| 31381 |      1 | 
 | 
|  |      2 | (* Author: Florian Haftmann, TU Muenchen *)
 | 
|  |      3 | 
 | 
|  |      4 | header {* Comparing growth of functions on natural numbers by a preorder relation *}
 | 
|  |      5 | 
 | 
|  |      6 | theory Landau
 | 
|  |      7 | imports Main Preorder
 | 
|  |      8 | begin
 | 
|  |      9 | 
 | 
|  |     10 | text {*
 | 
|  |     11 |   We establish a preorder releation @{text "\<lesssim>"} on functions
 | 
|  |     12 |   from @{text "\<nat>"} to @{text "\<nat>"} such that @{text "f \<lesssim> g \<longleftrightarrow> f \<in> O(g)"}.
 | 
|  |     13 | *}
 | 
|  |     14 | 
 | 
|  |     15 | subsection {* Auxiliary *}
 | 
|  |     16 | 
 | 
|  |     17 | lemma Ex_All_bounded:
 | 
|  |     18 |   fixes n :: nat
 | 
|  |     19 |   assumes "\<exists>n. \<forall>m\<ge>n. P m"
 | 
|  |     20 |   obtains m where "m \<ge> n" and "P m"
 | 
|  |     21 | proof -
 | 
|  |     22 |   from assms obtain q where m_q: "\<forall>m\<ge>q. P m" ..
 | 
|  |     23 |   let ?m = "max q n"
 | 
|  |     24 |   have "?m \<ge> n" by auto
 | 
|  |     25 |   moreover from m_q have "P ?m" by auto
 | 
|  |     26 |   ultimately show thesis ..
 | 
|  |     27 | qed
 | 
|  |     28 |     
 | 
|  |     29 | 
 | 
|  |     30 | subsection {* The @{text "\<lesssim>"} relation *}
 | 
|  |     31 | 
 | 
|  |     32 | definition less_eq_fun :: "(nat \<Rightarrow> nat) \<Rightarrow> (nat \<Rightarrow> nat) \<Rightarrow> bool" (infix "\<lesssim>" 50) where
 | 
|  |     33 |   "f \<lesssim> g \<longleftrightarrow> (\<exists>c n. \<forall>m\<ge>n. f m \<le> Suc c * g m)"
 | 
|  |     34 | 
 | 
|  |     35 | lemma less_eq_fun_intro:
 | 
|  |     36 |   assumes "\<exists>c n. \<forall>m\<ge>n. f m \<le> Suc c * g m"
 | 
|  |     37 |   shows "f \<lesssim> g"
 | 
|  |     38 |   unfolding less_eq_fun_def by (rule assms)
 | 
|  |     39 | 
 | 
|  |     40 | lemma less_eq_fun_not_intro:
 | 
|  |     41 |   assumes "\<And>c n. \<exists>m\<ge>n. Suc c * g m < f m"
 | 
|  |     42 |   shows "\<not> f \<lesssim> g"
 | 
|  |     43 |   using assms unfolding less_eq_fun_def linorder_not_le [symmetric]
 | 
|  |     44 |   by blast
 | 
|  |     45 | 
 | 
|  |     46 | lemma less_eq_fun_elim:
 | 
|  |     47 |   assumes "f \<lesssim> g"
 | 
|  |     48 |   obtains n c where "\<And>m. m \<ge> n \<Longrightarrow> f m \<le> Suc c * g m"
 | 
|  |     49 |   using assms unfolding less_eq_fun_def by blast
 | 
|  |     50 | 
 | 
|  |     51 | lemma less_eq_fun_not_elim:
 | 
|  |     52 |   assumes "\<not> f \<lesssim> g"
 | 
|  |     53 |   obtains m where "m \<ge> n" and "Suc c * g m < f m"
 | 
|  |     54 |   using assms unfolding less_eq_fun_def linorder_not_le [symmetric]
 | 
|  |     55 |   by blast
 | 
|  |     56 | 
 | 
|  |     57 | lemma less_eq_fun_refl:
 | 
|  |     58 |   "f \<lesssim> f"
 | 
|  |     59 | proof (rule less_eq_fun_intro)
 | 
|  |     60 |   have "\<exists>n. \<forall>m\<ge>n. f m \<le> Suc 0 * f m" by auto
 | 
|  |     61 |   then show "\<exists>c n. \<forall>m\<ge>n. f m \<le> Suc c * f m" by blast
 | 
|  |     62 | qed
 | 
|  |     63 | 
 | 
|  |     64 | lemma less_eq_fun_trans:
 | 
|  |     65 |   assumes f_g: "f \<lesssim> g" and g_h: "g \<lesssim> h"
 | 
|  |     66 |   shows f_h: "f \<lesssim> h"
 | 
|  |     67 | proof -
 | 
|  |     68 |   from f_g obtain n\<^isub>1 c\<^isub>1
 | 
|  |     69 |     where P1: "\<And>m. m \<ge> n\<^isub>1 \<Longrightarrow> f m \<le> Suc c\<^isub>1 * g m"
 | 
