author | wenzelm |
Thu, 21 Oct 1999 18:46:33 +0200 | |
changeset 7906 | 0576dad973b1 |
parent 7064 | b053e0ab9f60 |
child 8555 | 17325ee838ab |
permissions | -rw-r--r-- |
2608 | 1 |
(* Title: HOL/NatDef.ML |
2 |
ID: $Id$ |
|
3 |
Author: Tobias Nipkow, Cambridge University Computer Laboratory |
|
4 |
Copyright 1991 University of Cambridge |
|
5 |
*) |
|
6 |
||
5069 | 7 |
Goal "mono(%X. {Zero_Rep} Un (Suc_Rep``X))"; |
2608 | 8 |
by (REPEAT (ares_tac [monoI, subset_refl, image_mono, Un_mono] 1)); |
9 |
qed "Nat_fun_mono"; |
|
10 |
||
11 |
val Nat_unfold = Nat_fun_mono RS (Nat_def RS def_lfp_Tarski); |
|
12 |
||
13 |
(* Zero is a natural number -- this also justifies the type definition*) |
|
5069 | 14 |
Goal "Zero_Rep: Nat"; |
2608 | 15 |
by (stac Nat_unfold 1); |
16 |
by (rtac (singletonI RS UnI1) 1); |
|
17 |
qed "Zero_RepI"; |
|
18 |
||
5316 | 19 |
Goal "i: Nat ==> Suc_Rep(i) : Nat"; |
2608 | 20 |
by (stac Nat_unfold 1); |
21 |
by (rtac (imageI RS UnI2) 1); |
|
5316 | 22 |
by (assume_tac 1); |
2608 | 23 |
qed "Suc_RepI"; |
24 |
||
25 |
(*** Induction ***) |
|
26 |
||
5316 | 27 |
val major::prems = Goal |
2608 | 28 |
"[| i: Nat; P(Zero_Rep); \ |
29 |
\ !!j. [| j: Nat; P(j) |] ==> P(Suc_Rep(j)) |] ==> P(i)"; |
|
30 |
by (rtac ([Nat_def, Nat_fun_mono, major] MRS def_induct) 1); |
|
4089 | 31 |
by (blast_tac (claset() addIs prems) 1); |
2608 | 32 |
qed "Nat_induct"; |
33 |
||
5316 | 34 |
val prems = Goalw [Zero_def,Suc_def] |
2608 | 35 |
"[| P(0); \ |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3023
diff
changeset
|
36 |
\ !!n. P(n) ==> P(Suc(n)) |] ==> P(n)"; |
2608 | 37 |
by (rtac (Rep_Nat_inverse RS subst) 1); (*types force good instantiation*) |
38 |
by (rtac (Rep_Nat RS Nat_induct) 1); |
|
39 |
by (REPEAT (ares_tac prems 1 |
|
40 |
ORELSE eresolve_tac [Abs_Nat_inverse RS subst] 1)); |
|
41 |
qed "nat_induct"; |
|
42 |
||
43 |
(*Perform induction on n. *) |
|
5187
55f07169cf5f
Removed nat_case, nat_rec, and natE (now provided by datatype
berghofe
parents:
5148
diff
changeset
|
44 |
fun nat_ind_tac a i = |
55f07169cf5f
Removed nat_case, nat_rec, and natE (now provided by datatype
berghofe
parents:
5148
diff
changeset
|
45 |
res_inst_tac [("n",a)] nat_induct i THEN rename_last_tac a [""] (i+1); |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3023
diff
changeset
|
46 |
|
2608 | 47 |
(*A special form of induction for reasoning about m<n and m-n*) |
5316 | 48 |
val prems = Goal |
2608 | 49 |
"[| !!x. P x 0; \ |
50 |
\ !!y. P 0 (Suc y); \ |
|
51 |
\ !!x y. [| P x y |] ==> P (Suc x) (Suc y) \ |
|
52 |
\ |] ==> P m n"; |
|
53 |
by (res_inst_tac [("x","m")] spec 1); |
|
54 |
by (nat_ind_tac "n" 1); |
|
55 |
by (rtac allI 2); |
|
56 |
by (nat_ind_tac "x" 2); |
|
57 |
by (REPEAT (ares_tac (prems@[allI]) 1 ORELSE etac spec 1)); |
|
58 |
qed "diff_induct"; |
|
59 |
||
60 |
(*** Isomorphisms: Abs_Nat and Rep_Nat ***) |
|
61 |
||
62 |
(*We can't take these properties as axioms, or take Abs_Nat==Inv(Rep_Nat), |
|
63 |
since we assume the isomorphism equations will one day be given by Isabelle*) |
|
64 |
||
5069 | 65 |
Goal "inj(Rep_Nat)"; |
2608 | 66 |
by (rtac inj_inverseI 1); |
67 |
by (rtac Rep_Nat_inverse 1); |
|
68 |
qed "inj_Rep_Nat"; |
|
69 |
||
5069 | 70 |
Goal "inj_on Abs_Nat Nat"; |
