| author | nipkow | 
| Fri, 28 Dec 2018 19:00:25 +0100 | |
| changeset 69519 | 0563419bf022 | 
| parent 61394 | 6142b282b164 | 
| child 76213 | e44d86131648 | 
| permissions | -rw-r--r-- | 
| 12776 | 1  | 
(* Title: ZF/AC/Cardinal_aux.thy  | 
2  | 
Author: Krzysztof Grabczewski  | 
|
3  | 
||
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
16417 
diff
changeset
 | 
4  | 
Auxiliary lemmas concerning cardinalities.  | 
| 12776 | 5  | 
*)  | 
6  | 
||
| 16417 | 7  | 
theory Cardinal_aux imports AC_Equiv begin  | 
| 12776 | 8  | 
|
9  | 
lemma Diff_lepoll: "[| A \<lesssim> succ(m); B \<subseteq> A; B\<noteq>0 |] ==> A-B \<lesssim> m"  | 
|
| 12820 | 10  | 
apply (rule not_emptyE, assumption)  | 
| 12776 | 11  | 
apply (blast intro: lepoll_trans [OF subset_imp_lepoll Diff_sing_lepoll])  | 
12  | 
done  | 
|
13  | 
||
14  | 
||
15  | 
(* ********************************************************************** *)  | 
|
16  | 
(* Lemmas involving ordinals and cardinalities used in the proofs *)  | 
|
17  | 
(* concerning AC16 and DC *)  | 
|
18  | 
(* ********************************************************************** *)  | 
|
19  | 
||
20  | 
||
21  | 
(* j=|A| *)  | 
|
22  | 
lemma lepoll_imp_ex_le_eqpoll:  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
36319 
diff
changeset
 | 
23  | 
"[| A \<lesssim> i; Ord(i) |] ==> \<exists>j. j \<le> i & A \<approx> j"  | 
| 
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
36319 
diff
changeset
 | 
24  | 
by (blast intro!: lepoll_cardinal_le well_ord_Memrel  | 
| 12776 | 25  | 
well_ord_cardinal_eqpoll [THEN eqpoll_sym]  | 
| 
13339
 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 
paulson 
parents: 
12820 
diff
changeset
 | 
26  | 
dest: lepoll_well_ord)  | 
| 12776 | 27  | 
|
28  | 
(* j=|A| *)  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
36319 
diff
changeset
 | 
29  | 
lemma lesspoll_imp_ex_lt_eqpoll:  | 
| 12776 | 30  | 
"[| A \<prec> i; Ord(i) |] ==> \<exists>j. j<i & A \<approx> j"  | 
31  | 
by (unfold lesspoll_def, blast dest!: lepoll_imp_ex_le_eqpoll elim!: leE)  | 
|
32  | 
||
33  | 
lemma Un_eqpoll_Inf_Ord:  | 
|
| 47101 | 34  | 
assumes A: "A \<approx> i" and B: "B \<approx> i" and NFI: "\<not> Finite(i)" and i: "Ord(i)"  | 
35  | 
shows "A \<union> B \<approx> i"  | 
|
36  | 
proof (rule eqpollI)  | 
|
37  | 
have AB: "A \<approx> B" using A B by (blast intro: eqpoll_sym eqpoll_trans)  | 
|
38  | 
have "2 \<lesssim> nat"  | 
|
39  | 
by (rule subset_imp_lepoll) (rule OrdmemD [OF nat_2I Ord_nat])  | 
|
40  | 
also have "... \<lesssim> i"  | 
|
41  | 
by (simp add: nat_le_infinite_Ord le_imp_lepoll NFI i)+  | 
|
42  | 
also have "... \<approx> A" by (blast intro: eqpoll_sym A)  | 
|
43  | 
finally have "2 \<lesssim> A" .  | 
|
44  | 
have ICI: "InfCard(|i|)"  | 
|
45  | 
by (simp add: Inf_Card_is_InfCard Finite_cardinal_iff NFI i)  | 
|
46  | 
have "A \<union> B \<lesssim> A + B" by (rule Un_lepoll_sum)  | 
|
47  | 
also have "... \<lesssim> A \<times> B"  | 
|
| 60770 | 48  | 
by (rule lepoll_imp_sum_lepoll_prod [OF AB [THEN eqpoll_imp_lepoll] \<open>2 \<lesssim> A\<close>])  | 
| 47101 | 49  | 
also have "... \<approx> i \<times> i"  | 
50  | 
by (blast intro: prod_eqpoll_cong eqpoll_imp_lepoll A B)  | 
|
51  | 
also have "... \<approx> i"  | 
|
52  | 
by (blast intro: well_ord_InfCard_square_eq well_ord_Memrel ICI i)  | 
