| author | huffman | 
| Thu, 07 Jun 2007 03:11:31 +0200 | |
| changeset 23287 | 063039db59dd | 
| parent 21865 | 55cc354fd2d9 | 
| child 23431 | 25ca91279a9b | 
| permissions | -rw-r--r-- | 
| 10751 | 1 | (* Title : HyperNat.thy | 
| 2 | Author : Jacques D. Fleuriot | |
| 3 | Copyright : 1998 University of Cambridge | |
| 14415 | 4 | |
| 5 | Converted to Isar and polished by lcp | |
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 6 | *) | 
| 10751 | 7 | |
| 17433 | 8 | header{*Hypernatural numbers*}
 | 
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 9 | |
| 15131 | 10 | theory HyperNat | 
| 21865 
55cc354fd2d9
moved several theorems; rearranged theory dependencies
 huffman parents: 
21864diff
changeset | 11 | imports StarClasses | 
| 15131 | 12 | begin | 
| 10751 | 13 | |
| 17299 | 14 | types hypnat = "nat star" | 
| 10751 | 15 | |
| 19380 | 16 | abbreviation | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20740diff
changeset | 17 | hypnat_of_nat :: "nat => nat star" where | 
| 19380 | 18 | "hypnat_of_nat == star_of" | 
| 10751 | 19 | |
| 21847 
59a68ed9f2f2
redefine hSuc as *f* Suc, and move to HyperNat.thy
 huffman parents: 
21787diff
changeset | 20 | definition | 
| 
59a68ed9f2f2
redefine hSuc as *f* Suc, and move to HyperNat.thy
 huffman parents: 
21787diff
changeset | 21 | hSuc :: "hypnat => hypnat" where | 
| 
59a68ed9f2f2
redefine hSuc as *f* Suc, and move to HyperNat.thy
 huffman parents: 
21787diff
changeset | 22 | hSuc_def [transfer_unfold]: "hSuc = *f* Suc" | 
| 
59a68ed9f2f2
redefine hSuc as *f* Suc, and move to HyperNat.thy
 huffman parents: 
21787diff
changeset | 23 | |
| 17433 | 24 | subsection{*Properties Transferred from Naturals*}
 | 
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 25 | |
| 21847 
59a68ed9f2f2
redefine hSuc as *f* Suc, and move to HyperNat.thy
 huffman parents: 
21787diff
changeset | 26 | lemma hSuc_not_zero [iff]: "\<And>m. hSuc m \<noteq> 0" | 
| 
59a68ed9f2f2
redefine hSuc as *f* Suc, and move to HyperNat.thy
 huffman parents: 
21787diff
changeset | 27 | by transfer (rule Suc_not_Zero) | 
| 
59a68ed9f2f2
redefine hSuc as *f* Suc, and move to HyperNat.thy
 huffman parents: 
21787diff
changeset | 28 | |
| 
59a68ed9f2f2
redefine hSuc as *f* Suc, and move to HyperNat.thy
 huffman parents: 
21787diff
changeset | 29 | lemma zero_not_hSuc [iff]: "\<And>m. 0 \<noteq> hSuc m" | 
| 
59a68ed9f2f2
redefine hSuc as *f* Suc, and move to HyperNat.thy
 huffman parents: 
21787diff
changeset | 30 | by transfer (rule Zero_not_Suc) | 
| 
59a68ed9f2f2
redefine hSuc as *f* Suc, and move to HyperNat.thy
 huffman parents: 
21787diff
changeset | 31 | |
| 
59a68ed9f2f2
redefine hSuc as *f* Suc, and move to HyperNat.thy
 huffman parents: 
21787diff
changeset | 32 | lemma hSuc_hSuc_eq [iff]: "\<And>m n. (hSuc m = hSuc n) = (m = n)" | 
| 
59a68ed9f2f2
redefine hSuc as *f* Suc, and move to HyperNat.thy
 huffman parents: 
21787diff
changeset | 33 | by transfer (rule Suc_Suc_eq) | 
| 
59a68ed9f2f2
redefine hSuc as *f* Suc, and move to HyperNat.thy
 huffman parents: 
21787diff
changeset | 34 | |
| 21865 
55cc354fd2d9
moved several theorems; rearranged theory dependencies
 huffman parents: 
21864diff
changeset | 35 | lemma zero_less_hSuc [iff]: "\<And>n. 0 < hSuc n" | 
| 
55cc354fd2d9
moved several theorems; rearranged theory dependencies
 huffman parents: 
21864diff
changeset | 36 | by transfer (rule zero_less_Suc) | 
| 
55cc354fd2d9
moved several theorems; rearranged theory dependencies
 huffman parents: 
21864diff
changeset | 37 | |
| 17318 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 38 | lemma hypnat_minus_zero [simp]: "!!z. z - z = (0::hypnat)" | 
| 17299 | 39 | by transfer (rule diff_self_eq_0) | 
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 40 | |
| 17318 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 41 | lemma hypnat_diff_0_eq_0 [simp]: "!!n. (0::hypnat) - n = 0" | 
| 17299 | 42 | by transfer (rule diff_0_eq_0) | 
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 43 | |
| 17318 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 44 | lemma hypnat_add_is_0 [iff]: "!!m n. (m+n = (0::hypnat)) = (m=0 & n=0)" | 
| 17299 | 45 | by transfer (rule add_is_0) | 
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 46 | |
| 17299 | 47 | lemma hypnat_diff_diff_left: "!!i j k. (i::hypnat) - j - k = i - (j+k)" | 
| 48 | by transfer (rule diff_diff_left) | |
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 49 | |
| 17299 | 50 | lemma hypnat_diff_commute: "!!i j k. (i::hypnat) - j - k = i-k-j" | 
| 51 | by transfer (rule diff_commute) | |
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 52 | |
| 17318 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 53 | lemma hypnat_diff_add_inverse [simp]: "!!m n. ((n::hypnat) + m) - n = m" | 
| 17299 | 54 | by transfer (rule diff_add_inverse) | 
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 55 | |
| 17318 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 56 | lemma hypnat_diff_add_inverse2 [simp]: "!!m n. ((m::hypnat) + n) - n = m" | 