4830 | 71 |
by (rtac inj_on_inverseI 1); |
2608 | 72 |
by (etac Abs_Nat_inverse 1); |
4830 | 73 |
qed "inj_on_Abs_Nat"; |
2608 | 74 |
|
75 |
(*** Distinctness of constructors ***) |
|
76 |
||
5069 | 77 |
Goalw [Zero_def,Suc_def] "Suc(m) ~= 0"; |
4830 | 78 |
by (rtac (inj_on_Abs_Nat RS inj_on_contraD) 1); |
2608 | 79 |
by (rtac Suc_Rep_not_Zero_Rep 1); |
80 |
by (REPEAT (resolve_tac [Rep_Nat, Suc_RepI, Zero_RepI] 1)); |
|
81 |
qed "Suc_not_Zero"; |
|
82 |
||
83 |
bind_thm ("Zero_not_Suc", Suc_not_Zero RS not_sym); |
|
84 |
||
85 |
AddIffs [Suc_not_Zero,Zero_not_Suc]; |
|
86 |
||
87 |
bind_thm ("Suc_neq_Zero", (Suc_not_Zero RS notE)); |
|
88 |
val Zero_neq_Suc = sym RS Suc_neq_Zero; |
|
89 |
||
90 |
(** Injectiveness of Suc **) |
|
91 |
||
5069 | 92 |
Goalw [Suc_def] "inj(Suc)"; |
2608 | 93 |
by (rtac injI 1); |
4830 | 94 |
by (dtac (inj_on_Abs_Nat RS inj_onD) 1); |
2608 | 95 |
by (REPEAT (resolve_tac [Rep_Nat, Suc_RepI] 1)); |
96 |
by (dtac (inj_Suc_Rep RS injD) 1); |
|
97 |
by (etac (inj_Rep_Nat RS injD) 1); |
|
98 |
qed "inj_Suc"; |
|
99 |
||
100 |
val Suc_inject = inj_Suc RS injD; |
|
101 |
||
5069 | 102 |
Goal "(Suc(m)=Suc(n)) = (m=n)"; |
2608 | 103 |
by (EVERY1 [rtac iffI, etac Suc_inject, etac arg_cong]); |
104 |
qed "Suc_Suc_eq"; |
|
105 |
||
106 |
AddIffs [Suc_Suc_eq]; |
|
107 |
||
5069 | 108 |
Goal "n ~= Suc(n)"; |
2608 | 109 |
by (nat_ind_tac "n" 1); |
110 |
by (ALLGOALS Asm_simp_tac); |
|
111 |
qed "n_not_Suc_n"; |
|
112 |
||
113 |
bind_thm ("Suc_n_not_n", n_not_Suc_n RS not_sym); |
|
114 |
||
5187
55f07169cf5f
Removed nat_case, nat_rec, and natE (now provided by datatype
berghofe
parents:
5148
diff
changeset
|
115 |
(*** Basic properties of "less than" ***) |
2608 | 116 |
|
5069 | 117 |
Goalw [wf_def, pred_nat_def] "wf(pred_nat)"; |
3718 | 118 |
by (Clarify_tac 1); |
2608 | 119 |
by (nat_ind_tac "x" 1); |
3236 | 120 |
by (ALLGOALS Blast_tac); |
2608 | 121 |
qed "wf_pred_nat"; |
122 |
||
3378 | 123 |
(*Used in TFL/post.sml*) |
5069 | 124 |
Goalw [less_def] "(m,n) : pred_nat^+ = (m<n)"; |
3378 | 125 |
by (rtac refl 1); |
126 |
qed "less_eq"; |
|
127 |
||
2608 | 128 |
(** Introduction properties **) |
129 |
||
5316 | 130 |
Goalw [less_def] "[| i<j; j<k |] ==> i<(k::nat)"; |
2608 | 131 |
by (rtac (trans_trancl RS transD) 1); |
5316 | 132 |
by (assume_tac 1); |
133 |
by (assume_tac 1); |
|
2608 | 134 |
qed "less_trans"; |
135 |
||
5069 | 136 |
Goalw [less_def, pred_nat_def] "n < Suc(n)"; |
4089 | 137 |
by (simp_tac (simpset() addsimps [r_into_trancl]) 1); |
2608 | 138 |
qed "lessI"; |
139 |
AddIffs [lessI]; |
|
140 |
||
141 |
(* i<j ==> i<Suc(j) *) |
|
142 |
bind_thm("less_SucI", lessI RSN (2, less_trans)); |
|
143 |
Addsimps [less_SucI]; |
|
144 |
||
5069 | 145 |
Goal "0 < Suc(n)"; |
2608 | 146 |
by (nat_ind_tac "n" 1); |
147 |
by (rtac lessI 1); |
|
148 |
by (etac less_trans 1); |
|
149 |
by (rtac lessI 1); |
|
150 |
qed "zero_less_Suc"; |
|
151 |
AddIffs [zero_less_Suc]; |
|
152 |
||
153 |
(** Elimination properties **) |
|
154 |
||
5316 | 155 |
Goalw [less_def] "n<m ==> ~ m<(n::nat)"; |
156 |
by (blast_tac (claset() addIs [wf_pred_nat, wf_trancl RS wf_asym])1); |
|
2608 | 157 |
qed "less_not_sym"; |
158 |
||
5474
a2109bb8ce2b
well-formed asym rules; also adds less_irrefl, le_refl since order_refl
