| author | wenzelm | 
| Fri, 21 May 1999 16:22:39 +0200 | |
| changeset 6692 | 05c56f41e661 | 
| parent 5291 | 5706f0ef1d43 | 
| child 9245 | 428385c4bc50 | 
| permissions | -rw-r--r-- | 
| 1461 | 1  | 
(* Title: HOLCF/cfun2.thy  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
2  | 
ID: $Id$  | 
| 1461 | 3  | 
Author: Franz Regensburger  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
4  | 
Copyright 1993 Technische Universitaet Muenchen  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
5  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
6  | 
Lemmas for cfun2.thy  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
7  | 
*)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
8  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
9  | 
open Cfun2;  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
10  | 
|
| 2640 | 11  | 
(* for compatibility with old HOLCF-Version *)  | 
| 5291 | 12  | 
qed_goal "inst_cfun_po" thy "(op <<)=(%f1 f2. Rep_CFun f1 << Rep_CFun f2)"  | 
| 2640 | 13  | 
(fn prems =>  | 
14  | 
[  | 
|
| 
3323
 
194ae2e0c193
eliminated the constant less by the introduction of the axclass sq_ord
 
slotosch 
parents: 
2838 
diff
changeset
 | 
15  | 
(fold_goals_tac [less_cfun_def]),  | 
| 2640 | 16  | 
(rtac refl 1)  | 
17  | 
]);  | 
|
18  | 
||
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
19  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
20  | 
(* access to less_cfun in class po *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
21  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
22  | 
|
| 5291 | 23  | 
qed_goal "less_cfun" thy "( f1 << f2 ) = (Rep_CFun(f1) << Rep_CFun(f2))"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
24  | 
(fn prems =>  | 
| 1461 | 25  | 
[  | 
| 4098 | 26  | 
(simp_tac (simpset() addsimps [inst_cfun_po]) 1)  | 
| 1461 | 27  | 
]);  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
28  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
29  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
30  | 
(* Type 'a ->'b is pointed *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
31  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
32  | 
|
| 5291 | 33  | 
qed_goal "minimal_cfun" thy "Abs_CFun(% x. UU) << f"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
34  | 
(fn prems =>  | 
| 1461 | 35  | 
[  | 
| 2033 | 36  | 
(stac less_cfun 1),  | 
37  | 
(stac Abs_Cfun_inverse2 1),  | 
|
| 1461 | 38  | 
(rtac cont_const 1),  | 
39  | 
(rtac minimal_fun 1)  | 
|
40  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
41  | 
|
| 2640 | 42  | 
bind_thm ("UU_cfun_def",minimal_cfun RS minimal2UU RS sym);
 | 
43  | 
||
| 3842 | 44  | 
qed_goal "least_cfun" thy "? x::'a->'b::pcpo.!y. x<<y"  | 
| 2640 | 45  | 
(fn prems =>  | 
46  | 
[  | 
|
| 5291 | 47  | 
        (res_inst_tac [("x","Abs_CFun(% x. UU)")] exI 1),
 | 
| 2640 | 48  | 
(rtac (minimal_cfun RS allI) 1)  | 
49  | 
]);  | 
|
50  | 
||
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
51  | 
(* ------------------------------------------------------------------------ *)  | 
| 5291 | 52  | 
(* Rep_CFun yields continuous functions in 'a => 'b *)  | 
53  | 
(* this is continuity of Rep_CFun in its 'second' argument *)  | 
|
54  | 
(* cont_Rep_CFun2 ==> monofun_Rep_CFun2 & contlub_Rep_CFun2 *)  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
55  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
56  | 
|
| 5291 | 57  | 
qed_goal "cont_Rep_CFun2" thy "cont(Rep_CFun(fo))"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
58  | 
(fn prems =>  | 
| 1461 | 59  | 
[  | 
60  | 
        (res_inst_tac [("P","cont")] CollectD 1),
 | 
|
| 2640 | 61  | 
(fold_goals_tac [CFun_def]),  | 
| 1461 | 62  | 
(rtac Rep_Cfun 1)  | 
63  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
64  | 
|
| 5291 | 65  | 
bind_thm ("monofun_Rep_CFun2", cont_Rep_CFun2 RS cont2mono);
 | 
66  | 
(* monofun(Rep_CFun(?fo1)) *)  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
67  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
68  | 
|
| 5291 | 69  | 
bind_thm ("contlub_Rep_CFun2", cont_Rep_CFun2 RS cont2contlub);
 | 
70  | 
(* contlub(Rep_CFun(?fo1)) *)  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
71  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
72  | 
(* ------------------------------------------------------------------------ *)  | 
| 5291 | 73  | 
(* expanded thms cont_Rep_CFun2, contlub_Rep_CFun2 *)  | 
| 
1168
 