|
53  | 
finally show "A \<union> B \<lesssim> i" .  | 
|
54  | 
next  | 
|
55  | 
have "i \<approx> A" by (blast intro: A eqpoll_sym)  | 
|
56  | 
also have "... \<lesssim> A \<union> B" by (blast intro: subset_imp_lepoll)  | 
|
57  | 
finally show "i \<lesssim> A \<union> B" .  | 
|
58  | 
qed  | 
|
| 12776 | 59  | 
|
| 61337 | 60  | 
schematic_goal paired_bij: "?f \<in> bij({{y,z}. y \<in> x}, x)"
 | 
| 12776 | 61  | 
apply (rule RepFun_bijective)  | 
62  | 
apply (simp add: doubleton_eq_iff, blast)  | 
|
63  | 
done  | 
|
64  | 
||
65  | 
lemma paired_eqpoll: "{{y,z}. y \<in> x} \<approx> x"
 | 
|
66  | 
by (unfold eqpoll_def, fast intro!: paired_bij)  | 
|
67  | 
||
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
36319 
diff
changeset
 | 
68  | 
lemma ex_eqpoll_disjoint: "\<exists>B. B \<approx> A & B \<inter> C = 0"  | 
| 12776 | 69  | 
by (fast intro!: paired_eqpoll equals0I elim: mem_asym)  | 
70  | 
||
| 47101 | 71  | 
(*Finally we reach this result. Surely there's a simpler proof?*)  | 
| 12776 | 72  | 
lemma Un_lepoll_Inf_Ord:  | 
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
36319 
diff
changeset
 | 
73  | 
"[| A \<lesssim> i; B \<lesssim> i; ~Finite(i); Ord(i) |] ==> A \<union> B \<lesssim> i"  | 
| 
13339
 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 
paulson 
parents: 
12820 
diff
changeset
 | 
74  | 
apply (rule_tac A1 = i and C1 = i in ex_eqpoll_disjoint [THEN exE])  | 
| 12776 | 75  | 
apply (erule conjE)  | 
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
36319 
diff
changeset
 | 
76  | 
apply (drule lepoll_trans)  | 
| 12776 | 77  | 
apply (erule eqpoll_sym [THEN eqpoll_imp_lepoll])  | 
78  | 
apply (rule Un_lepoll_Un [THEN lepoll_trans], (assumption+))  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
36319 
diff
changeset
 | 
79  | 
apply (blast intro: eqpoll_refl Un_eqpoll_Inf_Ord eqpoll_imp_lepoll)  | 
| 12776 | 80  | 
done  | 
81  | 
||
| 61394 | 82  | 
lemma Least_in_Ord: "[| P(i); i \<in> j; Ord(j) |] ==> (\<mu> i. P(i)) \<in> j"  | 
| 12776 | 83  | 
apply (erule Least_le [THEN leE])  | 
84  | 
apply (erule Ord_in_Ord, assumption)  | 
|
85  | 
apply (erule ltE)  | 
|
86  | 
apply (fast dest: OrdmemD)  | 
|
87  | 
apply (erule subst_elem, assumption)  | 
|
88  | 
done  | 
|
| 1196 | 89  | 
|
| 12776 | 90  | 
lemma Diff_first_lepoll:  | 
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
36319 
diff
changeset
 | 
91  | 
"[| well_ord(x,r); y \<subseteq> x; y \<lesssim> succ(n); n \<in> nat |]  | 
| 12776 | 92  | 
      ==> y - {THE b. first(b,y,r)} \<lesssim> n"
 | 
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
36319 
diff
changeset
 | 
93  | 
apply (case_tac "y=0", simp add: empty_lepollI)  | 
| 12776 | 94  | 
apply (fast intro!: Diff_sing_lepoll the_first_in)  | 
95  | 
done  | 
|
96  | 
||
97  | 
lemma UN_subset_split:  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
36319 
diff
changeset
 | 
98  | 
"(\<Union>x \<in> X. P(x)) \<subseteq> (\<Union>x \<in> X. P(x)-Q(x)) \<union> (\<Union>x \<in> X. Q(x))"  | 
| 12776 | 99  | 
by blast  | 
100  | 
||
101  | 
lemma UN_sing_lepoll: "Ord(a) ==> (\<Union>x \<in> a. {P(x)}) \<lesssim> a"
 | 
|
102  | 
apply (unfold lepoll_def)  | 
|
| 61394 | 103  | 
apply (rule_tac x = "\<lambda>z \<in> (\<Union>x \<in> a. {P (x) }) . (\<mu> i. P (i) =z) " in exI)
 | 