paulson
parents:
5354
diff
changeset
|
159 |
(* [| n<m; ~P ==> m<n |] ==> P *) |
a2109bb8ce2b
well-formed asym rules; also adds less_irrefl, le_refl since order_refl
paulson
parents:
5354
diff
changeset
|
160 |
bind_thm ("less_asym", less_not_sym RS swap); |
2608 | 161 |
|
5069 | 162 |
Goalw [less_def] "~ n<(n::nat)"; |
2608 | 163 |
by (rtac notI 1); |
164 |
by (etac (wf_pred_nat RS wf_trancl RS wf_irrefl) 1); |
|
165 |
qed "less_not_refl"; |
|
166 |
||
167 |
(* n<n ==> R *) |
|
168 |
bind_thm ("less_irrefl", (less_not_refl RS notE)); |
|
5474
a2109bb8ce2b
well-formed asym rules; also adds less_irrefl, le_refl since order_refl
paulson
parents:
5354
diff
changeset
|
169 |
AddSEs [less_irrefl]; |
2608 | 170 |
|
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5132
diff
changeset
|
171 |
Goal "n<m ==> m ~= (n::nat)"; |
5474
a2109bb8ce2b
well-formed asym rules; also adds less_irrefl, le_refl since order_refl
paulson
parents:
5354
diff
changeset
|
172 |
by (Blast_tac 1); |
2608 | 173 |
qed "less_not_refl2"; |
174 |
||
5354
da63d9b35caf
new theorems; adds [le_refl, less_imp_le] as simprules
paulson
parents:
5316
diff
changeset
|
175 |
(* s < t ==> s ~= t *) |
da63d9b35caf
new theorems; adds [le_refl, less_imp_le] as simprules
paulson
parents:
5316
diff
changeset
|
176 |
bind_thm ("less_not_refl3", less_not_refl2 RS not_sym); |
da63d9b35caf
new theorems; adds [le_refl, less_imp_le] as simprules
paulson
parents:
5316
diff
changeset
|
177 |
|
2608 | 178 |
|
5316 | 179 |
val major::prems = Goalw [less_def, pred_nat_def] |
2608 | 180 |
"[| i<k; k=Suc(i) ==> P; !!j. [| i<j; k=Suc(j) |] ==> P \ |
181 |
\ |] ==> P"; |
|
182 |
by (rtac (major RS tranclE) 1); |
|
3236 | 183 |
by (ALLGOALS Full_simp_tac); |
2608 | 184 |
by (REPEAT_FIRST (bound_hyp_subst_tac ORELSE' |
3236 | 185 |
eresolve_tac (prems@[asm_rl, Pair_inject]))); |
2608 | 186 |
qed "lessE"; |
187 |
||
5069 | 188 |
Goal "~ n<0"; |
2608 | 189 |
by (rtac notI 1); |
190 |
by (etac lessE 1); |
|
191 |
by (etac Zero_neq_Suc 1); |
|
192 |
by (etac Zero_neq_Suc 1); |
|
193 |
qed "not_less0"; |
|
194 |
||
195 |
AddIffs [not_less0]; |
|
196 |
||
197 |
(* n<0 ==> R *) |
|
198 |
bind_thm ("less_zeroE", not_less0 RS notE); |
|
199 |
||
5316 | 200 |
val [major,less,eq] = Goal |
2608 | 201 |
"[| m < Suc(n); m<n ==> P; m=n ==> P |] ==> P"; |
202 |
by (rtac (major RS lessE) 1); |
|
203 |
by (rtac eq 1); |
|
2891 | 204 |
by (Blast_tac 1); |
2608 | 205 |
by (rtac less 1); |
2891 | 206 |
by (Blast_tac 1); |
2608 | 207 |
qed "less_SucE"; |
208 |
||
5069 | 209 |
Goal "(m < Suc(n)) = (m < n | m = n)"; |
4089 | 210 |
by (blast_tac (claset() addSEs [less_SucE] addIs [less_trans]) 1); |
2608 | 211 |
qed "less_Suc_eq"; |
212 |
||
5069 | 213 |
Goal "(n<1) = (n=0)"; |
4089 | 214 |
by (simp_tac (simpset() addsimps [less_Suc_eq]) 1); |
3484
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
nipkow
parents:
3457
diff
changeset
|
215 |
qed "less_one"; |
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
nipkow
parents:
3457
diff
changeset
|
216 |
AddIffs [less_one]; |
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
nipkow
parents:
3457
diff
changeset
|
217 |
|
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5132
diff
changeset
|
218 |