| 17299 | 57 | by transfer (rule diff_add_inverse2) | 
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 58 | |
| 17318 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 59 | lemma hypnat_diff_cancel [simp]: "!!k m n. ((k::hypnat) + m) - (k+n) = m - n" | 
| 17299 | 60 | by transfer (rule diff_cancel) | 
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 61 | |
| 17318 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 62 | lemma hypnat_diff_cancel2 [simp]: "!!k m n. ((m::hypnat) + k) - (n+k) = m - n" | 
| 17299 | 63 | by transfer (rule diff_cancel2) | 
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 64 | |
| 17318 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 65 | lemma hypnat_diff_add_0 [simp]: "!!m n. (n::hypnat) - (n+m) = (0::hypnat)" | 
| 17299 | 66 | by transfer (rule diff_add_0) | 
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 67 | |
| 17299 | 68 | lemma hypnat_diff_mult_distrib: "!!k m n. ((m::hypnat) - n) * k = (m * k) - (n * k)" | 
| 69 | by transfer (rule diff_mult_distrib) | |
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 70 | |
| 17299 | 71 | lemma hypnat_diff_mult_distrib2: "!!k m n. (k::hypnat) * (m - n) = (k * m) - (k * n)" | 
| 72 | by transfer (rule diff_mult_distrib2) | |
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 73 | |
| 17299 | 74 | lemma hypnat_le_zero_cancel [iff]: "!!n. (n \<le> (0::hypnat)) = (n = 0)" | 
| 75 | by transfer (rule le_0_eq) | |
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14415diff
changeset | 76 | |
| 17299 | 77 | lemma hypnat_mult_is_0 [simp]: "!!m n. (m*n = (0::hypnat)) = (m=0 | n=0)" | 
| 78 | by transfer (rule mult_is_0) | |
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 79 | |
| 17299 | 80 | lemma hypnat_diff_is_0_eq [simp]: "!!m n. ((m::hypnat) - n = 0) = (m \<le> n)" | 
| 81 | by transfer (rule diff_is_0_eq) | |
| 14378 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 82 | |
| 17299 | 83 | lemma hypnat_not_less0 [iff]: "!!n. ~ n < (0::hypnat)" | 
| 84 | by transfer (rule not_less0) | |
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 85 | |
| 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 86 | lemma hypnat_less_one [iff]: | 
| 17299 | 87 | "!!n. (n < (1::hypnat)) = (n=0)" | 
| 88 | by transfer (rule less_one) | |
| 89 | ||
| 90 | lemma hypnat_add_diff_inverse: "!!m n. ~ m<n ==> n+(m-n) = (m::hypnat)" | |
| 91 | by transfer (rule add_diff_inverse) | |
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 92 | |
| 17299 | 93 | lemma hypnat_le_add_diff_inverse [simp]: "!!m n. n \<le> m ==> n+(m-n) = (m::hypnat)" | 
| 94 | by transfer (rule le_add_diff_inverse) | |
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 95 | |
| 17299 | 96 | lemma hypnat_le_add_diff_inverse2 [simp]: "!!m n. n\<le>m ==> (m-n)+n = (m::hypnat)" | 
| 97 | by transfer (rule le_add_diff_inverse2) | |
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 98 | |
| 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 99 | declare hypnat_le_add_diff_inverse2 [OF order_less_imp_le] | 
| 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 100 | |
| 17299 | 101 | lemma hypnat_le0 [iff]: "!!n. (0::hypnat) \<le> n" | 
| 102 | by transfer (rule le0) | |
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 103 | |
| 20740 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 104 | lemma hypnat_le_add1 [simp]: "!!x n. (x::hypnat) \<le> x + n" | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 105 | by transfer (rule le_add1) | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 106 | |
| 17299 | 107 | lemma hypnat_add_self_le [simp]: "!!x n. (x::hypnat) \<le> n + x" | 
| 108 | by transfer (rule le_add2) | |
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 109 | |
| 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 110 | lemma hypnat_add_one_self_less [simp]: "(x::hypnat) < x + (1::hypnat)" | 
| 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 111 | by (insert add_strict_left_mono [OF zero_less_one], auto) | 
| 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 112 | |
| 17433 | 113 | lemma hypnat_neq0_conv [iff]: "!!n. (n \<noteq> 0) = (0 < (n::hypnat))" | 
| 114 | by transfer (rule neq0_conv) | |
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 115 | |
| 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 116 | lemma hypnat_gt_zero_iff: "((0::hypnat) < n) = ((1::hypnat) \<le> n)" | 
| 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 117 | by (auto simp add: linorder_not_less [symmetric]) | 
| 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 118 | |
| 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 119 | lemma hypnat_gt_zero_iff2: "(0 < n) = (\<exists>m. n = m + (1::hypnat))" | 
| 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 120 | apply safe | 
| 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 121 | apply (rule_tac x = "n - (1::hypnat) " in exI) | 
| 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 122 | apply (simp add: hypnat_gt_zero_iff) | 
