author | wenzelm |
Wed, 03 Feb 1999 17:34:27 +0100 | |
changeset 6216 | 05d99c0bbfa0 |
parent 4833 | 2e53109d4bc8 |
child 8161 | bde1391fd0a5 |
permissions | -rw-r--r-- |
1461 | 1 |
(* Title: HOLCF/ssum0.ML |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
2 |
ID: $Id$ |
1461 | 3 |
Author: Franz Regensburger |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
4 |
Copyright 1993 Technische Universitaet Muenchen |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
5 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
6 |
Lemmas for theory ssum0.thy |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
7 |
*) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
8 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
9 |
open Ssum0; |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
10 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
11 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
12 |
(* A non-emptyness result for Sssum *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
13 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
14 |
|
892 | 15 |
qed_goalw "SsumIl" Ssum0.thy [Ssum_def] "Sinl_Rep(a):Ssum" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
16 |
(fn prems => |
1461 | 17 |
[ |
18 |
(rtac CollectI 1), |
|
19 |
(rtac disjI1 1), |
|
20 |
(rtac exI 1), |
|
21 |
(rtac refl 1) |
|
22 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
23 |
|
892 | 24 |
qed_goalw "SsumIr" Ssum0.thy [Ssum_def] "Sinr_Rep(a):Ssum" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
25 |
(fn prems => |
1461 | 26 |
[ |
27 |
(rtac CollectI 1), |
|
28 |
(rtac disjI2 1), |
|
29 |
(rtac exI 1), |
|
30 |
(rtac refl 1) |
|
31 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
32 |
|
4833 | 33 |
qed_goal "inj_on_Abs_Ssum" Ssum0.thy "inj_on Abs_Ssum Ssum" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
34 |
(fn prems => |
1461 | 35 |
[ |
4833 | 36 |
(rtac inj_on_inverseI 1), |
1461 | 37 |
(etac Abs_Ssum_inverse 1) |
38 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
39 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
40 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
41 |
(* Strictness of Sinr_Rep, Sinl_Rep and Isinl, Isinr *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
42 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
43 |
|
892 | 44 |
qed_goalw "strict_SinlSinr_Rep" Ssum0.thy [Sinr_Rep_def,Sinl_Rep_def] |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
45 |
"Sinl_Rep(UU) = Sinr_Rep(UU)" |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
46 |
(fn prems => |
1461 | 47 |
[ |
48 |
(rtac ext 1), |
|
49 |
(rtac ext 1), |
|
50 |
(rtac ext 1), |
|
51 |
(fast_tac HOL_cs 1) |
|
52 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
53 |
|
892 | 54 |
qed_goalw "strict_IsinlIsinr" Ssum0.thy [Isinl_def,Isinr_def] |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
55 |
"Isinl(UU) = Isinr(UU)" |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
56 |
(fn prems => |
1461 | 57 |
[ |
58 |
(rtac (strict_SinlSinr_Rep RS arg_cong) 1) |
|
59 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
60 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
61 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
62 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
63 |
(* distinctness of Sinl_Rep, Sinr_Rep and Isinl, Isinr *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
64 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
65 |
|
892 | 66 |
qed_goalw "noteq_SinlSinr_Rep" Ssum0.thy [Sinl_Rep_def,Sinr_Rep_def] |
1461 | 67 |