|  |     70 |   by (erule less_eq_fun_elim)
 | 
|  |     71 |   moreover from g_h obtain n\<^isub>2 c\<^isub>2
 | 
|  |     72 |     where P2: "\<And>m. m \<ge> n\<^isub>2 \<Longrightarrow> g m \<le> Suc c\<^isub>2 * h m"
 | 
|  |     73 |   by (erule less_eq_fun_elim)
 | 
|  |     74 |   ultimately have "\<And>m. m \<ge> max n\<^isub>1 n\<^isub>2 \<Longrightarrow> f m \<le> Suc c\<^isub>1 * g m \<and> g m \<le> Suc c\<^isub>2 * h m"
 | 
|  |     75 |   by auto
 | 
|  |     76 |   moreover {
 | 
|  |     77 |     fix k l r :: nat
 | 
|  |     78 |     assume k_l: "k \<le> Suc c\<^isub>1 * l" and l_r: "l \<le> Suc c\<^isub>2 * r"
 | 
|  |     79 |     from l_r have "Suc c\<^isub>1 * l \<le> (Suc c\<^isub>1 * Suc c\<^isub>2) * r"
 | 
|  |     80 |     by (auto simp add: mult_le_cancel_left mult_assoc simp del: times_nat.simps mult_Suc_right)
 | 
|  |     81 |     with k_l have "k \<le> (Suc c\<^isub>1 * Suc c\<^isub>2) * r" by (rule preorder_class.order_trans)
 | 
|  |     82 |   }
 | 
|  |     83 |   ultimately have "\<And>m. m \<ge> max n\<^isub>1 n\<^isub>2 \<Longrightarrow> f m \<le> (Suc c\<^isub>1 * Suc c\<^isub>2) * h m" by auto
 | 
|  |     84 |   then have "\<And>m. m \<ge> max n\<^isub>1 n\<^isub>2 \<Longrightarrow> f m \<le> Suc ((Suc c\<^isub>1 * Suc c\<^isub>2) - 1) * h m" by auto
 | 
|  |     85 |   then show ?thesis unfolding less_eq_fun_def by blast
 | 
|  |     86 | qed
 | 
|  |     87 | 
 | 
|  |     88 | 
 | 
|  |     89 | subsection {* The @{text "\<approx>"} relation, the equivalence relation induced by @{text "\<lesssim>"} *}
 | 
|  |     90 | 
 | 
|  |     91 | definition equiv_fun :: "(nat \<Rightarrow> nat) \<Rightarrow> (nat \<Rightarrow> nat) \<Rightarrow> bool" (infix "\<cong>" 50) where
 | 
|  |     92 |   "f \<cong> g \<longleftrightarrow> (\<exists>d c n. \<forall>m\<ge>n. g m \<le> Suc d * f m \<and> f m \<le> Suc c * g m)"
 | 
|  |     93 | 
 | 
|  |     94 | lemma equiv_fun_intro:
 | 
|  |     95 |   assumes "\<exists>d c n. \<forall>m\<ge>n. g m \<le> Suc d * f m \<and> f m \<le> Suc c * g m"
 | 
|  |     96 |   shows "f \<cong> g"
 | 
|  |     97 |   unfolding equiv_fun_def by (rule assms)
 | 
|  |     98 | 
 | 
|  |     99 | lemma equiv_fun_not_intro:
 | 
|  |    100 |   assumes "\<And>d c n. \<exists>m\<ge>n. Suc d * f m < g m \<or> Suc c * g m < f m"
 | 
|  |    101 |   shows "\<not> f \<cong> g"
 | 
|  |    102 |   unfolding equiv_fun_def
 | 
|  |    103 |   by (auto simp add: assms linorder_not_le
 | 
|  |    104 |     simp del: times_nat.simps mult_Suc_right)
 | 
|  |    105 | 
 | 
|  |    106 | lemma equiv_fun_elim:
 | 
|  |    107 |   assumes "f \<cong> g"
 | 
|  |    108 |   obtains n d c
 | 
|  |    109 |     where "\<And>m. m \<ge> n \<Longrightarrow> g m \<le> Suc d * f m \<and> f m \<le> Suc c * g m"
 | 
|  |    110 |   using assms unfolding equiv_fun_def by blast
 | 
|  |    111 | 
 | 
|  |    112 | lemma equiv_fun_not_elim:
 | 
|  |    113 |   fixes n d c
 | 
|  |    114 |   assumes "\<not> f \<cong> g"
 | 
|  |    115 |   obtains m where "m \<ge> n"
 | 
|  |    116 |     and "Suc d * f m < g m \<or> Suc c * g m < f m"
 | 
|  |    117 |   using assms unfolding equiv_fun_def
 | 
|  |    118 |   by (auto simp add: linorder_not_le, blast)
 | 
|  |    119 | 
 | 
|  |    120 | lemma equiv_fun_less_eq_fun:
 | 
|  |    121 |   "f \<cong> g \<longleftrightarrow> f \<lesssim> g \<and> g \<lesssim> f"
 | 
|  |    122 | proof
 | 
|  |    123 |   assume x_y: "f \<cong> g"