| 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 123 | apply (insert add_le_less_mono [OF _ zero_less_one, of 0], auto) | 
| 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 124 | done | 
| 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 125 | |
| 14378 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 126 | lemma hypnat_add_self_not_less: "~ (x + y < (x::hypnat))" | 
| 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 127 | by (simp add: linorder_not_le [symmetric] add_commute [of x]) | 
| 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 128 | |
| 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 129 | lemma hypnat_diff_split: | 
| 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 130 | "P(a - b::hypnat) = ((a<b --> P 0) & (ALL d. a = b + d --> P d))" | 
| 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 131 |     -- {* elimination of @{text -} on @{text hypnat} *}
 | 
| 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 132 | proof (cases "a<b" rule: case_split) | 
| 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 133 | case True | 
| 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 134 | thus ?thesis | 
| 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 135 | by (auto simp add: hypnat_add_self_not_less order_less_imp_le | 
| 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 136 | hypnat_diff_is_0_eq [THEN iffD2]) | 
| 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 137 | next | 
| 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 138 | case False | 
| 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 139 | thus ?thesis | 
| 14468 | 140 | by (auto simp add: linorder_not_less dest: order_le_less_trans) | 
| 14378 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 141 | qed | 
| 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 142 | |
| 17433 | 143 | subsection{*Properties of the set of embedded natural numbers*}
 | 
| 14378 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 144 | |
| 20740 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 145 | lemma of_nat_eq_star_of [simp]: "of_nat = star_of" | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 146 | proof | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 147 | fix n :: nat | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 148 | show "of_nat n = star_of n" by transfer simp | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 149 | qed | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 150 | |
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 151 | lemma Nats_eq_Standard: "(Nats :: nat star set) = Standard" | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 152 | by (auto simp add: Nats_def Standard_def) | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 153 | |
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 154 | lemma hypnat_of_nat_mem_Nats [simp]: "hypnat_of_nat n \<in> Nats" | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 155 | by (simp add: Nats_eq_Standard) | 
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 156 | |
| 14378 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 157 | lemma hypnat_of_nat_one [simp]: "hypnat_of_nat (Suc 0) = (1::hypnat)" | 
| 20740 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 158 | by transfer simp | 
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 159 | |
| 14378 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 160 | lemma hypnat_of_nat_Suc [simp]: | 
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 161 | "hypnat_of_nat (Suc n) = hypnat_of_nat n + (1::hypnat)" | 
| 20740 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 162 | by transfer simp | 
| 14378 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 163 | |
| 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 164 | lemma of_nat_eq_add [rule_format]: | 
| 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 165 | "\<forall>d::hypnat. of_nat m = of_nat n + d --> d \<in> range of_nat" | 
| 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 166 | apply (induct n) | 
| 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 167 | apply (auto simp add: add_assoc) | 
| 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 168 | apply (case_tac x) | 
| 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 169 | apply (auto simp add: add_commute [of 1]) | 
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 170 | done | 
| 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 171 | |
| 14378 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 172 | lemma Nats_diff [simp]: "[|a \<in> Nats; b \<in> Nats|] ==> (a-b :: hypnat) \<in> Nats" | 
| 20740 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 173 | by (simp add: Nats_eq_Standard) | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 174 | |
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 175 | |
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 176 | subsection{*Infinite Hypernatural Numbers -- @{term HNatInfinite}*}
 | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 177 | |