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
 
regensbu 
parents: 
892 
diff
changeset
 | 
74  | 
(* looks nice with mixfix syntac *)  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
75  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
76  | 
|
| 5291 | 77  | 
bind_thm ("cont_cfun_arg", (cont_Rep_CFun2 RS contE RS spec RS mp));
 | 
| 
4721
 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 
oheimb 
parents: 
4098 
diff
changeset
 | 
78  | 
(* chain(?x1) ==> range (%i. ?fo3`(?x1 i)) <<| ?fo3`(lub (range ?x1)) *)  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
79  | 
|
| 5291 | 80  | 
bind_thm ("contlub_cfun_arg", (contlub_Rep_CFun2 RS contlubE RS spec RS mp));
 | 
| 
4721
 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 
oheimb 
parents: 
4098 
diff
changeset
 | 
81  | 
(* chain(?x1) ==> ?fo4`(lub (range ?x1)) = lub (range (%i. ?fo4`(?x1 i))) *)  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
82  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
83  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
84  | 
(* ------------------------------------------------------------------------ *)  | 
| 5291 | 85  | 
(* Rep_CFun is monotone in its 'first' argument *)  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
86  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
87  | 
|
| 5291 | 88  | 
qed_goalw "monofun_Rep_CFun1" thy [monofun] "monofun(Rep_CFun)"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
89  | 
(fn prems =>  | 
| 1461 | 90  | 
[  | 
91  | 
(strip_tac 1),  | 
|
92  | 
(etac (less_cfun RS subst) 1)  | 
|
93  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
94  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
95  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
96  | 
(* ------------------------------------------------------------------------ *)  | 
| 5291 | 97  | 
(* monotonicity of application Rep_CFun in mixfix syntax [_]_ *)  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
98  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
99  | 
|
| 2640 | 100  | 
qed_goal "monofun_cfun_fun" thy "f1 << f2 ==> f1`x << f2`x"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
101  | 
(fn prems =>  | 
| 1461 | 102  | 
[  | 
103  | 
(cut_facts_tac prems 1),  | 
|
104  | 
        (res_inst_tac [("x","x")] spec 1),
 | 
|
105  | 
(rtac (less_fun RS subst) 1),  | 
|
| 5291 | 106  | 
(etac (monofun_Rep_CFun1 RS monofunE RS spec RS spec RS mp) 1)  | 
| 1461 | 107  | 
]);  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
108  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
109  | 
|
| 5291 | 110  | 
bind_thm ("monofun_cfun_arg", monofun_Rep_CFun2 RS monofunE RS spec RS spec RS mp);
 | 
| 
1168
 
