
diff
changeset
 | 
1475  | 
qualified definition "induct_forall P \<equiv> \<forall>x. P x"  | 
| 
 
a81dc82ecba3
clarified keyword 'qualified' in accordance to a similar keyword from Haskell (despite unrelated Binding.qualified in Isabelle/ML);
 
wenzelm 
parents: 
59970 
diff
changeset
 | 
1476  | 
qualified definition "induct_implies A B \<equiv> A \<longrightarrow> B"  | 
| 
 
a81dc82ecba3
clarified keyword 'qualified' in accordance to a similar keyword from Haskell (despite unrelated Binding.qualified in Isabelle/ML);
 
wenzelm 
parents: 
59970 
diff
changeset
 | 
1477  | 
qualified definition "induct_equal x y \<equiv> x = y"  | 
| 
 
a81dc82ecba3
clarified keyword 'qualified' in accordance to a similar keyword from Haskell (despite unrelated Binding.qualified in Isabelle/ML);
 
wenzelm 
parents: 
59970 
diff
changeset
 | 
1478  | 
qualified definition "induct_conj A B \<equiv> A \<and> B"  | 
| 
 
a81dc82ecba3
clarified keyword 'qualified' in accordance to a similar keyword from Haskell (despite unrelated Binding.qualified in Isabelle/ML);
 
wenzelm 
parents: 
59970 
diff
changeset
 | 
1479  | 
qualified definition "induct_true \<equiv> True"  | 
| 
 
a81dc82ecba3
clarified keyword 'qualified' in accordance to a similar keyword from Haskell (despite unrelated Binding.qualified in Isabelle/ML);
 
wenzelm 
parents: 
59970 
diff
changeset
 | 
1480  | 
qualified definition "induct_false \<equiv> False"  | 
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
35115 
diff
changeset
 | 
1481  | 
|
| 59929 | 1482  | 
lemma induct_forall_eq: "(\<And>x. P x) \<equiv> Trueprop (induct_forall (\<lambda>x. P x))"  | 
| 18457 | 1483  | 
by (unfold atomize_all induct_forall_def)  | 
| 
11824
 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 
wenzelm 
parents: 
11770 
diff
changeset
 | 
1484  | 
|
| 59929 | 1485  | 
lemma induct_implies_eq: "(A \<Longrightarrow> B) \<equiv> Trueprop (induct_implies A B)"  | 
| 18457 | 1486  | 
by (unfold atomize_imp induct_implies_def)  | 
| 
11824
 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 
wenzelm 
parents: 
11770 
diff
changeset
 | 
1487  | 
|
| 59929 | 1488  | 
lemma induct_equal_eq: "(x \<equiv> y) \<equiv> Trueprop (induct_equal x y)"  | 
| 18457 | 1489  | 
by (unfold atomize_eq induct_equal_def)  | 
1490  | 
||
| 59929 | 1491  | 
lemma induct_conj_eq: "(A &&& B) \<equiv> Trueprop (induct_conj A B)"  | 
| 18457 | 1492  | 
by (unfold atomize_conj induct_conj_def)  | 
1493  | 
||
| 
34908
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1494  | 
lemmas induct_atomize' = induct_forall_eq induct_implies_eq induct_conj_eq  | 
| 
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1495  | 
lemmas induct_atomize = induct_atomize' induct_equal_eq  | 
| 45607 | 1496  | 
lemmas induct_rulify' [symmetric] = induct_atomize'  | 
1497  | 
lemmas induct_rulify [symmetric] = induct_atomize  | 
|
| 18457 | 1498  | 
lemmas induct_rulify_fallback =  | 
1499  | 
induct_forall_def induct_implies_def induct_equal_def induct_conj_def  | 
|
| 
34908
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1500  | 
induct_true_def induct_false_def  | 
| 18457 | 1501  | 
|
| 11989 | 1502  | 
lemma induct_forall_conj: "induct_forall (\<lambda>x. induct_conj (A x) (B x)) =  | 
1503  | 
induct_conj (induct_forall A) (induct_forall B)"  | 
|
| 17589 | 1504  | 
by (unfold induct_forall_def induct_conj_def) iprover  | 
| 
11824
 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 
wenzelm 
parents: 
11770 
diff
changeset
 | 
1505  | 
|
| 11989 | 1506  | 
lemma induct_implies_conj: "induct_implies C (induct_conj A B) =  | 
1507  | 
induct_conj (induct_implies C A) (induct_implies C B)"  | 
|
| 17589 | 1508  | 
by (unfold induct_implies_def induct_conj_def) iprover  | 
| 11989 | 1509  | 
|
| 59929 | 1510  | 
lemma induct_conj_curry: "(induct_conj A B \<Longrightarrow> PROP C) \<equiv> (A \<Longrightarrow> B \<Longrightarrow> PROP C)"  | 
| 
13598
 
8bc77b17f59f
Fixed problem with induct_conj_curry: variable C should have type prop.
 
berghofe 
parents: 
13596 
diff
changeset
 | 
1511  | 
proof  | 
| 59929 | 1512  | 
assume r: "induct_conj A B \<Longrightarrow> PROP C"  | 
1513  | 
assume ab: A B  | 
|
1514  | 
show "PROP C" by (rule r) (simp add: induct_conj_def ab)  | 
|
| 
13598
 
8bc77b17f59f
Fixed problem with induct_conj_curry: variable C should have type prop.
 
berghofe 
parents: 
13596 
diff
changeset
 | 
1515  | 
next  | 
| 59929 | 1516  | 
assume r: "A \<Longrightarrow> B \<Longrightarrow> PROP C"  | 
1517  | 
assume ab: "induct_conj A B"  | 
|
1518  | 
show "PROP C" by (rule r) (simp_all add: ab [unfolded induct_conj_def])  | 
|
| 
13598
 
8bc77b17f59f
Fixed problem with induct_conj_curry: variable C should have type prop.
 
berghofe 
parents: 
13596 
diff
changeset
 | 
1519  | 
qed  | 
| 
11824
 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 
wenzelm 
parents: 
11770 
diff
changeset
 | 
1520  | 
|
| 11989 | 1521  | 
lemmas induct_conj = induct_forall_conj induct_implies_conj induct_conj_curry  | 
| 
11824
 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 
wenzelm 
parents: 
11770 
diff
changeset
 | 
1522  | 
|
| 
34908
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1523  | 
lemma induct_trueI: "induct_true"  | 
| 
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1524  | 
by (simp add: induct_true_def)  | 
| 
11824
 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 
wenzelm 
parents: 
11770 
diff
changeset
 | 
1525  | 
|
| 60758 | 1526  | 
text \<open>Method setup.\<close>  | 
| 
11824
 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 
wenzelm 
parents: 
11770 
diff
changeset
 | 
1527  | 
|
| 69605 | 1528  | 
ML_file \<open>~~/src/Tools/induct.ML\<close>  | 
| 60758 | 1529  | 
ML \<open>  | 
| 32171 | 1530  | 
structure Induct = Induct  | 
| 
27126
 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 
wenzelm 
parents: 
27107 
diff
changeset
 | 
1531  | 
(  | 
| 
 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 
wenzelm 
parents: 
27107 
diff
changeset
 | 
1532  | 
  val cases_default = @{thm case_split}
 | 
| 
 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 
wenzelm 
parents: 
27107 
diff
changeset
 | 
1533  | 
  val atomize = @{thms induct_atomize}
 | 
| 
34908
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1534  | 
  val rulify = @{thms induct_rulify'}
 | 
| 
27126
 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 
wenzelm 
parents: 
27107 
diff
changeset
 | 
1535  | 
  val rulify_fallback = @{thms induct_rulify_fallback}
 | 
| 
34988
 
cca208c8d619
Added setup for simplification of equality constraints in cases rules.
 
berghofe 
parents: 
34917 
diff
changeset
 | 
1536  | 
  val equal_def = @{thm induct_equal_def}
 | 
| 69593 | 1537  | 
fun dest_def (Const (\<^const_name>\<open>induct_equal\<close>, _) $ t $ u) = SOME (t, u)  | 
| 
34908
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1538  | 
| dest_def _ = NONE  | 
| 58957 | 1539  | 
  fun trivial_tac ctxt = match_tac ctxt @{thms induct_trueI}
 | 
| 
27126
 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 
wenzelm 
parents: 
27107 
diff
changeset
 | 
1540  | 
)  | 
| 60758 | 1541  | 
\<close>  | 
| 
11824
 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 
wenzelm 
parents: 
11770 
diff
changeset
 | 
1542  | 
|
| 69605 | 1543  | 
ML_file \<open>~~/src/Tools/induction.ML\<close>  | 
| 
45014
 
0e847655b2d8
New proof method "induction" that gives induction hypotheses the name IH.
 