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 178 | definition | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 179 | (* the set of infinite hypernatural numbers *) | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20740diff
changeset | 180 | HNatInfinite :: "hypnat set" where | 
| 20740 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 181 |   "HNatInfinite = {n. n \<notin> Nats}"
 | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 182 | |
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 183 | lemma Nats_not_HNatInfinite_iff: "(x \<in> Nats) = (x \<notin> HNatInfinite)" | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 184 | by (simp add: HNatInfinite_def) | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 185 | |
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 186 | lemma HNatInfinite_not_Nats_iff: "(x \<in> HNatInfinite) = (x \<notin> Nats)" | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 187 | by (simp add: HNatInfinite_def) | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 188 | |
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 189 | lemma star_of_neq_HNatInfinite: "N \<in> HNatInfinite \<Longrightarrow> star_of n \<noteq> N" | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 190 | by (auto simp add: HNatInfinite_def Nats_eq_Standard) | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 191 | |
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 192 | lemma star_of_Suc_lessI: | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 193 | "\<And>N. \<lbrakk>star_of n < N; star_of (Suc n) \<noteq> N\<rbrakk> \<Longrightarrow> star_of (Suc n) < N" | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 194 | by transfer (rule Suc_lessI) | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 195 | |
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 196 | lemma star_of_less_HNatInfinite: | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 197 | assumes N: "N \<in> HNatInfinite" | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 198 | shows "star_of n < N" | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 199 | proof (induct n) | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 200 | case 0 | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 201 | from N have "star_of 0 \<noteq> N" by (rule star_of_neq_HNatInfinite) | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 202 | thus "star_of 0 < N" by simp | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 203 | next | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 204 | case (Suc n) | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 205 | from N have "star_of (Suc n) \<noteq> N" by (rule star_of_neq_HNatInfinite) | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 206 | with Suc show "star_of (Suc n) < N" by (rule star_of_Suc_lessI) | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 207 | qed | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 208 | |
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 209 | lemma star_of_le_HNatInfinite: "N \<in> HNatInfinite \<Longrightarrow> star_of n \<le> N" | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 210 | by (rule star_of_less_HNatInfinite [THEN order_less_imp_le]) | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 211 | |
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 212 | subsubsection {* Closure Rules *}
 | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 213 | |
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 214 | lemma Nats_less_HNatInfinite: "\<lbrakk>x \<in> Nats; y \<in> HNatInfinite\<rbrakk> \<Longrightarrow> x < y" | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 215 | by (auto simp add: Nats_def star_of_less_HNatInfinite) | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 216 | |
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 217 | lemma Nats_le_HNatInfinite: "\<lbrakk>x \<in> Nats; y \<in> HNatInfinite\<rbrakk> \<Longrightarrow> x \<le> y" | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 218 | by (rule Nats_less_HNatInfinite [THEN order_less_imp_le]) | 
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 219 | |
| 20740 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 220 | lemma zero_less_HNatInfinite: "x \<in> HNatInfinite \<Longrightarrow> 0 < x" | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 221 | by (simp add: Nats_less_HNatInfinite) | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 222 | |
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 223 | lemma one_less_HNatInfinite: "x \<in> HNatInfinite \<Longrightarrow> 1 < x" | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 224 | by (simp add: Nats_less_HNatInfinite) | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 225 | |
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 226 | lemma one_le_HNatInfinite: "x \<in> HNatInfinite \<Longrightarrow> 1 \<le> x" | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 227 | by (simp add: Nats_le_HNatInfinite) | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 228 | |