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
 
regensbu 
parents: 
892 
diff
changeset
 | 
111  | 
(* ?x2 << ?x1 ==> ?fo5`?x2 << ?fo5`?x1 *)  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
112  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
113  | 
(* ------------------------------------------------------------------------ *)  | 
| 5291 | 114  | 
(* monotonicity of Rep_CFun in both arguments in mixfix syntax [_]_ *)  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
115  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
116  | 
|
| 2640 | 117  | 
qed_goal "monofun_cfun" thy  | 
| 1461 | 118  | 
"[|f1<<f2;x1<<x2|] ==> f1`x1 << f2`x2"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
119  | 
(fn prems =>  | 
| 1461 | 120  | 
[  | 
121  | 
(cut_facts_tac prems 1),  | 
|
122  | 
(rtac trans_less 1),  | 
|
123  | 
(etac monofun_cfun_arg 1),  | 
|
124  | 
(etac monofun_cfun_fun 1)  | 
|
125  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
126  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
127  | 
|
| 2640 | 128  | 
qed_goal "strictI" thy "f`x = UU ==> f`UU = UU" (fn prems => [  | 
| 2033 | 129  | 
cut_facts_tac prems 1,  | 
130  | 
rtac (eq_UU_iff RS iffD2) 1,  | 
|
131  | 
etac subst 1,  | 
|
132  | 
rtac (minimal RS monofun_cfun_arg) 1]);  | 
|
| 1989 | 133  | 
|
134  | 
||
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
135  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
136  | 
(* ch2ch - rules for the type 'a -> 'b *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
137  | 
(* use MF2 lemmas from Cont.ML *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
138  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
139  | 
|
| 5291 | 140  | 
qed_goal "ch2ch_Rep_CFunR" thy  | 
| 
4721
 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 
oheimb 
parents: 
4098 
diff
changeset
 | 
141  | 
"chain(Y) ==> chain(%i. f`(Y i))"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
142  | 
(fn prems =>  | 
| 1461 | 143  | 
[  | 
144  | 
(cut_facts_tac prems 1),  | 
|
| 5291 | 145  | 
(etac (monofun_Rep_CFun2 RS ch2ch_MF2R) 1)  | 
| 1461 | 146  | 
]);  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
147  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
148  | 
|
| 5291 | 149  | 
bind_thm ("ch2ch_Rep_CFunL", monofun_Rep_CFun1 RS ch2ch_MF2L);
 | 
| 
4721
 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 
oheimb 
parents: 
4098 
diff
changeset
 | 
150  | 
(* chain(?F) ==> chain (%i. ?F i`?x) *)  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
151  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
152  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
153  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
154  | 
(* the lub of a chain of continous functions is monotone *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
155  | 
(* use MF2 lemmas from Cont.ML *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
156  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
157  | 
|
| 2640 | 158  | 
qed_goal "lub_cfun_mono" thy  | 
| 
4721
 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 
oheimb 
parents: 
4098 
diff
changeset
 | 
159  | 
"chain(F) ==> monofun(% x. lub(range(% j.(F j)`x)))"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
160  | 
(fn prems =>  | 
| 1461 | 161  | 
[  | 
162  | 
(cut_facts_tac prems 1),  | 
|
163  | 
(rtac lub_MF2_mono 1),  | 
|
| 5291 | 164  | 
(rtac monofun_Rep_CFun1 1),  | 
165  | 
(rtac (monofun_Rep_CFun2 RS allI) 1),  | 
|
| 1461 | 166  | 
(atac 1)  | 
167  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
168  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
169  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
170  | 
(* a lemma about the exchange of lubs for type 'a -> 'b *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
171  | 
(* use MF2 lemmas from Cont.ML *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
172  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
173  | 
|
| 2640 | 174  | 
qed_goal "ex_lubcfun" thy  | 
| 
4721
 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 
oheimb 
parents: 
4098 
diff
changeset
 | 
175  | 
"[| chain(F); chain(Y) |] ==>\  | 
| 1461 | 176  | 
\ lub(range(%j. lub(range(%i. F(j)`(Y i))))) =\  | 
177  | 
\ lub(range(%i. lub(range(%j. F(j)`(Y i)))))"  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
178  | 
(fn prems =>  | 
| 1461 | 179  | 
[  | 
180  | 
(cut_facts_tac prems 1),  | 
|
181  | 
(rtac ex_lubMF2 1),  | 
|
| 5291 | 182  | 
(rtac monofun_Rep_CFun1 1),  | 
183  | 
(rtac (monofun_Rep_CFun2 RS allI) 1),  | 
|
| 1461 | 184  | 
(atac 1),  | 
185  | 
(atac 1)  | 
|
186  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
187  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
188  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
189  | 
(* the lub of a chain of cont. functions is continuous *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
190  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
191  | 
|
| 2640 | 192  | 
qed_goal "cont_lubcfun" thy  | 
| 
4721
 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 
oheimb 
parents: 
4098 
diff
changeset
 | 
193  | 
"chain(F) ==> cont(% x. lub(range(% j. F(j)`x)))"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
194  | 
(fn prems =>  | 
| 1461 | 195  | 
[  | 
196  | 
(cut_facts_tac prems 1),  | 
|
197  | 
(rtac monocontlub2cont 1),  | 
|
198  | 
(etac lub_cfun_mono 1),  | 
|
199  | 
(rtac contlubI 1),  | 
|
200  | 
(strip_tac 1),  | 
|
| 2033 | 201  | 
(stac (contlub_cfun_arg RS ext) 1),  | 
| 1461 | 202  | 
(atac 1),  | 
203  | 
(etac ex_lubcfun 1),  | 
|
204  | 
(atac 1)  | 
|
205  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
206  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
207  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
208  | 
(* type 'a -> 'b is chain complete *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
209  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
210  | 
|
| 2640 | 211  | 
qed_goal "lub_cfun" thy  | 
| 
4721
 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 
oheimb 
parents: 
4098 
diff
changeset
 | 
212  | 
"chain(CCF) ==> range(CCF) <<| (LAM x. lub(range(% i. CCF(i)`x)))"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
213  | 
(fn prems =>  | 
| 1461 | 214  | 
[  | 
215  | 
(cut_facts_tac prems 1),  | 
|
216  | 
(rtac is_lubI 1),  | 
|
217  | 
(rtac conjI 1),  | 
|
218  | 
(rtac ub_rangeI 1),  | 
|
219  | 
(rtac allI 1),  | 
|
| 2033 | 220  | 
(stac less_cfun 1),  | 
221  | 
(stac Abs_Cfun_inverse2 1),  | 
|
| 1461 | 222  | 
(etac cont_lubcfun 1),  | 
223  | 
(rtac (lub_fun RS is_lubE RS conjunct1 RS ub_rangeE RS spec) 1),  | 
|
| 5291 | 224  | 
(etac (monofun_Rep_CFun1 RS ch2ch_monofun) 1),  | 
| 1461 | 225  | 
(strip_tac 1),  | 
| 2033 | 226  | 
(stac less_cfun 1),  | 
227  | 
(stac Abs_Cfun_inverse2 1),  | 
|
| 1461 | 228  | 
(etac cont_lubcfun 1),  | 
229  | 
(rtac (lub_fun RS is_lubE RS conjunct2 RS spec RS mp) 1),  | 
|
| 5291 | 230  | 
(etac (monofun_Rep_CFun1 RS ch2ch_monofun) 1),  | 
231  | 
(etac (monofun_Rep_CFun1 RS ub2ub_monofun) 1)  | 
|
| 1461 | 232  | 
]);  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
233  | 
|
| 1779 | 234  | 
bind_thm ("thelub_cfun", lub_cfun RS thelubI);
 | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
235  | 
(*  | 
| 
4721
 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 
oheimb 
parents: 
4098 
diff
changeset
 | 
236  | 
chain(?CCF1) ==> lub (range ?CCF1) = (LAM x. lub (range (%i. ?CCF1 i`x)))  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
237  | 
*)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
238  | 
|
| 2640 | 239  | 
qed_goal "cpo_cfun" thy  | 
| 
4721
 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 
oheimb 
parents: 
4098 
diff
changeset
 | 
240  | 
  "chain(CCF::nat=>('a->'b)) ==> ? x. range(CCF) <<| x"
 | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
241  | 
(fn prems =>  | 
| 1461 | 242  | 
[  | 
243  | 
(cut_facts_tac prems 1),  | 
|
244  | 
(rtac exI 1),  | 
|
245  | 
(etac lub_cfun 1)  | 
|
246  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
247  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
248  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
249  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
250  | 
(* Extensionality in 'a -> 'b *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
251  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
252  | 
|
| 
1168
 