Goal "m<n ==> Suc(m) < Suc(n)"; |
2608 | 219 |
by (etac rev_mp 1); |
220 |
by (nat_ind_tac "n" 1); |
|
5474
a2109bb8ce2b
well-formed asym rules; also adds less_irrefl, le_refl since order_refl
paulson
parents:
5354
diff
changeset
|
221 |
by (ALLGOALS (fast_tac (claset() addEs [less_trans, lessE]))); |
2608 | 222 |
qed "Suc_mono"; |
223 |
||
224 |
(*"Less than" is a linear ordering*) |
|
5069 | 225 |
Goal "m<n | m=n | n<(m::nat)"; |
2608 | 226 |
by (nat_ind_tac "m" 1); |
227 |
by (nat_ind_tac "n" 1); |
|
228 |
by (rtac (refl RS disjI1 RS disjI2) 1); |
|
229 |
by (rtac (zero_less_Suc RS disjI1) 1); |
|
4089 | 230 |
by (blast_tac (claset() addIs [Suc_mono, less_SucI] addEs [lessE]) 1); |
2608 | 231 |
qed "less_linear"; |
232 |
||
5069 | 233 |
Goal "!!m::nat. (m ~= n) = (m<n | n<m)"; |
4737 | 234 |
by (cut_facts_tac [less_linear] 1); |
5500 | 235 |
by (Blast_tac 1); |
4737 | 236 |
qed "nat_neq_iff"; |
237 |
||
7030 | 238 |
val [major,eqCase,lessCase] = Goal |
239 |
"[| (m::nat)<n ==> P n m; m=n ==> P n m; n<m ==> P n m |] ==> P n m"; |
|
240 |
by (rtac (less_linear RS disjE) 1); |
|
241 |
by (etac disjE 2); |
|
242 |
by (etac lessCase 1); |
|
243 |
by (etac (sym RS eqCase) 1); |
|
244 |
by (etac major 1); |
|
245 |
qed "nat_less_cases"; |
|
2608 | 246 |
|
4745 | 247 |
|
248 |
(** Inductive (?) properties **) |
|
249 |
||
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5132
diff
changeset
|
250 |
Goal "[| m<n; Suc m ~= n |] ==> Suc(m) < n"; |
4745 | 251 |
by (full_simp_tac (simpset() addsimps [nat_neq_iff]) 1); |
252 |
by (blast_tac (claset() addSEs [less_irrefl, less_SucE] addEs [less_asym]) 1); |
|
253 |
qed "Suc_lessI"; |
|
254 |
||
5316 | 255 |
Goal "Suc(m) < n ==> m<n"; |
256 |
by (etac rev_mp 1); |
|
4745 | 257 |
by (nat_ind_tac "n" 1); |
258 |
by (ALLGOALS (fast_tac (claset() addSIs [lessI RS less_SucI] |
|
259 |
addEs [less_trans, lessE]))); |
|
260 |
qed "Suc_lessD"; |
|
261 |
||
5316 | 262 |
val [major,minor] = Goal |
4745 | 263 |
"[| Suc(i)<k; !!j. [| i<j; k=Suc(j) |] ==> P \ |
264 |
\ |] ==> P"; |
|
265 |
by (rtac (major RS lessE) 1); |
|
266 |
by (etac (lessI RS minor) 1); |
|
267 |
by (etac (Suc_lessD RS minor) 1); |
|
268 |
by (assume_tac 1); |
|
269 |
qed "Suc_lessE"; |
|
270 |
||
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5132
diff
changeset
|
271 |
Goal "Suc(m) < Suc(n) ==> m<n"; |
4745 | 272 |
by (blast_tac (claset() addEs [lessE, make_elim Suc_lessD]) 1); |
273 |
qed "Suc_less_SucD"; |
|
274 |
||
275 |
||
5069 | 276 |
Goal "(Suc(m) < Suc(n)) = (m<n)"; |
4745 | 277 |
by (EVERY1 [rtac iffI, etac Suc_less_SucD, etac Suc_mono]); |
278 |
qed "Suc_less_eq"; |
|
279 |
Addsimps [Suc_less_eq]; |
|
280 |
||
6109 | 281 |
(*Goal "~(Suc(n) < n)"; |
4745 | 282 |
by (blast_tac (claset() addEs [Suc_lessD RS less_irrefl]) 1); |
283 |
qed "not_Suc_n_less_n"; |
|
6109 | 284 |
Addsimps [not_Suc_n_less_n];*) |
4745 | 285 |
|
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5132
diff
changeset
|
286 |
Goal "i<j ==> j<k --> Suc i < k"; |
4745 | 287 |
by (nat_ind_tac "k" 1); |
288 |
by (ALLGOALS (asm_simp_tac (simpset()))); |
|
289 |
by (asm_simp_tac (simpset() addsimps [less_Suc_eq]) 1); |
|
290 |
by (blast_tac (claset() addDs [Suc_lessD]) 1); |
|
291 |
qed_spec_mp "less_trans_Suc"; |