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 229 | lemma zero_not_mem_HNatInfinite [simp]: "0 \<notin> HNatInfinite" | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 230 | by (simp add: HNatInfinite_def) | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 231 | |
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 232 | lemma Nats_downward_closed: | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 233 | "\<lbrakk>x \<in> Nats; (y::hypnat) \<le> x\<rbrakk> \<Longrightarrow> y \<in> Nats" | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 234 | apply (simp only: linorder_not_less [symmetric]) | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 235 | apply (erule contrapos_np) | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 236 | apply (drule HNatInfinite_not_Nats_iff [THEN iffD2]) | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 237 | apply (erule (1) Nats_less_HNatInfinite) | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 238 | done | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 239 | |
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 240 | lemma HNatInfinite_upward_closed: | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 241 | "\<lbrakk>x \<in> HNatInfinite; x \<le> y\<rbrakk> \<Longrightarrow> y \<in> HNatInfinite" | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 242 | apply (simp only: HNatInfinite_not_Nats_iff) | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 243 | apply (erule contrapos_nn) | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 244 | apply (erule (1) Nats_downward_closed) | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 245 | done | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 246 | |
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 247 | lemma HNatInfinite_add: "x \<in> HNatInfinite \<Longrightarrow> x + y \<in> HNatInfinite" | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 248 | apply (erule HNatInfinite_upward_closed) | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 249 | apply (rule hypnat_le_add1) | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 250 | done | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 251 | |
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 252 | lemma HNatInfinite_add_one: "x \<in> HNatInfinite \<Longrightarrow> x + 1 \<in> HNatInfinite" | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 253 | by (rule HNatInfinite_add) | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 254 | |
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 255 | lemma HNatInfinite_diff: | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 256 | "\<lbrakk>x \<in> HNatInfinite; y \<in> Nats\<rbrakk> \<Longrightarrow> x - y \<in> HNatInfinite" | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 257 | apply (frule (1) Nats_le_HNatInfinite) | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 258 | apply (simp only: HNatInfinite_not_Nats_iff) | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 259 | apply (erule contrapos_nn) | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 260 | apply (drule (1) Nats_add, simp) | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 261 | done | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 262 | |
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 263 | lemma HNatInfinite_is_Suc: "x \<in> HNatInfinite ==> \<exists>y. x = y + (1::hypnat)" | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 264 | apply (rule_tac x = "x - (1::hypnat) " in exI) | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 265 | apply (simp add: Nats_le_HNatInfinite) | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 266 | done | 
| 17433 | 267 | |
| 268 | ||
| 269 | subsection{*Existence of an infinite hypernatural number*}
 | |
| 270 | ||
| 19765 | 271 | definition | 
| 17433 | 272 | (* omega is in fact an infinite hypernatural number = [<1,2,3,...>] *) | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20740diff
changeset | 273 | whn :: hypnat where | 
| 19765 | 274 | hypnat_omega_def: "whn = star_n (%n::nat. n)" | 
| 17433 | 275 | |
| 20740 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 276 | lemma hypnat_of_nat_neq_whn: "hypnat_of_nat n \<noteq> whn" | 
| 21855 
74909ecaf20a
remove ultra tactic and redundant FreeUltrafilterNat lemmas
 huffman parents: 
21847diff
changeset | 277 | by (simp add: hypnat_omega_def star_of_def star_n_eq_iff) | 
| 20740 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 278 | |
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 279 | lemma whn_neq_hypnat_of_nat: "whn \<noteq> hypnat_of_nat n" | 
| 21855 
74909ecaf20a
remove ultra tactic and redundant FreeUltrafilterNat lemmas
 huffman parents: 
21847diff
changeset | 280 | by (simp add: hypnat_omega_def star_of_def star_n_eq_iff) | 
| 20740 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 281 | |