"(Sinl_Rep(a) = Sinr_Rep(b)) ==> a=UU & b=UU" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
68 |
(fn prems => |
1461 | 69 |
[ |
70 |
(rtac conjI 1), |
|
1675 | 71 |
(case_tac "a=UU" 1), |
1461 | 72 |
(atac 1), |
73 |
(rtac ((hd prems) RS fun_cong RS fun_cong RS fun_cong RS iffD2 |
|
74 |
RS mp RS conjunct1 RS sym) 1), |
|
75 |
(fast_tac HOL_cs 1), |
|
76 |
(atac 1), |
|
1675 | 77 |
(case_tac "b=UU" 1), |
1461 | 78 |
(atac 1), |
79 |
(rtac ((hd prems) RS fun_cong RS fun_cong RS fun_cong RS iffD1 |
|
80 |
RS mp RS conjunct1 RS sym) 1), |
|
81 |
(fast_tac HOL_cs 1), |
|
82 |
(atac 1) |
|
83 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
84 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
85 |
|
892 | 86 |
qed_goalw "noteq_IsinlIsinr" Ssum0.thy [Isinl_def,Isinr_def] |
1461 | 87 |
"Isinl(a)=Isinr(b) ==> a=UU & b=UU" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
88 |
(fn prems => |
1461 | 89 |
[ |
90 |
(cut_facts_tac prems 1), |
|
91 |
(rtac noteq_SinlSinr_Rep 1), |
|
4833 | 92 |
(etac (inj_on_Abs_Ssum RS inj_onD) 1), |
1461 | 93 |
(rtac SsumIl 1), |
94 |
(rtac SsumIr 1) |
|
95 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
96 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
97 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
98 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
99 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
100 |
(* injectivity of Sinl_Rep, Sinr_Rep and Isinl, Isinr *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
101 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
102 |
|
892 | 103 |
qed_goalw "inject_Sinl_Rep1" Ssum0.thy [Sinl_Rep_def] |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
104 |
"(Sinl_Rep(a) = Sinl_Rep(UU)) ==> a=UU" |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
105 |
(fn prems => |
1461 | 106 |
[ |
1675 | 107 |
(case_tac "a=UU" 1), |
1461 | 108 |
(atac 1), |
109 |
(rtac ((hd prems) RS fun_cong RS fun_cong RS fun_cong |
|
110 |
RS iffD2 RS mp RS conjunct1 RS sym) 1), |
|
111 |
(fast_tac HOL_cs 1), |
|
112 |
(atac 1) |
|
113 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
114 |
|
892 | 115 |
qed_goalw "inject_Sinr_Rep1" Ssum0.thy [Sinr_Rep_def] |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
116 |
"(Sinr_Rep(b) = Sinr_Rep(UU)) ==> b=UU" |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
117 |
(fn prems => |
1461 | 118 |
[ |
1675 | 119 |
(case_tac "b=UU" 1), |
1461 | 120 |
(atac 1), |
121 |
(rtac ((hd prems) RS fun_cong RS fun_cong RS fun_cong |
|
122 |
RS iffD2 RS mp RS conjunct1 RS sym) 1), |
|
123 |
(fast_tac HOL_cs 1), |
|
124 |
(atac 1) |
|
125 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
126 |
|
892 | 127 |
qed_goalw "inject_Sinl_Rep2" Ssum0.thy [Sinl_Rep_def] |
1168
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents:
892
diff
changeset
|
128 |
"[| a1~=UU ; a2~=UU ; Sinl_Rep(a1)=Sinl_Rep(a2) |] ==> a1=a2" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
129 |
(fn prems => |
1461 | 130 |
[ |
131 |
(rtac ((nth_elem (2,prems)) RS fun_cong RS fun_cong RS fun_cong |
|
132 |
RS iffD1 RS mp RS conjunct1) 1), |
|
133 |
(fast_tac HOL_cs 1), |
|
134 |
(resolve_tac prems 1) |
|
135 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
136 |
|
892 | 137 |
qed_goalw "inject_Sinr_Rep2" Ssum0.thy [Sinr_Rep_def] |
1168
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents:
892
diff
changeset
|
138 |
"[|b1~=UU ; b2~=UU ; Sinr_Rep(b1)=Sinr_Rep(b2) |] ==> b1=b2" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
139 |
(fn prems => |
