12610
|
1 |
(* Title: ZF/Induct/ListN.thy
|
12088
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
Copyright 1994 University of Cambridge
|
12610
|
5 |
*)
|
12088
|
6 |
|
12610
|
7 |
header {* Lists of n elements *}
|
12088
|
8 |
|
16417
|
9 |
theory ListN imports Main begin
|
12088
|
10 |
|
12610
|
11 |
text {*
|
|
12 |
Inductive definition of lists of @{text n} elements; see
|
|
13 |
\cite{paulin-tlca}.
|
|
14 |
*}
|
|
15 |
|
|
16 |
consts listn :: "i=>i"
|
12088
|
17 |
inductive
|
12610
|
18 |
domains "listn(A)" \<subseteq> "nat \<times> list(A)"
|
12560
|
19 |
intros
|
12610
|
20 |
NilI: "<0,Nil> \<in> listn(A)"
|
12560
|
21 |
ConsI: "[| a \<in> A; <n,l> \<in> listn(A) |] ==> <succ(n), Cons(a,l)> \<in> listn(A)"
|
12610
|
22 |
type_intros nat_typechecks list.intros
|
12560
|
23 |
|
|
24 |
|
|
25 |
lemma list_into_listn: "l \<in> list(A) ==> <length(l),l> \<in> listn(A)"
|
18415
|
26 |
by (induct set: list) (simp_all add: listn.intros)
|
12560
|
27 |
|
|
28 |
lemma listn_iff: "<n,l> \<in> listn(A) <-> l \<in> list(A) & length(l)=n"
|
12610
|
29 |
apply (rule iffI)
|
|
30 |
apply (erule listn.induct)
|
|
31 |
apply auto
|
|
32 |
apply (blast intro: list_into_listn)
|
|
33 |
done
|
12560
|
34 |
|
|
35 |
lemma listn_image_eq: "listn(A)``{n} = {l \<in> list(A). length(l)=n}"
|
12610
|
36 |
apply (rule equality_iffI)
|
|
37 |
apply (simp add: listn_iff separation image_singleton_iff)
|
|
38 |
done
|
12560
|
39 |
|
|
40 |
lemma listn_mono: "A \<subseteq> B ==> listn(A) \<subseteq> listn(B)"
|
12610
|
41 |
apply (unfold listn.defs)
|
|
42 |
apply (rule lfp_mono)
|
|
43 |
apply (rule listn.bnd_mono)+
|
|
44 |
apply (assumption | rule univ_mono Sigma_mono list_mono basic_monos)+
|
|
45 |
done
|
12560
|
46 |
|
|
47 |
lemma listn_append:
|
12610
|
48 |
"[| <n,l> \<in> listn(A); <n',l'> \<in> listn(A) |] ==> <n#+n', l@l'> \<in> listn(A)"
|
|
49 |
apply (erule listn.induct)
|
|
50 |
apply (frule listn.dom_subset [THEN subsetD])
|
|
51 |
apply (simp_all add: listn.intros)
|
|
52 |
done
|
12560
|
53 |
|
12610
|
54 |
inductive_cases
|
|
55 |
Nil_listn_case: "<i,Nil> \<in> listn(A)"
|
|
56 |
and Cons_listn_case: "<i,Cons(x,l)> \<in> listn(A)"
|
12560
|
57 |
|
12610
|
58 |
inductive_cases
|
|
59 |
zero_listn_case: "<0,l> \<in> listn(A)"
|
|
60 |
and succ_listn_case: "<succ(i),l> \<in> listn(A)"
|
12088
|
61 |
|
|
62 |
end
|