nipkow 
parents: 
44921 
diff
changeset
 | 
1544  | 
|
| 60758 | 1545  | 
declaration \<open>  | 
| 
59940
 
087d81f5213e
local setup of induction tools, with restricted access to auxiliary consts;
 
wenzelm 
parents: 
59929 
diff
changeset
 | 
1546  | 
fn _ => Induct.map_simpset (fn ss => ss  | 
| 
34908
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1547  | 
addsimprocs  | 
| 69593 | 1548  | 
[Simplifier.make_simproc \<^context> "swap_induct_false"  | 
1549  | 
        {lhss = [\<^term>\<open>induct_false \<Longrightarrow> PROP P \<Longrightarrow> PROP Q\<close>],
 | 
|
| 61144 | 1550  | 
proc = fn _ => fn _ => fn ct =>  | 
1551  | 
(case Thm.term_of ct of  | 
|
| 74383 | 1552  | 
_ $ (P as _ $ \<^Const_>\<open>induct_false\<close>) $ (_ $ Q $ _) =>  | 
| 61144 | 1553  | 
if P <> Q then SOME Drule.swap_prems_eq else NONE  | 
| 62913 | 1554  | 
| _ => NONE)},  | 
| 69593 | 1555  | 
Simplifier.make_simproc \<^context> "induct_equal_conj_curry"  | 
1556  | 
        {lhss = [\<^term>\<open>induct_conj P Q \<Longrightarrow> PROP R\<close>],
 | 
|
| 61144 | 1557  | 
proc = fn _ => fn _ => fn ct =>  | 
1558  | 
(case Thm.term_of ct of  | 
|
1559  | 
_ $ (_ $ P) $ _ =>  | 
|
1560  | 
let  | 
|
| 74383 | 1561  | 
fun is_conj \<^Const_>\<open>induct_conj for P Q\<close> =  | 
| 61144 | 1562  | 
is_conj P andalso is_conj Q  | 
| 74383 | 1563  | 
| is_conj \<^Const_>\<open>induct_equal _ for _ _\<close> = true  | 
1564  | 
| is_conj \<^Const_>\<open>induct_true\<close> = true  | 
|
1565  | 
| is_conj \<^Const_>\<open>induct_false\<close> = true  | 
|
| 61144 | 1566  | 
| is_conj _ = false  | 
1567  | 
              in if is_conj P then SOME @{thm induct_conj_curry} else NONE end
 | 
|
| 62913 | 1568  | 
| _ => NONE)}]  | 
| 
54742
 
7a86358a3c0b
proper context for basic Simplifier operations: rewrite_rule, rewrite_goals_rule, rewrite_goals_tac etc.;
 
wenzelm 
parents: 
53146 
diff
changeset
 | 
1569  | 
|> Simplifier.set_mksimps (fn ctxt =>  | 
| 
 
7a86358a3c0b
proper context for basic Simplifier operations: rewrite_rule, rewrite_goals_rule, rewrite_goals_tac etc.;
 
wenzelm 
parents: 
53146 
diff
changeset
 | 
1570  | 
Simpdata.mksimps Simpdata.mksimps_pairs ctxt #>  | 
| 
59940
 
087d81f5213e
local setup of induction tools, with restricted access to auxiliary consts;
 
wenzelm 
parents: 
59929 
diff
changeset
 | 
1571  | 
        map (rewrite_rule ctxt (map Thm.symmetric @{thms induct_rulify_fallback}))))
 | 
| 60758 | 1572  | 
\<close>  | 
| 
34908
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1573  | 
|
| 60758 | 1574  | 
text \<open>Pre-simplification of induction and cases rules\<close>  | 
| 
34908
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1575  | 
|
| 59929 | 1576  | 
lemma [induct_simp]: "(\<And>x. induct_equal x t \<Longrightarrow> PROP P x) \<equiv> PROP P t"  | 
| 
34908
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1577  | 
unfolding induct_equal_def  | 
| 
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1578  | 
proof  | 
| 59929 | 1579  | 
assume r: "\<And>x. x = t \<Longrightarrow> PROP P x"  | 
1580  | 
show "PROP P t" by (rule r [OF refl])  | 
|
| 
34908
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1581  | 
next  | 
| 59929 | 1582  | 
fix x  | 
1583  | 
assume "PROP P t" "x = t"  | 
|
| 
34908
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1584  | 
then show "PROP P x" by simp  | 
| 
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1585  | 
qed  | 
| 
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1586  | 
|
| 59929 | 1587  | 
lemma [induct_simp]: "(\<And>x. induct_equal t x \<Longrightarrow> PROP P x) \<equiv> PROP P t"  | 
| 
34908
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1588  | 
unfolding induct_equal_def  | 
| 
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1589  | 
proof  | 
| 59929 | 1590  | 
assume r: "\<And>x. t = x \<Longrightarrow> PROP P x"  | 
1591  | 
show "PROP P t" by (rule r [OF refl])  | 
|
| 
34908
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1592  | 
next  | 
| 59929 | 1593  | 
fix x  | 
1594  | 
assume "PROP P t" "t = x"  | 
|
| 
34908
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1595  | 
then show "PROP P x" by simp  | 
| 
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1596  | 
qed  | 
| 
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1597  | 
|
| 59929 | 1598  | 
lemma [induct_simp]: "(induct_false \<Longrightarrow> P) \<equiv> Trueprop induct_true"  | 
| 
34908
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1599  | 
unfolding induct_false_def induct_true_def  | 
| 
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1600  | 
by (iprover intro: equal_intr_rule)  | 
| 
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1601  | 
|
| 59929 | 1602  | 
lemma [induct_simp]: "(induct_true \<Longrightarrow> PROP P) \<equiv> PROP P"  | 
| 
34908
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1603  | 
unfolding induct_true_def  | 
| 
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1604  | 
proof  | 
| 59929 | 1605  | 
assume "True \<Longrightarrow> PROP P"  | 
1606  | 
then show "PROP P" using TrueI .  | 
|
| 
34908
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1607  | 
next  | 
| 
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1608  | 
assume "PROP P"  | 
| 
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1609  | 
then show "PROP P" .  | 
| 
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1610  | 
qed  | 
| 
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1611  | 
|
| 59929 | 1612  | 
lemma [induct_simp]: "(PROP P \<Longrightarrow> induct_true) \<equiv> Trueprop induct_true"  | 
| 
34908
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1613  | 
unfolding induct_true_def  | 
| 
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1614  | 
by (iprover intro: equal_intr_rule)  | 
| 
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1615  | 
|
| 
62958
 
b41c1cb5e251
Type_Infer.object_logic controls improvement of type inference result;
 
wenzelm 
parents: 
62913 
diff
changeset
 | 
1616  | 
lemma [induct_simp]: "(\<And>x::'a::{}. induct_true) \<equiv> Trueprop induct_true"
 | 
| 
34908
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1617  | 
unfolding induct_true_def  | 
| 
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1618  | 
by (iprover intro: equal_intr_rule)  | 
| 
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1619  | 
|
| 59929 | 1620  | 
lemma [induct_simp]: "induct_implies induct_true P \<equiv> P"  | 
| 
34908
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1621  | 
by (simp add: induct_implies_def induct_true_def)  | 
| 
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1622  | 
|
| 59929 | 1623  | 
lemma [induct_simp]: "x = x \<longleftrightarrow> True"  | 
| 
34908
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1624  | 
by (rule simp_thms)  | 
| 
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1625  | 
|
| 
59940
 
087d81f5213e
local setup of induction tools, with restricted access to auxiliary consts;
 
wenzelm 
parents: 
59929 
diff
changeset
 | 
1626  | 
end  | 
| 18457 | 1627  | 
|
| 69605 | 1628  | 
ML_file \<open>~~/src/Tools/induct_tacs.ML\<close>  | 
| 
27126
 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 
wenzelm 
parents: 
27107 
diff
changeset
 | 
1629  | 
|
| 20944 | 1630  | 
|
| 60758 | 1631  | 
subsubsection \<open>Coherent logic\<close>  | 
| 28325 | 1632  | 
|
| 69605 | 1633  | 
ML_file \<open>~~/src/Tools/coherent.ML\<close>  | 
| 60758 | 1634  | 
ML \<open>  | 
| 32734 | 1635  | 
structure Coherent = Coherent  | 
| 28325 | 1636  | 
(  | 
| 55632 | 1637  | 
  val atomize_elimL = @{thm atomize_elimL};
 | 
1638  | 
  val atomize_exL = @{thm atomize_exL};
 | 
|
1639  | 
  val atomize_conjL = @{thm atomize_conjL};
 | 
|
1640  | 
  val atomize_disjL = @{thm atomize_disjL};
 | 
|
| 69593 | 1641  | 
val operator_names = [\<^const_name>\<open>HOL.disj\<close>, \<^const_name>\<open>HOL.conj\<close>, \<^const_name>\<open>Ex\<close>];  | 
| 28325 | 1642  | 
);  | 
| 60758 | 1643  | 
\<close>  | 
| 28325 | 1644  | 
|
1645  | 
||
| 60758 | 1646  | 
subsubsection \<open>Reorienting equalities\<close>  | 
| 
31024
 