1461 | 140 |
[ |
141 |
(rtac ((nth_elem (2,prems)) RS fun_cong RS fun_cong RS fun_cong |
|
142 |
RS iffD1 RS mp RS conjunct1) 1), |
|
143 |
(fast_tac HOL_cs 1), |
|
144 |
(resolve_tac prems 1) |
|
145 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
146 |
|
892 | 147 |
qed_goal "inject_Sinl_Rep" Ssum0.thy |
1461 | 148 |
"Sinl_Rep(a1)=Sinl_Rep(a2) ==> a1=a2" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
149 |
(fn prems => |
1461 | 150 |
[ |
151 |
(cut_facts_tac prems 1), |
|
1675 | 152 |
(case_tac "a1=UU" 1), |
1461 | 153 |
(hyp_subst_tac 1), |
154 |
(rtac (inject_Sinl_Rep1 RS sym) 1), |
|
155 |
(etac sym 1), |
|
1675 | 156 |
(case_tac "a2=UU" 1), |
1461 | 157 |
(hyp_subst_tac 1), |
158 |
(etac inject_Sinl_Rep1 1), |
|
159 |
(etac inject_Sinl_Rep2 1), |
|
160 |
(atac 1), |
|
161 |
(atac 1) |
|
162 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
163 |
|
892 | 164 |
qed_goal "inject_Sinr_Rep" Ssum0.thy |
1461 | 165 |
"Sinr_Rep(b1)=Sinr_Rep(b2) ==> b1=b2" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
166 |
(fn prems => |
1461 | 167 |
[ |
168 |
(cut_facts_tac prems 1), |
|
1675 | 169 |
(case_tac "b1=UU" 1), |
1461 | 170 |
(hyp_subst_tac 1), |
171 |
(rtac (inject_Sinr_Rep1 RS sym) 1), |
|
172 |
(etac sym 1), |
|
1675 | 173 |
(case_tac "b2=UU" 1), |
1461 | 174 |
(hyp_subst_tac 1), |
175 |
(etac inject_Sinr_Rep1 1), |
|
176 |
(etac inject_Sinr_Rep2 1), |
|
177 |
(atac 1), |
|
178 |
(atac 1) |
|
179 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
180 |
|
892 | 181 |
qed_goalw "inject_Isinl" Ssum0.thy [Isinl_def] |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
182 |
"Isinl(a1)=Isinl(a2)==> a1=a2" |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
183 |
(fn prems => |
1461 | 184 |
[ |
185 |
(cut_facts_tac prems 1), |
|
186 |
(rtac inject_Sinl_Rep 1), |
|
4833 | 187 |
(etac (inj_on_Abs_Ssum RS inj_onD) 1), |
1461 | 188 |
(rtac SsumIl 1), |
189 |
(rtac SsumIl 1) |
|
190 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
191 |
|
892 | 192 |
qed_goalw "inject_Isinr" Ssum0.thy [Isinr_def] |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
193 |
"Isinr(b1)=Isinr(b2) ==> b1=b2" |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
194 |
(fn prems => |
1461 | 195 |
[ |
196 |
(cut_facts_tac prems 1), |
|
197 |
(rtac inject_Sinr_Rep 1), |
|
4833 | 198 |
(etac (inj_on_Abs_Ssum RS inj_onD) 1), |
1461 | 199 |
(rtac SsumIr 1), |
200 |
(rtac SsumIr 1) |
|
201 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
202 |
|
892 | 203 |
qed_goal "inject_Isinl_rev" Ssum0.thy |
1168
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents:
892
diff
changeset
|
204 |
"a1~=a2 ==> Isinl(a1) ~= Isinl(a2)" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
205 |
(fn prems => |
1461 | 206 |
[ |
207 |
(cut_facts_tac prems 1), |
|
208 |
(rtac contrapos 1), |
|
209 |
(etac inject_Isinl 2), |
|
210 |
(atac 1) |
|
211 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
212 |
|
892 | 213 |
qed_goal "inject_Isinr_rev" Ssum0.thy |
1168
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents:
892
diff
changeset
|
214 |
"b1~=b2 ==> Isinr(b1) ~= Isinr(b2)" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
215 |
(fn prems => |
1461 | 216 |
[ |
217 |
(cut_facts_tac prems 1), |
|
218 |
(rtac contrapos 1), |
|
219 |
(etac inject_Isinr 2), |
|
220 |
(atac 1) |
|
221 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
222 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
223 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
224 |