| 12776 | 104  | 
apply (rule_tac d = "%z. P (z) " in lam_injective)  | 
105  | 
apply (fast intro!: Least_in_Ord)  | 
|
106  | 
apply (fast intro: LeastI elim!: Ord_in_Ord)  | 
|
107  | 
done  | 
|
108  | 
||
109  | 
lemma UN_fun_lepoll_lemma [rule_format]:  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
36319 
diff
changeset
 | 
110  | 
"[| well_ord(T, R); ~Finite(a); Ord(a); n \<in> nat |]  | 
| 
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
36319 
diff
changeset
 | 
111  | 
==> \<forall>f. (\<forall>b \<in> a. f`b \<lesssim> n & f`b \<subseteq> T) \<longrightarrow> (\<Union>b \<in> a. f`b) \<lesssim> a"  | 
| 12776 | 112  | 
apply (induct_tac "n")  | 
113  | 
apply (rule allI)  | 
|
114  | 
apply (rule impI)  | 
|
115  | 
apply (rule_tac b = "\<Union>b \<in> a. f`b" in subst)  | 
|
116  | 
apply (rule_tac [2] empty_lepollI)  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
36319 
diff
changeset
 | 
117  | 
apply (rule equals0I [symmetric], clarify)  | 
| 12776 | 118  | 
apply (fast dest: lepoll_0_is_0 [THEN subst])  | 
119  | 
apply (rule allI)  | 
|
120  | 
apply (rule impI)  | 
|
121  | 
apply (erule_tac x = "\<lambda>x \<in> a. f`x - {THE b. first (b,f`x,R) }" in allE)
 | 
|
122  | 
apply (erule impE, simp)  | 
|
123  | 
apply (fast intro!: Diff_first_lepoll, simp)  | 
|
124  | 
apply (rule UN_subset_split [THEN subset_imp_lepoll, THEN lepoll_trans])  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
36319 
diff
changeset
 | 
125  | 
apply (fast intro: Un_lepoll_Inf_Ord UN_sing_lepoll)  | 
| 12776 | 126  | 
done  | 
127  | 
||
128  | 
lemma UN_fun_lepoll:  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
36319 
diff
changeset
 | 
129  | 
"[| \<forall>b \<in> a. f`b \<lesssim> n & f`b \<subseteq> T; well_ord(T, R);  | 
| 12776 | 130  | 
~Finite(a); Ord(a); n \<in> nat |] ==> (\<Union>b \<in> a. f`b) \<lesssim> a"  | 
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
36319 
diff
changeset
 | 
131  | 
by (blast intro: UN_fun_lepoll_lemma)  | 
| 12776 | 132  | 
|
133  | 
lemma UN_lepoll:  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
36319 
diff
changeset
 | 
134  | 
"[| \<forall>b \<in> a. F(b) \<lesssim> n & F(b) \<subseteq> T; well_ord(T, R);  | 
| 
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
36319 
diff
changeset
 | 
135  | 
~Finite(a); Ord(a); n \<in> nat |]  | 
| 12776 | 136  | 
==> (\<Union>b \<in> a. F(b)) \<lesssim> a"  | 
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
36319 
diff
changeset
 | 
137  | 
apply (rule rev_mp)  | 
| 12820 | 138  | 
apply (rule_tac f="\<lambda>b \<in> a. F (b)" in UN_fun_lepoll)  | 
| 12776 | 139  | 
apply auto  | 
140  | 
done  | 
|
141  | 
||
142  | 
lemma UN_eq_UN_Diffs:  | 
|
143  | 
"Ord(a) ==> (\<Union>b \<in> a. F(b)) = (\<Union>b \<in> a. F(b) - (\<Union>c \<in> b. F(c)))"  | 
|
144  | 
apply (rule equalityI)  | 
|
145  | 
prefer 2 apply fast  | 
|
146  | 
apply (rule subsetI)  | 
|
147  | 
apply (erule UN_E)  | 
|
148  | 
apply (rule UN_I)  | 
|
149  | 
apply (rule_tac P = "%z. x \<in> F (z) " in Least_in_Ord, (assumption+))  | 
|
150  | 
apply (rule DiffI, best intro: Ord_in_Ord LeastI, clarify)  | 
|
| 
13339
 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 
paulson 
parents: 
12820 
diff
changeset
 | 
151  | 
apply (erule_tac P = "%z. x \<in> F (z) " and i = c in less_LeastE)  | 