0fdf666e08bf
reimplement reorientation simproc using theory data
 
huffman 
parents: 
30980 
diff
changeset
 | 
1647  | 
|
| 60758 | 1648  | 
ML \<open>  | 
| 
31024
 
0fdf666e08bf
reimplement reorientation simproc using theory data
 
huffman 
parents: 
30980 
diff
changeset
 | 
1649  | 
signature REORIENT_PROC =  | 
| 
 
0fdf666e08bf
reimplement reorientation simproc using theory data
 
huffman 
parents: 
30980 
diff
changeset
 | 
1650  | 
sig  | 
| 
 
0fdf666e08bf
reimplement reorientation simproc using theory data
 
huffman 
parents: 
30980 
diff
changeset
 | 
1651  | 
val add : (term -> bool) -> theory -> theory  | 
| 
51717
 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 
wenzelm 
parents: 
51692 
diff
changeset
 | 
1652  | 
val proc : morphism -> Proof.context -> cterm -> thm option  | 
| 
31024
 
0fdf666e08bf
reimplement reorientation simproc using theory data
 
huffman 
parents: 
30980 
diff
changeset
 | 
1653  | 
end;  | 
| 
 
0fdf666e08bf
reimplement reorientation simproc using theory data
 
huffman 
parents: 
30980 
diff
changeset
 | 
1654  | 
|
| 33523 | 1655  | 
structure Reorient_Proc : REORIENT_PROC =  | 
| 
31024
 
0fdf666e08bf
reimplement reorientation simproc using theory data
 
huffman 
parents: 
30980 
diff
changeset
 | 
1656  | 
struct  | 
| 33523 | 1657  | 
structure Data = Theory_Data  | 
| 
31024
 
0fdf666e08bf
reimplement reorientation simproc using theory data
 
huffman 
parents: 
30980 
diff
changeset
 | 
1658  | 
(  | 
| 33523 | 1659  | 
type T = ((term -> bool) * stamp) list;  | 
1660  | 
val empty = [];  | 
|
| 
67405
 
e9ab4ad7bd15
uniform use of Standard ML op-infix -- eliminated warnings;
 
wenzelm 
parents: 
67399 
diff
changeset
 | 
1661  | 
fun merge data : T = Library.merge (eq_snd (op =)) data;  | 
| 33523 | 1662  | 
);  | 
1663  | 
fun add m = Data.map (cons (m, stamp ()));  | 
|
1664  | 
fun matches thy t = exists (fn (m, _) => m t) (Data.get thy);  | 
|
| 
31024
 
0fdf666e08bf
reimplement reorientation simproc using theory data
 
huffman 
parents: 
30980 
diff
changeset
 | 
1665  | 
|
| 
 
0fdf666e08bf
reimplement reorientation simproc using theory data
 
huffman 
parents: 
30980 
diff
changeset
 | 
1666  | 
  val meta_reorient = @{thm eq_commute [THEN eq_reflection]};
 | 
| 
51717
 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 
wenzelm 
parents: 
51692 
diff
changeset
 | 
1667  | 
fun proc phi ctxt ct =  | 
| 
31024
 
0fdf666e08bf
reimplement reorientation simproc using theory data
 
huffman 
parents: 
30980 
diff
changeset
 | 
1668  | 
let  | 
| 42361 | 1669  | 
val thy = Proof_Context.theory_of ctxt;  | 
| 
31024
 
0fdf666e08bf
reimplement reorientation simproc using theory data
 
huffman 
parents: 
30980 
diff
changeset
 | 
1670  | 
in  | 
| 
 
0fdf666e08bf
reimplement reorientation simproc using theory data
 
huffman 
parents: 
30980 
diff
changeset
 | 
1671  | 
case Thm.term_of ct of  | 
| 33523 | 1672  | 
(_ $ t $ u) => if matches thy u then NONE else SOME meta_reorient  | 
| 
31024
 
0fdf666e08bf
reimplement reorientation simproc using theory data
 
huffman 
parents: 
30980 
diff
changeset
 | 
1673  | 
| _ => NONE  | 
| 
 
0fdf666e08bf
reimplement reorientation simproc using theory data
 
huffman 
parents: 
30980 
diff
changeset
 | 
1674  | 
end;  | 
| 
 
0fdf666e08bf
reimplement reorientation simproc using theory data
 
huffman 
parents: 
30980 
diff
changeset
 | 
1675  | 
end;  | 
| 60758 | 1676  | 
\<close>  | 
| 
31024
 
0fdf666e08bf
reimplement reorientation simproc using theory data
 
huffman 
parents: 
30980 
diff
changeset
 | 
1677  | 
|
| 
 
0fdf666e08bf
reimplement reorientation simproc using theory data
 
huffman 
parents: 
30980 
diff
changeset
 | 
1678  | 
|
| 60758 | 1679  | 
subsection \<open>Other simple lemmas and lemma duplicates\<close>  | 
| 20944 | 1680  | 
|
| 
74741
 
6e1fad4f602b
added eq_iff_swap for creating symmetric variants of thms; applied it in List.
 
nipkow 
parents: 
74561 
diff
changeset
 | 
1681  | 
lemma eq_iff_swap: "(x = y \<longleftrightarrow> P) \<Longrightarrow> (y = x \<longleftrightarrow> P)"  | 
| 
 
6e1fad4f602b
added eq_iff_swap for creating symmetric variants of thms; applied it in List.
 
nipkow 
parents: 
74561 
diff
changeset
 | 
1682  | 
by blast  | 
| 
 
6e1fad4f602b
added eq_iff_swap for creating symmetric variants of thms; applied it in List.
 
nipkow 
parents: 
74561 
diff
changeset
 | 
1683  | 
|
| 
68975
 
5ce4d117cea7
A few new results, elimination of duplicates and more use of "pairwise"
 
paulson <lp15@cam.ac.uk> 
parents: 
68072 
diff
changeset
 | 
1684  | 
lemma all_cong1: "(\<And>x. P x = P' x) \<Longrightarrow> (\<forall>x. P x) = (\<forall>x. P' x)"  | 
| 
 
5ce4d117cea7
A few new results, elimination of duplicates and more use of "pairwise"
 
paulson <lp15@cam.ac.uk> 
parents: 
68072 
diff
changeset
 | 
1685  | 
by auto  | 
| 
 
5ce4d117cea7
A few new results, elimination of duplicates and more use of "pairwise"
 
paulson <lp15@cam.ac.uk> 
parents: 
68072 
diff
changeset
 | 
1686  | 
|
| 
 
5ce4d117cea7
A few new results, elimination of duplicates and more use of "pairwise"
 
paulson <lp15@cam.ac.uk> 
parents: 
68072 
diff
changeset
 | 
1687  | 
lemma ex_cong1: "(\<And>x. P x = P' x) \<Longrightarrow> (\<exists>x. P x) = (\<exists>x. P' x)"  | 
| 
 
5ce4d117cea7
A few new results, elimination of duplicates and more use of "pairwise"
 
paulson <lp15@cam.ac.uk> 
parents: 
68072 
diff
changeset
 | 
1688  | 
by auto  | 
| 
 
5ce4d117cea7
A few new results, elimination of duplicates and more use of "pairwise"
 
paulson <lp15@cam.ac.uk> 
parents: 
68072 
diff
changeset
 | 
1689  | 
|
| 67091 | 1690  | 
lemma all_cong: "(\<And>x. Q x \<Longrightarrow> P x = P' x) \<Longrightarrow> (\<forall>x. Q x \<longrightarrow> P x) = (\<forall>x. Q x \<longrightarrow> P' x)"  | 
| 66836 | 1691  | 
by auto  | 
1692  | 
||
| 67091 | 1693  | 
lemma ex_cong: "(\<And>x. Q x \<Longrightarrow> P x = P' x) \<Longrightarrow> (\<exists>x. Q x \<and> P x) = (\<exists>x. Q x \<and> P' x)"  | 
| 66836 | 1694  | 
by auto  | 
1695  | 
||
| 60759 | 1696  | 
lemma ex1_eq [iff]: "\<exists>!x. x = t" "\<exists>!x. t = x"  | 
| 20944 | 1697  | 
by blast+  | 
1698  | 
||
| 
71608
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
1699  | 
lemma choice_eq: "(\<forall>x. \<exists>!y. P x y) = (\<exists>!f. \<forall>x. P x (f x))" (is "?lhs = ?rhs")  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
1700  | 
proof (intro iffI allI)  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
1701  | 
assume L: ?lhs  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
1702  | 
then have \<section>: "\<forall>x. P x (THE y. P x y)"  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
1703  | 
by (best intro: theI')  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
1704  | 
show ?rhs  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
1705  | 
by (rule ex1I) (use L \<section> in \<open>fast+\<close>)  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
1706  | 
next  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
1707  | 
fix x  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
1708  | 
assume R: ?rhs  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
1709  | 
then obtain f where f: "\<forall>x. P x (f x)" and f1: "\<And>y. (\<forall>x. P x (y x)) \<Longrightarrow> y = f"  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
1710  | 
by (blast elim: ex1E)  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
1711  | 
show "\<exists>!y. P x y"  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
1712  | 
proof (rule ex1I)  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
1713  | 
show "P x (f x)"  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
1714  | 
using f by blast  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
1715  | 
show "y = f x" if "P x y" for y  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
1716  | 
proof -  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
1717  | 
have "P z (if z = x then y else f z)" for z  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
1718  | 
using f that by (auto split: if_split)  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
1719  | 
with f1 [of "\<lambda>z. if z = x then y else f z"] f  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
1720  | 
show ?thesis  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
1721  | 
by (auto simp add: split: if_split_asm dest: fun_cong)  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
1722  | 
qed  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
1723  | 
qed  | 
| 
 