(* Exhaustion of the strict sum ++ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
225 |
(* choice of the bottom representation is arbitrary *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
226 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
227 |
|
892 | 228 |
qed_goalw "Exh_Ssum" Ssum0.thy [Isinl_def,Isinr_def] |
1461 | 229 |
"z=Isinl(UU) | (? a. z=Isinl(a) & a~=UU) | (? b. z=Isinr(b) & b~=UU)" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
230 |
(fn prems => |
1461 | 231 |
[ |
232 |
(rtac (rewrite_rule [Ssum_def] Rep_Ssum RS CollectE) 1), |
|
233 |
(etac disjE 1), |
|
234 |
(etac exE 1), |
|
1675 | 235 |
(case_tac "z= Abs_Ssum(Sinl_Rep(UU))" 1), |
1461 | 236 |
(etac disjI1 1), |
237 |
(rtac disjI2 1), |
|
238 |
(rtac disjI1 1), |
|
239 |
(rtac exI 1), |
|
240 |
(rtac conjI 1), |
|
241 |
(rtac (Rep_Ssum_inverse RS sym RS trans) 1), |
|
242 |
(etac arg_cong 1), |
|
243 |
(res_inst_tac [("Q","Sinl_Rep(a)=Sinl_Rep(UU)")] contrapos 1), |
|
244 |
(etac arg_cong 2), |
|
245 |
(etac contrapos 1), |
|
246 |
(rtac (Rep_Ssum_inverse RS sym RS trans) 1), |
|
247 |
(rtac trans 1), |
|
248 |
(etac arg_cong 1), |
|
249 |
(etac arg_cong 1), |
|
250 |
(etac exE 1), |
|
1675 | 251 |
(case_tac "z= Abs_Ssum(Sinl_Rep(UU))" 1), |
1461 | 252 |
(etac disjI1 1), |
253 |
(rtac disjI2 1), |
|
254 |
(rtac disjI2 1), |
|
255 |
(rtac exI 1), |
|
256 |
(rtac conjI 1), |
|
257 |
(rtac (Rep_Ssum_inverse RS sym RS trans) 1), |
|
258 |
(etac arg_cong 1), |
|
259 |
(res_inst_tac [("Q","Sinr_Rep(b)=Sinl_Rep(UU)")] contrapos 1), |
|
260 |
(hyp_subst_tac 2), |
|
261 |
(rtac (strict_SinlSinr_Rep RS sym) 2), |
|
262 |
(etac contrapos 1), |
|
263 |
(rtac (Rep_Ssum_inverse RS sym RS trans) 1), |
|
264 |
(rtac trans 1), |
|
265 |
(etac arg_cong 1), |
|
266 |
(etac arg_cong 1) |
|
267 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
268 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
269 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
270 |
(* elimination rules for the strict sum ++ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
271 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
272 |
|
892 | 273 |
qed_goal "IssumE" Ssum0.thy |
1461 | 274 |
"[|p=Isinl(UU) ==> Q ;\ |
275 |
\ !!x.[|p=Isinl(x); x~=UU |] ==> Q;\ |
|
276 |
\ !!y.[|p=Isinr(y); y~=UU |] ==> Q|] ==> Q" |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
277 |
(fn prems => |
1461 | 278 |
[ |
279 |
(rtac (Exh_Ssum RS disjE) 1), |
|
280 |
(etac disjE 2), |
|
281 |
(eresolve_tac prems 1), |
|
282 |
(etac exE 1), |
|
283 |
(etac conjE 1), |
|
284 |
(eresolve_tac prems 1), |
|
285 |
(atac 1), |
|
286 |
(etac exE 1), |
|
287 |
(etac conjE 1), |
|
288 |
(eresolve_tac prems 1), |
|
289 |
(atac 1) |
|
290 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
291 |
|
892 | 292 |
qed_goal "IssumE2" Ssum0.thy |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
293 |
"[| !!x. [| p = Isinl(x) |] ==> Q; !!y. [| p = Isinr(y) |] ==> Q |] ==>Q" |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
294 |
(fn prems => |
1461 | 295 |
[ |
296 |
(rtac IssumE 1), |
|
297 |
(eresolve_tac prems 1), |
|
298 |
(eresolve_tac prems 1), |
|
299 |
(eresolve_tac prems 1) |
|
300 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
301 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
302 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
303 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
304 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
305 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
306 |
(* rewrites for Iwhen *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