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 282 | lemma whn_not_Nats [simp]: "whn \<notin> Nats" | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 283 | by (simp add: Nats_def image_def whn_neq_hypnat_of_nat) | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 284 | |
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 285 | lemma HNatInfinite_whn [simp]: "whn \<in> HNatInfinite" | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 286 | by (simp add: HNatInfinite_def) | 
| 17433 | 287 | |
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 288 | lemma lemma_unbounded_set [simp]: "{n::nat. m < n} \<in> FreeUltrafilterNat"
 | 
| 14378 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 289 | apply (insert finite_atMost [of m]) | 
| 21855 
74909ecaf20a
remove ultra tactic and redundant FreeUltrafilterNat lemmas
 huffman parents: 
21847diff
changeset | 290 | apply (simp add: atMost_def) | 
| 
74909ecaf20a
remove ultra tactic and redundant FreeUltrafilterNat lemmas
 huffman parents: 
21847diff
changeset | 291 | apply (drule FreeUltrafilterNat.finite) | 
| 
74909ecaf20a
remove ultra tactic and redundant FreeUltrafilterNat lemmas
 huffman parents: 
21847diff
changeset | 292 | apply (drule FreeUltrafilterNat.not_memD) | 
| 
74909ecaf20a
remove ultra tactic and redundant FreeUltrafilterNat lemmas
 huffman parents: 
21847diff
changeset | 293 | apply (simp add: Collect_neg_eq [symmetric] linorder_not_le) | 
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 294 | done | 
| 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 295 | |
| 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 296 | lemma Compl_Collect_le: "- {n::nat. N \<le> n} = {n. n < N}"
 | 
| 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 297 | by (simp add: Collect_neg_eq [symmetric] linorder_not_le) | 
| 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 298 | |
| 14378 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 299 | lemma hypnat_of_nat_eq: | 
| 17318 
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
 huffman parents: 
17299diff
changeset | 300 | "hypnat_of_nat m = star_n (%n::nat. m)" | 
| 17429 
e8d6ed3aacfe
merged Transfer.thy and StarType.thy into StarDef.thy; renamed Ifun2_of to starfun2; cleaned up
 huffman parents: 
17332diff
changeset | 301 | by (simp add: star_of_def) | 
| 14378 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 302 | |
| 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 303 | lemma SHNat_eq: "Nats = {n. \<exists>N. n = hypnat_of_nat N}"
 | 
| 20740 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 304 | by (simp add: Nats_def image_def) | 
| 14378 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 305 | |
| 20740 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 306 | lemma Nats_less_whn: "n \<in> Nats \<Longrightarrow> n < whn" | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 307 | by (simp add: Nats_less_HNatInfinite) | 
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 308 | |
| 20740 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 309 | lemma Nats_le_whn: "n \<in> Nats \<Longrightarrow> n \<le> whn" | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 310 | by (simp add: Nats_le_HNatInfinite) | 
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 311 | |
| 14378 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 312 | lemma hypnat_of_nat_less_whn [simp]: "hypnat_of_nat n < whn" | 
| 20740 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 313 | by (simp add: Nats_less_whn) | 
| 14378 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 314 | |
| 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 315 | lemma hypnat_of_nat_le_whn [simp]: "hypnat_of_nat n \<le> whn" | 
| 20740 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 316 | by (simp add: Nats_le_whn) | 
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 317 | |
| 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 318 | lemma hypnat_zero_less_hypnat_omega [simp]: "0 < whn" | 
| 20740 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 319 | by (simp add: Nats_less_whn) | 
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 320 | |
| 20740 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 321 | lemma hypnat_one_less_hypnat_omega [simp]: "1 < whn" | 
| 
5a103b43da5a
reorganized HNatInfinite proofs; simplified and renamed some lemmas
 huffman parents: 
20730diff
changeset | 322 | by (simp add: Nats_less_whn) | 
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 323 | |
| 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 324 | |
| 17433 | 325 | subsubsection{*Alternative characterization of the set of infinite hypernaturals*}
 | 
| 15070 | 326 | |
| 327 | text{* @{term "HNatInfinite = {N. \<forall>n \<in> Nats. n < N}"}*}
 | |
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 328 | |
| 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 329 | (*??delete? similar reasoning in hypnat_omega_gt_SHNat above*) | 
| 14378 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 330 | lemma HNatInfinite_FreeUltrafilterNat_lemma: | 
| 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 331 |      "\<forall>N::nat. {n. f n \<noteq> N} \<in> FreeUltrafilterNat