856c68ab6f13
structured a lot of ancient, horrible proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71517 
diff
changeset
 | 
1724  | 
qed  | 
| 20944 | 1725  | 
|
| 22218 | 1726  | 
lemmas eq_sym_conv = eq_commute  | 
1727  | 
||
| 
23037
 
6c72943a71b1
added a set of NNF normalization lemmas and nnf_conv
 
chaieb 
parents: 
22993 
diff
changeset
 | 
1728  | 
lemma nnf_simps:  | 
| 63575 | 1729  | 
"(\<not> (P \<and> Q)) = (\<not> P \<or> \<not> Q)"  | 
1730  | 
"(\<not> (P \<or> Q)) = (\<not> P \<and> \<not> Q)"  | 
|
1731  | 
"(P \<longrightarrow> Q) = (\<not> P \<or> Q)"  | 
|
1732  | 
"(P = Q) = ((P \<and> Q) \<or> (\<not> P \<and> \<not> Q))"  | 
|
1733  | 
"(\<not> (P = Q)) = ((P \<and> \<not> Q) \<or> (\<not> P \<and> Q))"  | 
|
1734  | 
"(\<not> \<not> P) = P"  | 
|
1735  | 
by blast+  | 
|
1736  | 
||
| 
23037
 
6c72943a71b1
added a set of NNF normalization lemmas and nnf_conv
 
chaieb 
parents: 
22993 
diff
changeset
 | 
1737  | 
|
| 60758 | 1738  | 
subsection \<open>Basic ML bindings\<close>  | 
| 21671 | 1739  | 
|
| 60758 | 1740  | 
ML \<open>  | 
| 22129 | 1741  | 
val FalseE = @{thm FalseE}
 | 
1742  | 
val Let_def = @{thm Let_def}
 | 
|
1743  | 
val TrueI = @{thm TrueI}
 | 
|
1744  | 
val allE = @{thm allE}
 | 
|
1745  | 
val allI = @{thm allI}
 | 
|
1746  | 
val all_dupE = @{thm all_dupE}
 | 
|
1747  | 
val arg_cong = @{thm arg_cong}
 | 
|
1748  | 
val box_equals = @{thm box_equals}
 | 
|
1749  | 
val ccontr = @{thm ccontr}
 | 
|
1750  | 
val classical = @{thm classical}
 | 
|
1751  | 
val conjE = @{thm conjE}
 | 
|
1752  | 
val conjI = @{thm conjI}
 | 
|
1753  | 
val conjunct1 = @{thm conjunct1}
 | 
|
1754  | 
val conjunct2 = @{thm conjunct2}
 | 
|
1755  | 
val disjCI = @{thm disjCI}
 | 
|
1756  | 
val disjE = @{thm disjE}
 | 
|
1757  | 
val disjI1 = @{thm disjI1}
 | 
|
1758  | 
val disjI2 = @{thm disjI2}
 | 
|
1759  | 
val eq_reflection = @{thm eq_reflection}
 | 
|
1760  | 
val ex1E = @{thm ex1E}
 | 
|
1761  | 
val ex1I = @{thm ex1I}
 | 
|
1762  | 
val ex1_implies_ex = @{thm ex1_implies_ex}
 | 
|
1763  | 
val exE = @{thm exE}
 | 
|
1764  | 
val exI = @{thm exI}
 | 
|
1765  | 
val excluded_middle = @{thm excluded_middle}
 | 
|
1766  | 
val ext = @{thm ext}
 | 
|
1767  | 
val fun_cong = @{thm fun_cong}
 | 
|
1768  | 
val iffD1 = @{thm iffD1}
 | 
|
1769  | 
val iffD2 = @{thm iffD2}
 | 
|
1770  | 
val iffI = @{thm iffI}
 | 
|
1771  | 
val impE = @{thm impE}
 | 
|
1772  | 
val impI = @{thm impI}
 | 
|
1773  | 
val meta_eq_to_obj_eq = @{thm meta_eq_to_obj_eq}
 | 
|
1774  | 
val mp = @{thm mp}
 | 
|
1775  | 
val notE = @{thm notE}
 | 
|
1776  | 
val notI = @{thm notI}
 | 
|
1777  | 
val not_all = @{thm not_all}
 | 
|
1778  | 
val not_ex = @{thm not_ex}
 | 
|
1779  | 
val not_iff = @{thm not_iff}
 | 
|
1780  | 
val not_not = @{thm not_not}
 | 
|
1781  | 
val not_sym = @{thm not_sym}
 | 
|
1782  | 
val refl = @{thm refl}
 | 
|
1783  | 
val rev_mp = @{thm rev_mp}
 | 
|
1784  | 
val spec = @{thm spec}
 | 
|
1785  | 
val ssubst = @{thm ssubst}
 | 
|
1786  | 
val subst = @{thm subst}
 | 
|
1787  | 
val sym = @{thm sym}
 | 
|
1788  | 
val trans = @{thm trans}
 | 
|
| 60758 | 1789  | 
\<close>  | 
| 21671 | 1790  | 
|
| 70486 | 1791  | 
locale cnf  | 
1792  | 
begin  | 
|
1793  | 
||
1794  | 
lemma clause2raw_notE: "\<lbrakk>P; \<not>P\<rbrakk> \<Longrightarrow> False" by auto  | 
|
1795  | 
lemma clause2raw_not_disj: "\<lbrakk>\<not> P; \<not> Q\<rbrakk> \<Longrightarrow> \<not> (P \<or> Q)" by auto  | 
|
1796  | 
lemma clause2raw_not_not: "P \<Longrightarrow> \<not>\<not> P" by auto  | 
|
1797  | 
||
1798  | 
lemma iff_refl: "(P::bool) = P" by auto  | 
|
1799  | 
lemma iff_trans: "[| (P::bool) = Q; Q = R |] ==> P = R" by auto  | 
|
1800  | 
lemma conj_cong: "[| P = P'; Q = Q' |] ==> (P \<and> Q) = (P' \<and> Q')" by auto  | 
|
1801  | 
lemma disj_cong: "[| P = P'; Q = Q' |] ==> (P \<or> Q) = (P' \<or> Q')" by auto  | 
|
1802  | 
||
1803  | 
lemma make_nnf_imp: "[| (\<not>P) = P'; Q = Q' |] ==> (P \<longrightarrow> Q) = (P' \<or> Q')" by auto  | 
|
1804  | 
lemma make_nnf_iff: "[| P = P'; (\<not>P) = NP; Q = Q'; (\<not>Q) = NQ |] ==> (P = Q) = ((P' \<or> NQ) \<and> (NP \<or> Q'))" by auto  | 
|
1805  | 
lemma make_nnf_not_false: "(\<not>False) = True" by auto  | 
|
1806  | 
lemma make_nnf_not_true: "(\<not>True) = False" by auto  | 
|
1807  | 
lemma make_nnf_not_conj: "[| (\<not>P) = P'; (\<not>Q) = Q' |] ==> (\<not>(P \<and> Q)) = (P' \<or> Q')" by auto  | 
|
1808  | 
lemma make_nnf_not_disj: "[| (\<not>P) = P'; (\<not>Q) = Q' |] ==> (\<not>(P \<or> Q)) = (P' \<and> Q')" by auto  | 
|
1809  | 
lemma make_nnf_not_imp: "[| P = P'; (\<not>Q) = Q' |] ==> (\<not>(P \<longrightarrow> Q)) = (P' \<and> Q')" by auto  | 
|
1810  | 
lemma make_nnf_not_iff: "[| P = P'; (\<not>P) = NP; Q = Q'; (\<not>Q) = NQ |] ==> (\<not>(P = Q)) = ((P' \<or> Q') \<and> (NP \<or> NQ))" by auto  | 
|
1811  | 
lemma make_nnf_not_not: "P = P' ==> (\<not>\<not>P) = P'" by auto  | 
|
1812  | 
||
1813  | 
lemma simp_TF_conj_True_l: "[| P = True; Q = Q' |] ==> (P \<and> Q) = Q'" by auto  | 
|
1814  | 
lemma simp_TF_conj_True_r: "[| P = P'; Q = True |] ==> (P \<and> Q) = P'" by auto  | 
|
1815  | 
lemma simp_TF_conj_False_l: "P = False ==> (P \<and> Q) = False" by auto  | 
|
1816  | 
lemma simp_TF_conj_False_r: "Q = False ==> (P \<and> Q) = False" by auto  | 
|
1817  | 
lemma simp_TF_disj_True_l: "P = True ==> (P \<or> Q) = True" by auto  | 
|
1818  | 
lemma simp_TF_disj_True_r: "Q = True ==> (P \<or> Q) = True" by auto  | 
|
1819  | 