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
 
regensbu 
parents: 
892 
diff
changeset
 | 
253  | 
qed_goal "ext_cfun" Cfun1.thy "(!!x. f`x = g`x) ==> f = g"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
254  | 
(fn prems =>  | 
| 1461 | 255  | 
[  | 
256  | 
        (res_inst_tac [("t","f")] (Rep_Cfun_inverse RS subst) 1),
 | 
|
257  | 
        (res_inst_tac [("t","g")] (Rep_Cfun_inverse RS subst) 1),
 | 
|
| 5291 | 258  | 
        (res_inst_tac [("f","Abs_CFun")] arg_cong 1),
 | 
| 1461 | 259  | 
(rtac ext 1),  | 
260  | 
(resolve_tac prems 1)  | 
|
261  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
262  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
263  | 
(* ------------------------------------------------------------------------ *)  | 
| 5291 | 264  | 
(* Monotonicity of Abs_CFun *)  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
265  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
266  | 
|
| 5291 | 267  | 
qed_goal "semi_monofun_Abs_CFun" thy  | 
268  | 
"[|cont(f);cont(g);f<<g|]==>Abs_CFun(f)<<Abs_CFun(g)"  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
269  | 
(fn prems =>  | 
| 1461 | 270  | 
[  | 
271  | 
(rtac (less_cfun RS iffD2) 1),  | 
|
| 2033 | 272  | 
(stac Abs_Cfun_inverse2 1),  | 
| 1461 | 273  | 
(resolve_tac prems 1),  | 
| 2033 | 274  | 
(stac Abs_Cfun_inverse2 1),  | 
| 1461 | 275  | 
(resolve_tac prems 1),  | 
276  | 
(resolve_tac prems 1)  | 
|
277  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
278  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
279  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
280  | 
(* Extenionality wrt. << in 'a -> 'b *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
281  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
282  | 
|
| 2640 | 283  | 
qed_goal "less_cfun2" thy "(!!x. f`x << g`x) ==> f << g"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
284  | 
(fn prems =>  | 
| 1461 | 285  | 
[  | 
286  | 
        (res_inst_tac [("t","f")] (Rep_Cfun_inverse RS subst) 1),
 | 
|
287  | 
        (res_inst_tac [("t","g")] (Rep_Cfun_inverse RS subst) 1),
 | 
|
| 5291 | 288  | 
(rtac semi_monofun_Abs_CFun 1),  | 
289  | 
(rtac cont_Rep_CFun2 1),  | 
|
290  | 
(rtac cont_Rep_CFun2 1),  | 
|
| 1461 | 291  | 
(rtac (less_fun RS iffD2) 1),  | 
292  | 
(rtac allI 1),  | 
|
293  | 
(resolve_tac prems 1)  | 
|
294  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
295  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
296  |