 | 
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 332 |       ==> {n. N < f n} \<in> FreeUltrafilterNat"
 | 
| 15251 | 333 | apply (induct_tac N) | 
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 334 | apply (drule_tac x = 0 in spec) | 
| 21855 
74909ecaf20a
remove ultra tactic and redundant FreeUltrafilterNat lemmas
 huffman parents: 
21847diff
changeset | 335 | apply (rule ccontr, drule FreeUltrafilterNat.not_memD, drule FreeUltrafilterNat.Int, assumption, simp) | 
| 
74909ecaf20a
remove ultra tactic and redundant FreeUltrafilterNat lemmas
 huffman parents: 
21847diff
changeset | 336 | apply (drule_tac x = "Suc n" in spec) | 
| 
74909ecaf20a
remove ultra tactic and redundant FreeUltrafilterNat lemmas
 huffman parents: 
21847diff
changeset | 337 | apply (elim ultra, auto) | 
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 338 | done | 
| 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 339 | |
| 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 340 | lemma HNatInfinite_iff: "HNatInfinite = {N. \<forall>n \<in> Nats. n < N}"
 | 
| 21855 
74909ecaf20a
remove ultra tactic and redundant FreeUltrafilterNat lemmas
 huffman parents: 
21847diff
changeset | 341 | apply (safe intro!: Nats_less_HNatInfinite) | 
| 
74909ecaf20a
remove ultra tactic and redundant FreeUltrafilterNat lemmas
 huffman parents: 
21847diff
changeset | 342 | apply (auto simp add: HNatInfinite_def) | 
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 343 | done | 
| 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 344 | |
| 14378 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 345 | |
| 17433 | 346 | subsubsection{*Alternative Characterization of @{term HNatInfinite} using 
 | 
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 347 | Free Ultrafilter*} | 
| 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 348 | |
| 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 349 | lemma HNatInfinite_FreeUltrafilterNat: | 
| 20552 
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
 huffman parents: 
19765diff
changeset | 350 |      "star_n X \<in> HNatInfinite ==> \<forall>u. {n. u < X n}:  FreeUltrafilterNat"
 | 
| 
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
 huffman parents: 
19765diff
changeset | 351 | apply (auto simp add: HNatInfinite_iff SHNat_eq) | 
| 
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
 huffman parents: 
19765diff
changeset | 352 | apply (drule_tac x="star_of u" in spec, simp) | 
| 21865 
55cc354fd2d9
moved several theorems; rearranged theory dependencies
 huffman parents: 
21864diff
changeset | 353 | apply (simp add: star_of_def star_less_def starP2_star_n) | 
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 354 | done | 
| 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 355 | |
| 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 356 | lemma FreeUltrafilterNat_HNatInfinite: | 
| 20552 
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
 huffman parents: 
19765diff
changeset | 357 |      "\<forall>u. {n. u < X n}:  FreeUltrafilterNat ==> star_n X \<in> HNatInfinite"
 | 
| 21865 
55cc354fd2d9
moved several theorems; rearranged theory dependencies
 huffman parents: 
21864diff
changeset | 358 | by (auto simp add: star_less_def starP2_star_n HNatInfinite_iff SHNat_eq hypnat_of_nat_eq) | 
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 359 | |
| 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 360 | lemma HNatInfinite_FreeUltrafilterNat_iff: | 
| 20552 
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
 huffman parents: 
19765diff
changeset | 361 |      "(star_n X \<in> HNatInfinite) = (\<forall>u. {n. u < X n}:  FreeUltrafilterNat)"
 | 
| 
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
 huffman parents: 
19765diff
changeset | 362 | by (rule iffI [OF HNatInfinite_FreeUltrafilterNat | 
| 
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
 huffman parents: 
19765diff
changeset | 363 | FreeUltrafilterNat_HNatInfinite]) | 
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 364 | |
| 21864 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 365 | subsection {* Embedding of the Hypernaturals into other types *}
 | 
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 366 | |
| 19765 | 367 | definition | 
| 21864 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 368 | of_hypnat :: "hypnat \<Rightarrow> 'a::semiring_1_cancel star" where | 
| 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 369 | of_hypnat_def [transfer_unfold]: "of_hypnat = *f* of_nat" | 
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 370 | |
| 21864 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 371 | lemma of_hypnat_0 [simp]: "of_hypnat 0 = 0" | 
| 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 372 | by transfer (rule of_nat_0) | 
| 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 373 | |
| 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 374 | lemma of_hypnat_1 [simp]: "of_hypnat 1 = 1" | 