lemma simp_TF_disj_False_l: "[| P = False; Q = Q' |] ==> (P \<or> Q) = Q'" by auto  | 
|
1820  | 
lemma simp_TF_disj_False_r: "[| P = P'; Q = False |] ==> (P \<or> Q) = P'" by auto  | 
|
1821  | 
||
1822  | 
lemma make_cnf_disj_conj_l: "[| (P \<or> R) = PR; (Q \<or> R) = QR |] ==> ((P \<and> Q) \<or> R) = (PR \<and> QR)" by auto  | 
|
1823  | 
lemma make_cnf_disj_conj_r: "[| (P \<or> Q) = PQ; (P \<or> R) = PR |] ==> (P \<or> (Q \<and> R)) = (PQ \<and> PR)" by auto  | 
|
1824  | 
||
1825  | 
lemma make_cnfx_disj_ex_l: "((\<exists>(x::bool). P x) \<or> Q) = (\<exists>x. P x \<or> Q)" by auto  | 
|
1826  | 
lemma make_cnfx_disj_ex_r: "(P \<or> (\<exists>(x::bool). Q x)) = (\<exists>x. P \<or> Q x)" by auto  | 
|
1827  | 
lemma make_cnfx_newlit: "(P \<or> Q) = (\<exists>x. (P \<or> x) \<and> (Q \<or> \<not>x))" by auto  | 
|
1828  | 
lemma make_cnfx_ex_cong: "(\<forall>(x::bool). P x = Q x) \<Longrightarrow> (\<exists>x. P x) = (\<exists>x. Q x)" by auto  | 
|
1829  | 
||
1830  | 
lemma weakening_thm: "[| P; Q |] ==> Q" by auto  | 
|
1831  | 
||
1832  | 
lemma cnftac_eq_imp: "[| P = Q; P |] ==> Q" by auto  | 
|
1833  | 
||
1834  | 
end  | 
|
1835  | 
||
| 69605 | 1836  | 
ML_file \<open>Tools/cnf.ML\<close>  | 
| 55239 | 1837  | 
|
| 21671 | 1838  | 
|
| 61799 | 1839  | 
section \<open>\<open>NO_MATCH\<close> simproc\<close>  | 
| 
58775
 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 
hoelzl 
parents: 
58659 
diff
changeset
 | 
1840  | 
|
| 60758 | 1841  | 
text \<open>  | 
| 63575 | 1842  | 
The simplification procedure can be used to avoid simplification of terms  | 
1843  | 
of a certain form.  | 
|
| 60758 | 1844  | 
\<close>  | 
| 
58775
 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 
hoelzl 
parents: 
58659 
diff
changeset
 | 
1845  | 
|
| 63575 | 1846  | 
definition NO_MATCH :: "'a \<Rightarrow> 'b \<Rightarrow> bool"  | 
1847  | 
where "NO_MATCH pat val \<equiv> True"  | 
|
| 58830 | 1848  | 
|
| 63575 | 1849  | 
lemma NO_MATCH_cong[cong]: "NO_MATCH pat val = NO_MATCH pat val"  | 
1850  | 
by (rule refl)  | 
|
| 
58775
 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 
hoelzl 
parents: 
58659 
diff
changeset
 | 
1851  | 
|
| 58830 | 1852  | 
declare [[coercion_args NO_MATCH - -]]  | 
1853  | 
||
| 60758 | 1854  | 
simproc_setup NO_MATCH ("NO_MATCH pat val") = \<open>fn _ => fn ctxt => fn ct =>
 | 
| 
58775
 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 
hoelzl 
parents: 
58659 
diff
changeset
 | 
1855  | 
let  | 
| 
 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 
hoelzl 
parents: 
58659 
diff
changeset
 | 
1856  | 
val thy = Proof_Context.theory_of ctxt  | 
| 
 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 
hoelzl 
parents: 
58659 
diff
changeset
 | 
1857  | 
val dest_binop = Term.dest_comb #> apfst (Term.dest_comb #> snd)  | 
| 
 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 
hoelzl 
parents: 
58659 
diff
changeset
 | 
1858  | 
val m = Pattern.matches thy (dest_binop (Thm.term_of ct))  | 
| 
 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 
hoelzl 
parents: 
58659 
diff
changeset
 | 
1859  | 
  in if m then NONE else SOME @{thm NO_MATCH_def} end
 | 
| 60758 | 1860  | 
\<close>  | 
| 
58775
 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 
hoelzl 
parents: 
58659 
diff
changeset
 | 
1861  | 
|
| 60758 | 1862  | 
text \<open>  | 
| 69593 | 1863  | 
This setup ensures that a rewrite rule of the form \<^term>\<open>NO_MATCH pat val \<Longrightarrow> t\<close>  | 
| 63575 | 1864  | 
is only applied, if the pattern \<open>pat\<close> does not match the value \<open>val\<close>.  | 
| 60758 | 1865  | 
\<close>  | 
| 
58775
 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 
hoelzl 
parents: 
58659 
diff
changeset
 | 
1866  | 
|
| 
 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 
hoelzl 
parents: 
58659 
diff
changeset
 | 
1867  | 
|
| 63575 | 1868  | 
text\<open>  | 
1869  | 
Tagging a premise of a simp rule with ASSUMPTION forces the simplifier  | 
|
1870  | 
not to simplify the argument and to solve it by an assumption.  | 
|
1871  | 
\<close>  | 
|
| 61202 | 1872  | 
|
| 63575 | 1873  | 
definition ASSUMPTION :: "bool \<Rightarrow> bool"  | 
1874  | 
where "ASSUMPTION A \<equiv> A"  | 
|
| 61202 | 1875  | 
|
1876  | 
lemma ASSUMPTION_cong[cong]: "ASSUMPTION A = ASSUMPTION A"  | 
|
| 63575 | 1877  | 
by (rule refl)  | 
| 61202 | 1878  | 
|
1879  | 
lemma ASSUMPTION_I: "A \<Longrightarrow> ASSUMPTION A"  | 
|
| 63575 | 1880  | 
by (simp add: ASSUMPTION_def)  | 
| 61202 | 1881  | 
|
1882  | 
lemma ASSUMPTION_D: "ASSUMPTION A \<Longrightarrow> A"  | 
|
| 63575 | 1883  | 
by (simp add: ASSUMPTION_def)  | 
| 61202 | 1884  | 
|
| 61222 | 1885  | 
setup \<open>  | 
| 61202 | 1886  | 
let  | 
1887  | 
val asm_sol = mk_solver "ASSUMPTION" (fn ctxt =>  | 
|
1888  | 
    resolve_tac ctxt [@{thm ASSUMPTION_I}] THEN'
 | 
|
1889  | 
resolve_tac ctxt (Simplifier.prems_of ctxt))  | 
|
1890  | 
in  | 
|
1891  | 
map_theory_simpset (fn ctxt => Simplifier.addSolver (ctxt,asm_sol))  | 
|
1892  | 
end  | 
|
| 61222 | 1893  | 
\<close>  | 
| 61202 | 1894  | 
|
1895  | 
||
| 60758 | 1896  | 
subsection \<open>Code generator setup\<close>  | 
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1897  | 
|
| 60758 | 1898  | 
subsubsection \<open>Generic code generator preprocessor setup\<close>  | 
| 31151 | 1899  | 
|
| 63575 | 1900  | 
lemma conj_left_cong: "P \<longleftrightarrow> Q \<Longrightarrow> P \<and> R \<longleftrightarrow> Q \<and> R"  | 
| 
53146
 