307 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
308 |
|
892 | 309 |
qed_goalw "Iwhen1" Ssum0.thy [Iwhen_def] |
1461 | 310 |
"Iwhen f g (Isinl UU) = UU" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
311 |
(fn prems => |
1461 | 312 |
[ |
4535 | 313 |
(rtac select_equality 1), |
1461 | 314 |
(rtac conjI 1), |
315 |
(fast_tac HOL_cs 1), |
|
316 |
(rtac conjI 1), |
|
317 |
(strip_tac 1), |
|
318 |
(res_inst_tac [("P","a=UU")] notE 1), |
|
319 |
(fast_tac HOL_cs 1), |
|
320 |
(rtac inject_Isinl 1), |
|
321 |
(rtac sym 1), |
|
322 |
(fast_tac HOL_cs 1), |
|
323 |
(strip_tac 1), |
|
324 |
(res_inst_tac [("P","b=UU")] notE 1), |
|
325 |
(fast_tac HOL_cs 1), |
|
326 |
(rtac inject_Isinr 1), |
|
327 |
(rtac sym 1), |
|
328 |
(rtac (strict_IsinlIsinr RS subst) 1), |
|
329 |
(fast_tac HOL_cs 1), |
|
330 |
(fast_tac HOL_cs 1) |
|
331 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
332 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
333 |
|
892 | 334 |
qed_goalw "Iwhen2" Ssum0.thy [Iwhen_def] |
1461 | 335 |
"x~=UU ==> Iwhen f g (Isinl x) = f`x" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
336 |
(fn prems => |
1461 | 337 |
[ |
338 |
(cut_facts_tac prems 1), |
|
4535 | 339 |
(rtac select_equality 1), |
1461 | 340 |
(fast_tac HOL_cs 2), |
341 |
(rtac conjI 1), |
|
342 |
(strip_tac 1), |
|
343 |
(res_inst_tac [("P","x=UU")] notE 1), |
|
344 |
(atac 1), |
|
345 |
(rtac inject_Isinl 1), |
|
346 |
(atac 1), |
|
347 |
(rtac conjI 1), |
|
348 |
(strip_tac 1), |
|
349 |
(rtac cfun_arg_cong 1), |
|
350 |
(rtac inject_Isinl 1), |
|
351 |
(fast_tac HOL_cs 1), |
|
352 |
(strip_tac 1), |
|
353 |
(res_inst_tac [("P","Isinl(x) = Isinr(b)")] notE 1), |
|
354 |
(fast_tac HOL_cs 2), |
|
355 |
(rtac contrapos 1), |
|
356 |
(etac noteq_IsinlIsinr 2), |
|
357 |
(fast_tac HOL_cs 1) |
|
358 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
359 |
|
892 | 360 |
qed_goalw "Iwhen3" Ssum0.thy [Iwhen_def] |
1461 | 361 |
"y~=UU ==> Iwhen f g (Isinr y) = g`y" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
362 |
(fn prems => |
1461 | 363 |
[ |
364 |
(cut_facts_tac prems 1), |
|
4535 | 365 |
(rtac select_equality 1), |
1461 | 366 |
(fast_tac HOL_cs 2), |
367 |
(rtac conjI 1), |
|
368 |
(strip_tac 1), |
|
369 |
(res_inst_tac [("P","y=UU")] notE 1), |
|
370 |
(atac 1), |
|
371 |
(rtac inject_Isinr 1), |
|
372 |
(rtac (strict_IsinlIsinr RS subst) 1), |
|
373 |
(atac 1), |
|
374 |
(rtac conjI 1), |
|
375 |
(strip_tac 1), |
|
376 |
(res_inst_tac [("P","Isinr(y) = Isinl(a)")] notE 1), |
|
377 |
(fast_tac HOL_cs 2), |
|
378 |
(rtac contrapos 1), |
|
379 |
(etac (sym RS noteq_IsinlIsinr) 2), |
|
380 |
(fast_tac HOL_cs 1), |
|
381 |
(strip_tac 1), |
|
382 |
(rtac cfun_arg_cong 1), |
|
383 |
(rtac inject_Isinr 1), |
|
384 |
(fast_tac HOL_cs 1) |
|
385 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
386 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
387 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
388 |
(* instantiate the simplifier *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
389 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
390 |
|
4098 | 391 |
val Ssum0_ss = (simpset_of Cfun3.thy) addsimps |
1277
caef3601c0b2
corrected some errors that occurred after introduction of local simpsets
regensbu
parents:
1274
diff
changeset
|
392 |
[(strict_IsinlIsinr RS sym),Iwhen1,Iwhen2,Iwhen3]; |
caef3601c0b2
corrected some errors that occurred after introduction of local simpsets
regensbu
parents:
1274
diff
changeset
|
393 |