|
292 |
||
2608 | 293 |
(*Can be used with less_Suc_eq to get n=m | n<m *) |
5069 | 294 |
Goal "(~ m < n) = (n < Suc(m))"; |
2608 | 295 |
by (res_inst_tac [("m","m"),("n","n")] diff_induct 1); |
296 |
by (ALLGOALS Asm_simp_tac); |
|
297 |
qed "not_less_eq"; |
|
298 |
||
299 |
(*Complete induction, aka course-of-values induction*) |
|
5316 | 300 |
val prems = Goalw [less_def] |
2608 | 301 |
"[| !!n. [| ! m::nat. m<n --> P(m) |] ==> P(n) |] ==> P(n)"; |
302 |
by (wf_ind_tac "n" [wf_pred_nat RS wf_trancl] 1); |
|
303 |
by (eresolve_tac prems 1); |
|
304 |
qed "less_induct"; |
|
305 |
||
306 |
(*** Properties of <= ***) |
|
307 |
||
5500 | 308 |
(*Was le_eq_less_Suc, but this orientation is more useful*) |
309 |
Goalw [le_def] "(m < Suc n) = (m <= n)"; |
|
310 |
by (rtac (not_less_eq RS sym) 1); |
|
311 |
qed "less_Suc_eq_le"; |
|
2608 | 312 |
|
3343 | 313 |
(* m<=n ==> m < Suc n *) |
5500 | 314 |
bind_thm ("le_imp_less_Suc", less_Suc_eq_le RS iffD2); |
3343 | 315 |
|
5069 | 316 |
Goalw [le_def] "0 <= n"; |
2608 | 317 |
by (rtac not_less0 1); |
318 |
qed "le0"; |
|
6075 | 319 |
AddIffs [le0]; |
2608 | 320 |
|
5069 | 321 |
Goalw [le_def] "~ Suc n <= n"; |
2608 | 322 |
by (Simp_tac 1); |
323 |
qed "Suc_n_not_le_n"; |
|
324 |
||
5069 | 325 |
Goalw [le_def] "(i <= 0) = (i = 0)"; |
2608 | 326 |
by (nat_ind_tac "i" 1); |
327 |
by (ALLGOALS Asm_simp_tac); |
|
328 |
qed "le_0_eq"; |
|
4614 | 329 |
AddIffs [le_0_eq]; |
2608 | 330 |
|
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5132
diff
changeset
|
331 |
Goal "(m <= Suc(n)) = (m<=n | m = Suc n)"; |
5500 | 332 |
by (simp_tac (simpset() delsimps [less_Suc_eq_le] |
333 |
addsimps [less_Suc_eq_le RS sym, less_Suc_eq]) 1); |
|
3355 | 334 |
qed "le_Suc_eq"; |
335 |
||
4614 | 336 |
(* [| m <= Suc n; m <= n ==> R; m = Suc n ==> R |] ==> R *) |
337 |
bind_thm ("le_SucE", le_Suc_eq RS iffD1 RS disjE); |
|
338 |
||
5316 | 339 |
Goalw [le_def] "~n<m ==> m<=(n::nat)"; |
340 |
by (assume_tac 1); |
|
2608 | 341 |
qed "leI"; |
342 |
||
5316 | 343 |
Goalw [le_def] "m<=n ==> ~ n < (m::nat)"; |
344 |
by (assume_tac 1); |
|
2608 | 345 |
qed "leD"; |
346 |
||
347 |
val leE = make_elim leD; |
|
348 |
||
5069 | 349 |
Goal "(~n<m) = (m<=(n::nat))"; |
4089 | 350 |
by (blast_tac (claset() addIs [leI] addEs [leE]) 1); |
2608 | 351 |
qed "not_less_iff_le"; |
352 |
||
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5132
diff
changeset
|
353 |
Goalw [le_def] "~ m <= n ==> n<(m::nat)"; |
2891 | 354 |
by (Blast_tac 1); |
2608 | 355 |
qed "not_leE"; |
356 |
||
5069 | 357 |
Goalw [le_def] "(~n<=m) = (m<(n::nat))"; |
4599 | 358 |
by (Simp_tac 1); |
359 |
qed "not_le_iff_less"; |
|
360 |
||
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5132
diff
changeset
|
361 |
Goalw [le_def] "m < n ==> Suc(m) <= n"; |
4089 | 362 |
by (simp_tac (simpset() addsimps [less_Suc_eq]) 1); |
363 |
by (blast_tac (claset() addSEs [less_irrefl,less_asym]) 1); |
|
3343 | 364 |
qed "Suc_leI"; (*formerly called lessD*) |
2608 | 365 |
|
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5132
diff
changeset
|
366 |
Goalw [le_def] "Suc(m) <= n ==> m <= n"; |
4089 | 367 |
by (asm_full_simp_tac (simpset() addsimps [less_Suc_eq]) 1); |
2608 | 368 |
qed "Suc_leD"; |
369 |
||
370 |