3a93bc5d3370
congruence rules for code_simp to mimic typical non-strict behaviour of conj and disj
 
haftmann 
parents: 
52654 
diff
changeset
 | 
1901  | 
by (fact arg_cong)  | 
| 
 
3a93bc5d3370
congruence rules for code_simp to mimic typical non-strict behaviour of conj and disj
 
haftmann 
parents: 
52654 
diff
changeset
 | 
1902  | 
|
| 63575 | 1903  | 
lemma disj_left_cong: "P \<longleftrightarrow> Q \<Longrightarrow> P \<or> R \<longleftrightarrow> Q \<or> R"  | 
| 
53146
 
3a93bc5d3370
congruence rules for code_simp to mimic typical non-strict behaviour of conj and disj
 
haftmann 
parents: 
52654 
diff
changeset
 | 
1904  | 
by (fact arg_cong)  | 
| 
 
3a93bc5d3370
congruence rules for code_simp to mimic typical non-strict behaviour of conj and disj
 
haftmann 
parents: 
52654 
diff
changeset
 | 
1905  | 
|
| 60758 | 1906  | 
setup \<open>  | 
| 58826 | 1907  | 
Code_Preproc.map_pre (put_simpset HOL_basic_ss) #>  | 
1908  | 
Code_Preproc.map_post (put_simpset HOL_basic_ss) #>  | 
|
1909  | 
Code_Simp.map_ss (put_simpset HOL_basic_ss #>  | 
|
1910  | 
  Simplifier.add_cong @{thm conj_left_cong} #>
 | 
|
1911  | 
  Simplifier.add_cong @{thm disj_left_cong})
 | 
|
| 60758 | 1912  | 
\<close>  | 
| 31151 | 1913  | 
|
| 
53146
 
3a93bc5d3370
congruence rules for code_simp to mimic typical non-strict behaviour of conj and disj
 
haftmann 
parents: 
52654 
diff
changeset
 | 
1914  | 
|
| 60758 | 1915  | 
subsubsection \<open>Equality\<close>  | 
| 
24844
 
98c006a30218
certificates for code generator case expressions
 
haftmann 
parents: 
24842 
diff
changeset
 | 
1916  | 
|
| 
38857
 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 
haftmann 
parents: 
38795 
diff
changeset
 | 
1917  | 
class equal =  | 
| 
 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 
haftmann 
parents: 
38795 
diff
changeset
 | 
1918  | 
fixes equal :: "'a \<Rightarrow> 'a \<Rightarrow> bool"  | 
| 
 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 
haftmann 
parents: 
38795 
diff
changeset
 | 
1919  | 
assumes equal_eq: "equal x y \<longleftrightarrow> x = y"  | 
| 26513 | 1920  | 
begin  | 
1921  | 
||
| 67399 | 1922  | 
lemma equal: "equal = (=)"  | 
| 
38857
 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 
haftmann 
parents: 
38795 
diff
changeset
 | 
1923  | 
by (rule ext equal_eq)+  | 
| 
28346
 
b8390cd56b8f
discontinued special treatment of op = vs. eq_class.eq
 
haftmann 
parents: 
28325 
diff
changeset
 | 
1924  | 
|
| 
38857
 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 
haftmann 
parents: 
38795 
diff
changeset
 | 
1925  | 
lemma equal_refl: "equal x x \<longleftrightarrow> True"  | 
| 
75669
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
74741 
diff
changeset
 | 
1926  | 
unfolding equal by (rule iffI TrueI refl)+  | 
| 
28346
 
b8390cd56b8f
discontinued special treatment of op = vs. eq_class.eq
 
haftmann 
parents: 
28325 
diff
changeset
 | 
1927  | 
|
| 67399 | 1928  | 
lemma eq_equal: "(=) \<equiv> equal"  | 
| 
38857
 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 
haftmann 
parents: 
38795 
diff
changeset
 | 
1929  | 
by (rule eq_reflection) (rule ext, rule ext, rule sym, rule equal_eq)  | 
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1930  | 
|
| 26513 | 1931  | 
end  | 
1932  | 
||
| 
38857
 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 
haftmann 
parents: 
38795 
diff
changeset
 | 
1933  | 
declare eq_equal [symmetric, code_post]  | 
| 
 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 
haftmann 
parents: 
38795 
diff
changeset
 | 
1934  | 
declare eq_equal [code]  | 
| 30966 | 1935  | 
|
| 60758 | 1936  | 
setup \<open>  | 
| 
51717
 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 
wenzelm 
parents: 
51692 
diff
changeset
 | 
1937  | 
Code_Preproc.map_pre (fn ctxt =>  | 
| 61144 | 1938  | 
ctxt addsimprocs  | 
| 69593 | 1939  | 
[Simplifier.make_simproc \<^context> "equal"  | 
1940  | 
        {lhss = [\<^term>\<open>HOL.eq\<close>],
 | 
|
| 61144 | 1941  | 
proc = fn _ => fn _ => fn ct =>  | 
1942  | 
(case Thm.term_of ct of  | 
|
| 69593 | 1943  | 
            Const (_, Type (\<^type_name>\<open>fun\<close>, [Type _, _])) => SOME @{thm eq_equal}
 | 
| 62913 | 1944  | 
| _ => NONE)}])  | 
| 60758 | 1945  | 
\<close>  | 
| 31151 | 1946  | 
|
| 30966 | 1947  | 
|
| 60758 | 1948  | 
subsubsection \<open>Generic code generator foundation\<close>  | 
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1949  | 
|
| 69593 | 1950  | 
text \<open>Datatype \<^typ>\<open>bool\<close>\<close>  | 
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1951  | 
|
| 
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1952  | 
code_datatype True False  | 
| 
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1953  | 
|
| 
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1954  | 
lemma [code]:  | 
| 
33185
 
247f6c6969d9
tuned code setup for primitive boolean connectors
 
haftmann 
parents: 
33084 
diff
changeset
 | 
1955  | 
shows "False \<and> P \<longleftrightarrow> False"  | 
| 
 
247f6c6969d9
tuned code setup for primitive boolean connectors
 
haftmann 
parents: 
33084 
diff
changeset
 | 
1956  | 
and "True \<and> P \<longleftrightarrow> P"  | 
| 
 
247f6c6969d9
tuned code setup for primitive boolean connectors
 
haftmann 
parents: 
33084 
diff
changeset
 | 
1957  | 
and "P \<and> False \<longleftrightarrow> False"  | 
| 63575 | 1958  | 
and "P \<and> True \<longleftrightarrow> P"  | 
1959  | 
by simp_all  | 
|
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1960  | 
|
| 
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1961  | 
lemma [code]:  | 
| 
33185
 
247f6c6969d9
tuned code setup for primitive boolean connectors
 
haftmann 
parents: 
33084 
diff
changeset
 | 
1962  | 
shows "False \<or> P \<longleftrightarrow> P"  | 
| 
 
247f6c6969d9
tuned code setup for primitive boolean connectors
 
haftmann 
parents: 
33084 
diff
changeset
 | 
1963  | 
and "True \<or> P \<longleftrightarrow> True"  | 
| 
 
247f6c6969d9
tuned code setup for primitive boolean connectors
 
haftmann 
parents: 
33084 
diff
changeset
 | 
1964  | 
and "P \<or> False \<longleftrightarrow> P"  | 
| 63575 | 1965  | 
and "P \<or> True \<longleftrightarrow> True"  | 
1966  | 
by simp_all  | 
|
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1967  | 
|
| 
33185
 
247f6c6969d9
tuned code setup for primitive boolean connectors
 
haftmann 
parents: 
33084 
diff
changeset
 | 
1968  | 
lemma [code]:  | 
| 
 
247f6c6969d9
tuned code setup for primitive boolean connectors
 
haftmann 
parents: 
33084 
diff
changeset
 | 
1969  | 
shows "(False \<longrightarrow> P) \<longleftrightarrow> True"  | 
| 
 
247f6c6969d9
tuned code setup for primitive boolean connectors
 
haftmann 
parents: 
33084 
diff
changeset
 | 
1970  | 
and "(True \<longrightarrow> P) \<longleftrightarrow> P"  | 
| 
 