| 12776 | 152  | 
apply (blast intro: Ord_Least ltI)  | 
153  | 
done  | 
|
154  | 
||
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
36319 
diff
changeset
 | 
155  | 
lemma lepoll_imp_eqpoll_subset:  | 
| 12776 | 156  | 
"a \<lesssim> X ==> \<exists>Y. Y \<subseteq> X & a \<approx> Y"  | 
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
36319 
diff
changeset
 | 
157  | 
apply (unfold lepoll_def eqpoll_def, clarify)  | 
| 12776 | 158  | 
apply (blast intro: restrict_bij  | 
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
36319 
diff
changeset
 | 
159  | 
dest: inj_is_fun [THEN fun_is_rel, THEN image_subset])  | 
| 12776 | 160  | 
done  | 
161  | 
||
162  | 
(* ********************************************************************** *)  | 
|
163  | 
(* Diff_lesspoll_eqpoll_Card *)  | 
|
164  | 
(* ********************************************************************** *)  | 
|
165  | 
||
166  | 
lemma Diff_lesspoll_eqpoll_Card_lemma:  | 
|
167  | 
"[| A\<approx>a; ~Finite(a); Card(a); B \<prec> a; A-B \<prec> a |] ==> P"  | 
|
168  | 
apply (elim lesspoll_imp_ex_lt_eqpoll [THEN exE] Card_is_Ord conjE)  | 
|
169  | 
apply (frule_tac j=xa in Un_upper1_le [OF lt_Ord lt_Ord], assumption)  | 
|
170  | 
apply (frule_tac j=xa in Un_upper2_le [OF lt_Ord lt_Ord], assumption)  | 
|
171  | 
apply (drule Un_least_lt, assumption)  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
36319 
diff
changeset
 | 
172  | 
apply (drule eqpoll_imp_lepoll [THEN lepoll_trans],  | 
| 12776 | 173  | 
rule le_imp_lepoll, assumption)+  | 
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
36319 
diff
changeset
 | 
174  | 
apply (case_tac "Finite(x \<union> xa)")  | 
| 60770 | 175  | 
txt\<open>finite case\<close>  | 
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
36319 
diff
changeset
 | 
176  | 
apply (drule Finite_Un [OF lepoll_Finite lepoll_Finite], assumption+)  | 
| 12776 | 177  | 
apply (drule subset_Un_Diff [THEN subset_imp_lepoll, THEN lepoll_Finite])  | 
178  | 
apply (fast dest: eqpoll_sym [THEN eqpoll_imp_lepoll, THEN lepoll_Finite])  | 
|
| 60770 | 179  | 
txt\<open>infinite case\<close>  | 
| 12776 | 180  | 
apply (drule Un_lepoll_Inf_Ord, (assumption+))  | 
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
36319 
diff
changeset
 | 
181  | 
apply (blast intro: le_Ord2)  | 
| 
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
36319 
diff
changeset
 | 
182  | 
apply (drule lesspoll_trans1  | 
| 
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
36319 
diff
changeset
 | 
183  | 
[OF subset_Un_Diff [THEN subset_imp_lepoll, THEN lepoll_trans]  | 
| 12776 | 184  | 
lt_Card_imp_lesspoll], assumption+)  | 
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
36319 
diff
changeset
 | 
185  | 
apply (simp add: lesspoll_def)  | 
| 12776 | 186  | 
done  | 
187  | 
||
188  | 
lemma Diff_lesspoll_eqpoll_Card:  | 
|
189  | 
"[| A \<approx> a; ~Finite(a); Card(a); B \<prec> a |] ==> A - B \<approx> a"  | 
|
190  | 
apply (rule ccontr)  | 
|
191  | 
apply (rule Diff_lesspoll_eqpoll_Card_lemma, (assumption+))  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
36319 
diff
changeset
 | 
192  | 
apply (blast intro: lesspoll_def [THEN def_imp_iff, THEN iffD2]  | 
| 12776 | 193  | 
subset_imp_lepoll eqpoll_imp_lepoll lepoll_trans)  | 
194  | 
done  | 
|
195  | 
||
196  | 
end  |