(* stronger version of Suc_leD *) |
|
5148
74919e8f221c
More tidying and removal of "\!\!... from Goal commands
paulson
parents:
5143
diff
changeset
|
371 |
Goalw [le_def] "Suc m <= n ==> m < n"; |
4089 | 372 |
by (asm_full_simp_tac (simpset() addsimps [less_Suc_eq]) 1); |
2608 | 373 |
by (cut_facts_tac [less_linear] 1); |
2891 | 374 |
by (Blast_tac 1); |
2608 | 375 |
qed "Suc_le_lessD"; |
376 |
||
5069 | 377 |
Goal "(Suc m <= n) = (m < n)"; |
4089 | 378 |
by (blast_tac (claset() addIs [Suc_leI, Suc_le_lessD]) 1); |
2608 | 379 |
qed "Suc_le_eq"; |
380 |
||
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5132
diff
changeset
|
381 |
Goalw [le_def] "m <= n ==> m <= Suc n"; |
4089 | 382 |
by (blast_tac (claset() addDs [Suc_lessD]) 1); |
2608 | 383 |
qed "le_SucI"; |
384 |
Addsimps[le_SucI]; |
|
385 |
||
6109 | 386 |
(*bind_thm ("le_Suc", not_Suc_n_less_n RS leI);*) |
2608 | 387 |
|
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5132
diff
changeset
|
388 |
Goalw [le_def] "m < n ==> m <= (n::nat)"; |
4089 | 389 |
by (blast_tac (claset() addEs [less_asym]) 1); |
2608 | 390 |
qed "less_imp_le"; |
391 |
||
5591 | 392 |
(*For instance, (Suc m < Suc n) = (Suc m <= n) = (m<n) *) |
393 |
val le_simps = [less_imp_le, less_Suc_eq_le, Suc_le_eq]; |
|
394 |
||
5354
da63d9b35caf
new theorems; adds [le_refl, less_imp_le] as simprules
paulson
parents:
5316
diff
changeset
|
395 |
|
3343 | 396 |
(** Equivalence of m<=n and m<n | m=n **) |
397 |
||
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5132
diff
changeset
|
398 |
Goalw [le_def] "m <= n ==> m < n | m=(n::nat)"; |
2608 | 399 |
by (cut_facts_tac [less_linear] 1); |
4089 | 400 |
by (blast_tac (claset() addEs [less_irrefl,less_asym]) 1); |
2608 | 401 |
qed "le_imp_less_or_eq"; |
402 |
||
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5132
diff
changeset
|
403 |
Goalw [le_def] "m<n | m=n ==> m <=(n::nat)"; |
2608 | 404 |
by (cut_facts_tac [less_linear] 1); |
4089 | 405 |
by (blast_tac (claset() addSEs [less_irrefl] addEs [less_asym]) 1); |
2608 | 406 |
qed "less_or_eq_imp_le"; |
407 |
||
5069 | 408 |
Goal "(m <= (n::nat)) = (m < n | m=n)"; |
2608 | 409 |
by (REPEAT(ares_tac [iffI,less_or_eq_imp_le,le_imp_less_or_eq] 1)); |
410 |
qed "le_eq_less_or_eq"; |
|
411 |
||
4635 | 412 |
(*Useful with Blast_tac. m=n ==> m<=n *) |
413 |
bind_thm ("eq_imp_le", disjI2 RS less_or_eq_imp_le); |
|
414 |
||
5069 | 415 |
Goal "n <= (n::nat)"; |
4089 | 416 |
by (simp_tac (simpset() addsimps [le_eq_less_or_eq]) 1); |
2608 | 417 |
qed "le_refl"; |
418 |
||
5354
da63d9b35caf
new theorems; adds [le_refl, less_imp_le] as simprules
paulson
parents:
5316
diff
changeset
|
419 |
|
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5132
diff
changeset
|
420 |
Goal "[| i <= j; j < k |] ==> i < (k::nat)"; |
4468 | 421 |
by (blast_tac (claset() addSDs [le_imp_less_or_eq] |
422 |
addIs [less_trans]) 1); |
|
2608 | 423 |
qed "le_less_trans"; |
424 |
||
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5132
diff
changeset
|
425 |
Goal "[| i < j; j <= k |] ==> i < (k::nat)"; |
4468 | 426 |
by (blast_tac (claset() addSDs [le_imp_less_or_eq] |
427 |
addIs [less_trans]) 1); |
|
2608 | 428 |
qed "less_le_trans"; |
429 |
||
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5132
diff