247f6c6969d9
tuned code setup for primitive boolean connectors
 
haftmann 
parents: 
33084 
diff
changeset
 | 
1971  | 
and "(P \<longrightarrow> False) \<longleftrightarrow> \<not> P"  | 
| 63575 | 1972  | 
and "(P \<longrightarrow> True) \<longleftrightarrow> True"  | 
1973  | 
by simp_all  | 
|
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1974  | 
|
| 69593 | 1975  | 
text \<open>More about \<^typ>\<open>prop\<close>\<close>  | 
| 
39421
 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 
haftmann 
parents: 
39403 
diff
changeset
 | 
1976  | 
|
| 
 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 
haftmann 
parents: 
39403 
diff
changeset
 | 
1977  | 
lemma [code nbe]:  | 
| 58826 | 1978  | 
shows "(True \<Longrightarrow> PROP Q) \<equiv> PROP Q"  | 
| 
39421
 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 
haftmann 
parents: 
39403 
diff
changeset
 | 
1979  | 
and "(PROP Q \<Longrightarrow> True) \<equiv> Trueprop True"  | 
| 63575 | 1980  | 
and "(P \<Longrightarrow> R) \<equiv> Trueprop (P \<longrightarrow> R)"  | 
1981  | 
by (auto intro!: equal_intr_rule)  | 
|
| 
39421
 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 
haftmann 
parents: 
39403 
diff
changeset
 | 
1982  | 
|
| 63575 | 1983  | 
lemma Trueprop_code [code]: "Trueprop True \<equiv> Code_Generator.holds"  | 
| 
39421
 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 
haftmann 
parents: 
39403 
diff
changeset
 | 
1984  | 
by (auto intro!: equal_intr_rule holds)  | 
| 
 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 
haftmann 
parents: 
39403 
diff
changeset
 | 
1985  | 
|
| 
 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 
haftmann 
parents: 
39403 
diff
changeset
 | 
1986  | 
declare Trueprop_code [symmetric, code_post]  | 
| 
 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 
haftmann 
parents: 
39403 
diff
changeset
 | 
1987  | 
|
| 60758 | 1988  | 
text \<open>Equality\<close>  | 
| 
39421
 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 
haftmann 
parents: 
39403 
diff
changeset
 | 
1989  | 
|
| 
 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 
haftmann 
parents: 
39403 
diff
changeset
 | 
1990  | 
declare simp_thms(6) [code nbe]  | 
| 
 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 
haftmann 
parents: 
39403 
diff
changeset
 | 
1991  | 
|
| 
38857
 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 
haftmann 
parents: 
38795 
diff
changeset
 | 
1992  | 
instantiation itself :: (type) equal  | 
| 31132 | 1993  | 
begin  | 
1994  | 
||
| 63575 | 1995  | 
definition equal_itself :: "'a itself \<Rightarrow> 'a itself \<Rightarrow> bool"  | 
1996  | 
where "equal_itself x y \<longleftrightarrow> x = y"  | 
|
| 31132 | 1997  | 
|
| 63575 | 1998  | 
instance  | 
1999  | 
by standard (fact equal_itself_def)  | 
|
| 31132 | 2000  | 
|
2001  | 
end  | 
|
2002  | 
||
| 63575 | 2003  | 
lemma equal_itself_code [code]: "equal TYPE('a) TYPE('a) \<longleftrightarrow> True"
 | 
| 
38857
 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 
haftmann 
parents: 
38795 
diff
changeset
 | 
2004  | 
by (simp add: equal)  | 
| 31132 | 2005  | 
|
| 69593 | 2006  | 
setup \<open>Sign.add_const_constraint (\<^const_name>\<open>equal\<close>, SOME \<^typ>\<open>'a::type \<Rightarrow> 'a \<Rightarrow> bool\<close>)\<close>  | 
| 
31956
 
c3844c4d0c2c
more accurate certificates for constant aliasses
 
haftmann 
parents: 
31902 
diff
changeset
 | 
2007  | 
|
| 67399 | 2008  | 
lemma equal_alias_cert: "OFCLASS('a, equal_class) \<equiv> (((=) :: 'a \<Rightarrow> 'a \<Rightarrow> bool) \<equiv> equal)"
 | 
| 63575 | 2009  | 
(is "?ofclass \<equiv> ?equal")  | 
| 
31956
 
c3844c4d0c2c
more accurate certificates for constant aliasses
 
haftmann 
parents: 
31902 
diff
changeset
 | 
2010  | 
proof  | 
| 
 
c3844c4d0c2c
more accurate certificates for constant aliasses
 
haftmann 
parents: 
31902 
diff
changeset
 | 
2011  | 
assume "PROP ?ofclass"  | 
| 
38857
 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 
haftmann 
parents: 
38795 
diff
changeset
 | 
2012  | 
show "PROP ?equal"  | 
| 69593 | 2013  | 
    by (tactic \<open>ALLGOALS (resolve_tac \<^context> [Thm.unconstrainT @{thm eq_equal}])\<close>)
 | 
| 60758 | 2014  | 
(fact \<open>PROP ?ofclass\<close>)  | 
| 
31956
 
c3844c4d0c2c
more accurate certificates for constant aliasses
 
haftmann 
parents: 
31902 
diff
changeset
 | 
2015  | 
next  | 
| 
38857
 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 
haftmann 
parents: 
38795 
diff
changeset
 | 
2016  | 
assume "PROP ?equal"  | 
| 
31956
 
c3844c4d0c2c
more accurate certificates for constant aliasses
 
haftmann 
parents: 
31902 
diff
changeset
 | 
2017  | 
show "PROP ?ofclass" proof  | 
| 60758 | 2018  | 
qed (simp add: \<open>PROP ?equal\<close>)  | 
| 
31956
 
c3844c4d0c2c
more accurate certificates for constant aliasses
 
haftmann 
parents: 
31902 
diff
changeset
 | 
2019  | 
qed  | 
| 
 
c3844c4d0c2c
more accurate certificates for constant aliasses
 
haftmann 
parents: 
31902 
diff
changeset
 | 
2020  | 
|
| 69593 | 2021  | 
setup \<open>Sign.add_const_constraint (\<^const_name>\<open>equal\<close>, SOME \<^typ>\<open>'a::equal \<Rightarrow> 'a \<Rightarrow> bool\<close>)\<close>  | 
| 58826 | 2022  | 
|
| 60758 | 2023  | 
setup \<open>Nbe.add_const_alias @{thm equal_alias_cert}\<close>
 | 
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
2024  | 
|
| 60758 | 2025  | 
text \<open>Cases\<close>  | 
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
2026  | 
|
| 
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
2027  | 
lemma Let_case_cert:  | 
| 
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
2028  | 
assumes "CASE \<equiv> (\<lambda>x. Let x f)"  | 
| 
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
2029  | 
shows "CASE x \<equiv> f x"  | 
| 
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
2030  | 
using assms by simp_all  | 
| 
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
2031  | 
|
| 60758 | 2032  | 
setup \<open>  | 
| 
66251
 
cd935b7cb3fb
proper concept of code declaration wrt. atomicity and Isar declarations
 
haftmann 
parents: 
66109 
diff
changeset
 | 
2033  | 
  Code.declare_case_global @{thm Let_case_cert} #>
 | 
| 69593 | 2034  | 
Code.declare_undefined_global \<^const_name>\<open>undefined\<close>  | 
| 60758 | 2035  | 
\<close>  | 
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
2036  | 
|
| 
54890
 
cb892d835803
fundamental treatment of undefined vs. universally partial replaces code_abort
 