| 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 375 | by transfer (rule of_nat_1) | 
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 376 | |
| 21864 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 377 | lemma of_hypnat_hSuc: "\<And>m. of_hypnat (hSuc m) = of_hypnat m + 1" | 
| 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 378 | by transfer (rule of_nat_Suc) | 
| 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 379 | |
| 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 380 | lemma of_hypnat_add [simp]: | 
| 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 381 | "\<And>m n. of_hypnat (m + n) = of_hypnat m + of_hypnat n" | 
| 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 382 | by transfer (rule of_nat_add) | 
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 383 | |
| 21864 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 384 | lemma of_hypnat_mult [simp]: | 
| 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 385 | "\<And>m n. of_hypnat (m * n) = of_hypnat m * of_hypnat n" | 
| 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 386 | by transfer (rule of_nat_mult) | 
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 387 | |
| 21864 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 388 | lemma of_hypnat_less_iff [simp]: | 
| 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 389 | "\<And>m n. (of_hypnat m < (of_hypnat n::'a::ordered_semidom star)) = (m < n)" | 
| 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 390 | by transfer (rule of_nat_less_iff) | 
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 391 | |
| 21864 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 392 | lemma of_hypnat_0_less_iff [simp]: | 
| 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 393 | "\<And>n. (0 < (of_hypnat n::'a::ordered_semidom star)) = (0 < n)" | 
| 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 394 | by transfer (rule of_nat_0_less_iff) | 
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 395 | |
| 21864 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 396 | lemma of_hypnat_less_0_iff [simp]: | 
| 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 397 | "\<And>m. \<not> (of_hypnat m::'a::ordered_semidom star) < 0" | 
| 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 398 | by transfer (rule of_nat_less_0_iff) | 
| 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 399 | |
| 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 400 | lemma of_hypnat_le_iff [simp]: | 
| 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 401 | "\<And>m n. (of_hypnat m \<le> (of_hypnat n::'a::ordered_semidom star)) = (m \<le> n)" | 
| 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 402 | by transfer (rule of_nat_le_iff) | 
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 403 | |
| 21864 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 404 | lemma of_hypnat_0_le_iff [simp]: | 
| 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 405 | "\<And>n. 0 \<le> (of_hypnat n::'a::ordered_semidom star)" | 
| 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 406 | by transfer (rule of_nat_0_le_iff) | 
| 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 407 | |
| 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 408 | lemma of_hypnat_le_0_iff [simp]: | 
| 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 409 | "\<And>m. ((of_hypnat m::'a::ordered_semidom star) \<le> 0) = (m = 0)" | 
| 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 410 | by transfer (rule of_nat_le_0_iff) | 
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 411 | |
| 21864 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 412 | lemma of_hypnat_eq_iff [simp]: | 
| 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 413 | "\<And>m n. (of_hypnat m = (of_hypnat n::'a::ordered_semidom star)) = (m = n)" | 
| 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 414 | by transfer (rule of_nat_eq_iff) | 
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 415 | |
| 21864 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 416 | lemma of_hypnat_eq_0_iff [simp]: | 
| 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 417 | "\<And>m. ((of_hypnat m::'a::ordered_semidom star) = 0) = (m = 0)" | 
| 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 418 | by transfer (rule of_nat_eq_0_iff) | 
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 419 | |
| 21864 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 420 | lemma HNatInfinite_of_hypnat_gt_zero: | 
| 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 421 | "N \<in> HNatInfinite \<Longrightarrow> (0::'a::ordered_semidom star) < of_hypnat N" | 
| 
2ecfd8985982
hypreal_of_hypnat abbreviates more general of_hypnat
 huffman parents: 
21855diff
changeset | 422 | by (rule ccontr, simp add: linorder_not_less) | 
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14415diff
changeset | 423 | |
| 14371 
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
 paulson parents: 
13487diff
changeset | 424 | end |