changeset
|
430 |
Goal "[| i <= j; j <= k |] ==> i <= (k::nat)"; |
4468 | 431 |
by (blast_tac (claset() addSDs [le_imp_less_or_eq] |
432 |
addIs [less_or_eq_imp_le, less_trans]) 1); |
|
2608 | 433 |
qed "le_trans"; |
434 |
||
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5132
diff
changeset
|
435 |
Goal "[| m <= n; n <= m |] ==> m = (n::nat)"; |
4468 | 436 |
(*order_less_irrefl could make this proof fail*) |
437 |
by (blast_tac (claset() addSDs [le_imp_less_or_eq] |
|
438 |
addSEs [less_irrefl] addEs [less_asym]) 1); |
|
2608 | 439 |
qed "le_anti_sym"; |
440 |
||
5069 | 441 |
Goal "(Suc(n) <= Suc(m)) = (n <= m)"; |
5500 | 442 |
by (simp_tac (simpset() addsimps le_simps) 1); |
2608 | 443 |
qed "Suc_le_mono"; |
444 |
||
445 |
AddIffs [Suc_le_mono]; |
|
446 |
||
5500 | 447 |
(* Axiom 'order_less_le' of class 'order': *) |
5069 | 448 |
Goal "(m::nat) < n = (m <= n & m ~= n)"; |
4737 | 449 |
by (simp_tac (simpset() addsimps [le_def, nat_neq_iff]) 1); |
450 |
by (blast_tac (claset() addSEs [less_asym]) 1); |
|
2608 | 451 |
qed "nat_less_le"; |
452 |
||
5354
da63d9b35caf
new theorems; adds [le_refl, less_imp_le] as simprules
paulson
parents:
5316
diff
changeset
|
453 |
(* [| m <= n; m ~= n |] ==> m < n *) |
da63d9b35caf
new theorems; adds [le_refl, less_imp_le] as simprules
paulson
parents:
5316
diff
changeset
|
454 |
bind_thm ("le_neq_implies_less", [nat_less_le, conjI] MRS iffD2); |
da63d9b35caf
new theorems; adds [le_refl, less_imp_le] as simprules
paulson
parents:
5316
diff
changeset
|
455 |
|
4640 | 456 |
(* Axiom 'linorder_linear' of class 'linorder': *) |
5069 | 457 |
Goal "(m::nat) <= n | n <= m"; |
4640 | 458 |
by (simp_tac (simpset() addsimps [le_eq_less_or_eq]) 1); |
459 |
by (cut_facts_tac [less_linear] 1); |
|
5132 | 460 |
by (Blast_tac 1); |
4640 | 461 |
qed "nat_le_linear"; |
462 |
||
5354
da63d9b35caf
new theorems; adds [le_refl, less_imp_le] as simprules
paulson
parents:
5316
diff
changeset
|
463 |
Goal "~ n < m ==> (n < Suc m) = (n = m)"; |
da63d9b35caf
new theorems; adds [le_refl, less_imp_le] as simprules
paulson
parents:
5316
diff
changeset
|
464 |
by (blast_tac (claset() addSEs [less_SucE]) 1); |
da63d9b35caf
new theorems; adds [le_refl, less_imp_le] as simprules
paulson
parents:
5316
diff
changeset
|
465 |
qed "not_less_less_Suc_eq"; |
da63d9b35caf
new theorems; adds [le_refl, less_imp_le] as simprules
paulson
parents:
5316
diff
changeset
|
466 |
|
da63d9b35caf
new theorems; adds [le_refl, less_imp_le] as simprules
paulson
parents:
5316
diff
changeset
|
467 |
|
da63d9b35caf
new theorems; adds [le_refl, less_imp_le] as simprules
paulson
parents:
5316
diff
changeset
|
468 |
(*Rewrite (n < Suc m) to (n=m) if ~ n<m or m<=n hold. |
da63d9b35caf
new theorems; adds [le_refl, less_imp_le] as simprules
paulson
parents:
5316
diff
changeset
|
469 |
Not suitable as default simprules because they often lead to looping*) |
da63d9b35caf
new theorems; adds [le_refl, less_imp_le] as simprules
paulson
parents:
5316
diff
changeset
|
470 |
val not_less_simps = [not_less_less_Suc_eq, leD RS not_less_less_Suc_eq]; |
4640 | 471 |
|
2608 | 472 |
(** LEAST -- the least number operator **) |
473 |
||
5069 | 474 |
Goal "(! m::nat. P m --> n <= m) = (! m. m < n --> ~ P m)"; |
4089 | 475 |