haftmann 
parents: 
54742 
diff
changeset
 | 
2037  | 
declare [[code abort: undefined]]  | 
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
2038  | 
|
| 38972 | 2039  | 
|
| 60758 | 2040  | 
subsubsection \<open>Generic code generator target languages\<close>  | 
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
2041  | 
|
| 69593 | 2042  | 
text \<open>type \<^typ>\<open>bool\<close>\<close>  | 
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
2043  | 
|
| 
52435
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2044  | 
code_printing  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2045  | 
type_constructor bool \<rightharpoonup>  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2046  | 
(SML) "bool" and (OCaml) "bool" and (Haskell) "Bool" and (Scala) "Boolean"  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2047  | 
| constant True \<rightharpoonup>  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2048  | 
(SML) "true" and (OCaml) "true" and (Haskell) "True" and (Scala) "true"  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2049  | 
| constant False \<rightharpoonup>  | 
| 58826 | 2050  | 
(SML) "false" and (OCaml) "false" and (Haskell) "False" and (Scala) "false"  | 
| 34294 | 2051  | 
|
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
2052  | 
code_reserved SML  | 
| 
52435
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2053  | 
bool true false  | 
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
2054  | 
|
| 
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
2055  | 
code_reserved OCaml  | 
| 
52435
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2056  | 
bool  | 
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
2057  | 
|
| 34294 | 2058  | 
code_reserved Scala  | 
2059  | 
Boolean  | 
|
2060  | 
||
| 
52435
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2061  | 
code_printing  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2062  | 
constant Not \<rightharpoonup>  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2063  | 
(SML) "not" and (OCaml) "not" and (Haskell) "not" and (Scala) "'! _"  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2064  | 
| constant HOL.conj \<rightharpoonup>  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2065  | 
(SML) infixl 1 "andalso" and (OCaml) infixl 3 "&&" and (Haskell) infixr 3 "&&" and (Scala) infixl 3 "&&"  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2066  | 
| constant HOL.disj \<rightharpoonup>  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2067  | 
(SML) infixl 0 "orelse" and (OCaml) infixl 2 "||" and (Haskell) infixl 2 "||" and (Scala) infixl 1 "||"  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2068  | 
| constant HOL.implies \<rightharpoonup>  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2069  | 
(SML) "!(if (_)/ then (_)/ else true)"  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2070  | 
and (OCaml) "!(if (_)/ then (_)/ else true)"  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2071  | 
and (Haskell) "!(if (_)/ then (_)/ else True)"  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2072  | 
and (Scala) "!(if ((_))/ (_)/ else true)"  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2073  | 
| constant If \<rightharpoonup>  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2074  | 
(SML) "!(if (_)/ then (_)/ else (_))"  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2075  | 
and (OCaml) "!(if (_)/ then (_)/ else (_))"  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2076  | 
and (Haskell) "!(if (_)/ then (_)/ else (_))"  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2077  | 
and (Scala) "!(if ((_))/ (_)/ else (_))"  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2078  | 
|
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2079  | 
code_reserved SML  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2080  | 
not  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2081  | 
|
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2082  | 
code_reserved OCaml  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2083  | 
not  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2084  | 
|
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2085  | 
code_identifier  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2086  | 
code_module Pure \<rightharpoonup>  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2087  | 
(SML) HOL and (OCaml) HOL and (Haskell) HOL and (Scala) HOL  | 
| 39026 | 2088  | 
|
| 63575 | 2089  | 
text \<open>Using built-in Haskell equality.\<close>  | 
| 
52435
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2090  | 
code_printing  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2091  | 
type_class equal \<rightharpoonup> (Haskell) "Eq"  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2092  | 
| constant HOL.equal \<rightharpoonup> (Haskell) infix 4 "=="  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2093  | 
| constant HOL.eq \<rightharpoonup> (Haskell) infix 4 "=="  | 
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
2094  | 
|
| 63575 | 2095  | 
text \<open>\<open>undefined\<close>\<close>  | 
| 
52435
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2096  | 
code_printing  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2097  | 
constant undefined \<rightharpoonup>  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2098  | 
(SML) "!(raise/ Fail/ \"undefined\")"  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2099  | 
and (OCaml) "failwith/ \"undefined\""  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2100  | 
and (Haskell) "error/ \"undefined\""  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2101  | 
and (Scala) "!sys.error(\"undefined\")"  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
2102  | 
|
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
2103  | 
|
| 60758 | 2104  | 
subsubsection \<open>Evaluation and normalization by evaluation\<close>  | 
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
2105  | 
|
| 60758 | 2106  | 
method_setup eval = \<open>  | 
| 58826 | 2107  | 
let  | 
2108  | 
fun eval_tac ctxt =  | 
|
| 74536 | 2109  | 
let val conv = Code_Runtime.dynamic_holds_conv  | 
| 58839 | 2110  | 
in  | 
| 74536 | 2111  | 
CONVERSION (Conv.params_conv ~1 (Conv.concl_conv ~1 o conv) ctxt) THEN'  | 
| 
59498
 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 
wenzelm 
parents: 
59028 
diff
changeset
 | 
2112  | 
resolve_tac ctxt [TrueI]  | 
| 58839 | 2113  | 
end  | 
| 58826 | 2114  | 
in  | 
2115  | 
Scan.succeed (SIMPLE_METHOD' o eval_tac)  | 
|
2116  | 
end  | 
|
| 60758 | 2117  | 
\<close> "solve goal by evaluation"  | 
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
2118  | 
|
| 60758 | 2119  | 
method_setup normalization = \<open>  | 
| 
46190
 
a42c5f23109f
more conventional eval_tac vs. method_setup "eval";
 
wenzelm 
parents: 
46161 
diff
changeset
 | 
2120  | 
Scan.succeed (fn ctxt =>  | 
| 
 
a42c5f23109f
more conventional eval_tac vs. method_setup "eval";
 
wenzelm 
parents: 
46161 
diff
changeset
 | 
2121  | 
SIMPLE_METHOD'  | 
| 
 
a42c5f23109f
more conventional eval_tac vs. method_setup "eval";
 
wenzelm 
parents: 
46161 
diff
changeset
 | 
2122  | 
(CHANGED_PROP o  | 
| 55757 | 2123  | 
(CONVERSION (Nbe.dynamic_conv ctxt)  | 
| 
59498
 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 
wenzelm 
parents: 
59028 
diff
changeset
 | 
2124  | 
THEN_ALL_NEW (TRY o resolve_tac ctxt [TrueI]))))  | 
| 60758 | 2125  | 
\<close> "solve goal by normalization"  | 
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
2126  | 
|
| 31902 | 2127  | 
|
| 60758 | 2128  | 
subsection \<open>Counterexample Search Units\<close>  | 
| 33084 | 2129  | 
|
| 60758 | 2130  | 
subsubsection \<open>Quickcheck\<close>  | 
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
2131  | 
|
| 33084 | 2132  | 
quickcheck_params [size = 5, iterations = 50]  | 
2133  | 
||
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
2134  | 
|
| 60758 | 2135  | 
subsubsection \<open>Nitpick setup\<close>  | 
| 
30309
 
188f0658af9f
Added a "nitpick_maybe" symbol, which is used by Nitpick. This will go away once Nitpick is part of HOL.
 
blanchet 
parents: 
30254 
diff
changeset
 | 
2136  | 
|
| 59028 | 2137  | 
named_theorems nitpick_unfold "alternative definitions of constants as needed by Nitpick"  | 
2138  | 
and nitpick_simp "equational specification of constants as needed by Nitpick"  | 
|
2139  | 
and nitpick_psimp "partial equational specification of constants as needed by Nitpick"  | 
|
2140  | 
and nitpick_choice_spec "choice specification of constants as needed by Nitpick"  | 
|
| 30980 | 2141  | 
|
| 
41792
 
ff3cb0c418b7
renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
 
blanchet 
parents: 
41636 
diff
changeset
 | 
2142  | 
declare if_bool_eq_conj [nitpick_unfold, no_atp]  | 
| 63575 | 2143  | 
and if_bool_eq_disj [no_atp]  | 
| 
41792
 
ff3cb0c418b7
renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
 
blanchet 
parents: 
41636 
diff
changeset
 | 
2144  | 
|
| 
29863
 
dadad1831e9d
Added "nitpick_const_simps" and "nitpick_ind_intros" attributes for theorems;
 
blanchet 
parents: 
29608 
diff
changeset
 | 
2145  | 
|
| 60758 | 2146  | 
subsection \<open>Preprocessing for the predicate compiler\<close>  | 
| 33084 | 2147  | 
|
| 59028 | 2148  | 
named_theorems code_pred_def "alternative definitions of constants for the Predicate Compiler"  | 
2149  | 
and code_pred_inline "inlining definitions for the Predicate Compiler"  | 
|
2150  | 
and code_pred_simp "simplification rules for the optimisations in the Predicate Compiler"  | 
|
| 33084 | 2151  | 
|
2152  | 
||
| 60758 | 2153  | 
subsection \<open>Legacy tactics and ML bindings\<close>  | 
| 21671 | 2154  | 
|
| 60758 | 2155  | 
ML \<open>  | 
| 58826 | 2156  | 
(* combination of (spec RS spec RS ...(j times) ... spec RS mp) *)  | 
2157  | 
local  | 
|
| 69593 | 2158  | 
fun wrong_prem (Const (\<^const_name>\<open>All\<close>, _) $ Abs (_, _, t)) = wrong_prem t  | 
| 58826 | 2159  | 
| wrong_prem (Bound _) = true  | 
2160  | 
| wrong_prem _ = false;  | 
|
2161  | 
val filter_right = filter (not o wrong_prem o HOLogic.dest_Trueprop o hd o Thm.prems_of);  | 
|
| 61914 | 2162  | 
fun smp i = funpow i (fn m => filter_right ([spec] RL m)) [mp];  | 
| 58826 | 2163  | 
in  | 
| 
59498
 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 
wenzelm 
parents: 
59028 
diff
changeset
 | 
2164  | 
fun smp_tac ctxt j = EVERY' [dresolve_tac ctxt (smp j), assume_tac ctxt];  | 
| 58826 | 2165  | 
end;  | 
| 22839 | 2166  | 
|
| 58826 | 2167  | 
local  | 
2168  | 
val nnf_ss =  | 
|
| 69593 | 2169  | 
      simpset_of (put_simpset HOL_basic_ss \<^context> addsimps @{thms simp_thms nnf_simps});
 | 
| 58826 | 2170  | 
in  | 
2171  | 
fun nnf_conv ctxt = Simplifier.rewrite (put_simpset nnf_ss ctxt);  | 
|
2172  | 
end  | 
|
| 60758 | 2173  | 
\<close>  | 
| 21671 | 2174  | 
|
| 38866 | 2175  | 
hide_const (open) eq equal  | 
2176  | 
||
| 14357 | 2177  | 
end  |