by (blast_tac (claset() addIs [leI] addEs [leE]) 1); |
3143
d60e49b86c6a
Modified def of Least, which, as Markus correctly complained, looked like
nipkow
parents:
3085
diff
changeset
|
476 |
val lemma = result(); |
d60e49b86c6a
Modified def of Least, which, as Markus correctly complained, looked like
nipkow
parents:
3085
diff
changeset
|
477 |
|
d60e49b86c6a
Modified def of Least, which, as Markus correctly complained, looked like
nipkow
parents:
3085
diff
changeset
|
478 |
(* This is an old def of Least for nat, which is derived for compatibility *) |
5069 | 479 |
Goalw [Least_def] |
3143
d60e49b86c6a
Modified def of Least, which, as Markus correctly complained, looked like
nipkow
parents:
3085
diff
changeset
|
480 |
"(LEAST n::nat. P n) == (@n. P(n) & (ALL m. m < n --> ~P(m)))"; |
4089 | 481 |
by (simp_tac (simpset() addsimps [lemma]) 1); |
3143
d60e49b86c6a
Modified def of Least, which, as Markus correctly complained, looked like
nipkow
parents:
3085
diff
changeset
|
482 |
qed "Least_nat_def"; |
d60e49b86c6a
Modified def of Least, which, as Markus correctly complained, looked like
nipkow
parents:
3085
diff
changeset
|
483 |
|
5316 | 484 |
val [prem1,prem2] = Goalw [Least_nat_def] |
3842 | 485 |
"[| P(k::nat); !!x. x<k ==> ~P(x) |] ==> (LEAST x. P(x)) = k"; |
2608 | 486 |
by (rtac select_equality 1); |
4089 | 487 |
by (blast_tac (claset() addSIs [prem1,prem2]) 1); |
2608 | 488 |
by (cut_facts_tac [less_linear] 1); |
4089 | 489 |
by (blast_tac (claset() addSIs [prem1] addSDs [prem2]) 1); |
2608 | 490 |
qed "Least_equality"; |
491 |
||
5316 | 492 |
Goal "P(k::nat) ==> P(LEAST x. P(x))"; |
493 |
by (etac rev_mp 1); |
|
2608 | 494 |
by (res_inst_tac [("n","k")] less_induct 1); |
495 |
by (rtac impI 1); |
|
496 |
by (rtac classical 1); |
|
497 |
by (res_inst_tac [("s","n")] (Least_equality RS ssubst) 1); |
|
498 |
by (assume_tac 1); |
|
499 |
by (assume_tac 2); |
|
2891 | 500 |
by (Blast_tac 1); |
2608 | 501 |
qed "LeastI"; |
502 |
||
503 |
(*Proof is almost identical to the one above!*) |
|
5316 | 504 |
Goal "P(k::nat) ==> (LEAST x. P(x)) <= k"; |
505 |
by (etac rev_mp 1); |
|
2608 | 506 |
by (res_inst_tac [("n","k")] less_induct 1); |
507 |
by (rtac impI 1); |
|
508 |
by (rtac classical 1); |
|
509 |
by (res_inst_tac [("s","n")] (Least_equality RS ssubst) 1); |
|
510 |
by (assume_tac 1); |
|
511 |
by (rtac le_refl 2); |
|
4089 | 512 |
by (blast_tac (claset() addIs [less_imp_le,le_trans]) 1); |
2608 | 513 |
qed "Least_le"; |
514 |
||
5316 | 515 |
Goal "k < (LEAST x. P(x)) ==> ~P(k::nat)"; |
2608 | 516 |
by (rtac notI 1); |
5316 | 517 |
by (etac (rewrite_rule [le_def] Least_le RS notE) 1 THEN assume_tac 1); |
2608 | 518 |
qed "not_less_Least"; |
519 |
||
5983 | 520 |
(* [| m ~= n; m < n ==> P; n < m ==> P |] ==> P *) |
4737 | 521 |
bind_thm("nat_neqE", nat_neq_iff RS iffD1 RS disjE); |
7064 | 522 |
|
523 |
Goal "(S::nat set) ~= {} ==> ? x:S. ! y:S. x <= y"; |
|
524 |
by (cut_facts_tac [wf_pred_nat RS wf_trancl RS (wf_eq_minimal RS iffD1)] 1); |
|
525 |
by (dres_inst_tac [("x","S")] spec 1); |
|
526 |
by (Asm_full_simp_tac 1); |
|
527 |
by (etac impE 1); |
|
528 |
by (Force_tac 1); |
|
529 |
by (force_tac (claset(), simpset() addsimps [less_eq,not_le_iff_less]) 1); |
|
530 |
qed "nonempty_has_least"; |