 | 
|  |    124 |   then obtain n d c
 | 
|  |    125 |     where interv: "\<And>m. m \<ge> n \<Longrightarrow> g m \<le> Suc d * f m \<and> f m \<le> Suc c * g m"
 | 
|  |    126 |   by (erule equiv_fun_elim)
 | 
|  |    127 |   from interv have "\<exists>c n. \<forall>m \<ge> n. f m \<le> Suc c * g m" by auto
 | 
|  |    128 |   then have f_g: "f \<lesssim> g" by (rule less_eq_fun_intro)
 | 
|  |    129 |   from interv have "\<exists>d n. \<forall>m \<ge> n. g m \<le> Suc d * f m" by auto
 | 
|  |    130 |   then have g_f: "g \<lesssim> f" by (rule less_eq_fun_intro)
 | 
|  |    131 |   from f_g g_f show "f \<lesssim> g \<and> g \<lesssim> f" by auto
 | 
|  |    132 | next
 | 
|  |    133 |   assume assm: "f \<lesssim> g \<and> g \<lesssim> f"
 | 
|  |    134 |   from assm less_eq_fun_elim obtain c n\<^isub>1 where
 | 
|  |    135 |     bound1: "\<And>m. m \<ge> n\<^isub>1 \<Longrightarrow> f m \<le> Suc c * g m" 
 | 
|  |    136 |     by blast
 | 
|  |    137 |   from assm less_eq_fun_elim obtain d n\<^isub>2 where
 | 
|  |    138 |     bound2: "\<And>m. m \<ge> n\<^isub>2 \<Longrightarrow> g m \<le> Suc d * f m"
 | 
|  |    139 |     by blast
 | 
|  |    140 |   from bound2 have "\<And>m. m \<ge> max n\<^isub>1 n\<^isub>2 \<Longrightarrow> g m \<le> Suc d * f m"
 | 
|  |    141 |   by auto
 | 
|  |    142 |   with bound1
 | 
|  |    143 |     have "\<forall>m \<ge> max n\<^isub>1 n\<^isub>2. g m \<le> Suc d * f m \<and> f m \<le> Suc c * g m"
 | 
|  |    144 |     by auto
 | 
|  |    145 |   then
 | 
|  |    146 |     have "\<exists>d c n. \<forall>m\<ge>n. g m \<le> Suc d * f m \<and> f m \<le> Suc c * g m"
 | 
|  |    147 |     by blast
 | 
|  |    148 |   then show "f \<cong> g" by (rule equiv_fun_intro)
 | 
|  |    149 | qed
 | 
|  |    150 | 
 | 
|  |    151 | subsection {* The @{text "\<prec>"} relation, the strict part of @{text "\<lesssim>"} *}
 | 
|  |    152 | 
 | 
|  |    153 | definition less_fun :: "(nat \<Rightarrow> nat) \<Rightarrow> (nat \<Rightarrow> nat) \<Rightarrow> bool" (infix "\<prec>" 50) where
 | 
|  |    154 |   "f \<prec> g \<longleftrightarrow> f \<lesssim> g \<and> \<not> g \<lesssim> f"
 | 
|  |    155 | 
 | 
|  |    156 | lemma less_fun_intro:
 | 
|  |    157 |   assumes "\<And>c. \<exists>n. \<forall>m\<ge>n. Suc c * f m < g m"
 | 
|  |    158 |   shows "f \<prec> g"
 | 
|  |    159 | proof (unfold less_fun_def, rule conjI)
 | 
|  |    160 |   from assms obtain n
 | 
|  |    161 |     where "\<forall>m\<ge>n. Suc 0 * f m < g m" ..
 | 
|  |    162 |   then have "\<forall>m\<ge>n. f m \<le> Suc 0 * g m" by auto
 | 
|  |    163 |   then have "\<exists>c n. \<forall>m\<ge>n. f m \<le> Suc c * g m" by blast
 | 
|  |    164 |   then show "f \<lesssim> g" by (rule less_eq_fun_intro)
 | 
|  |    165 | next
 | 
|  |    166 |   show "\<not> g \<lesssim> f"
 | 
|  |    167 |   proof (rule less_eq_fun_not_intro)
 | 
|  |    168 |     fix c n :: nat
 | 
|  |    169 |     from assms have "\<exists>n. \<forall>m\<ge>n. Suc c * f m < g m" by blast
 | 
|  |    170 |     then obtain m where "m \<ge> n" and "Suc c * f m < g m"
 | 
|  |    171 |       by (rule Ex_All_bounded)
 | 
|  |    172 |     then show "\<exists>m\<ge>n. Suc c * f m < g m" by blast
 | 
|  |    173 |   qed
 | 
|  |    174 | qed
 | 
|  |    175 | 
 | 
|  |    176 | text {*
 | 
|  |    177 |   We would like to show (or refute) that @{text "f \<prec> g \<longleftrightarrow> f \<in> o(g)"},
 | 
|  |    178 |   i.e.~@{prop "f \<prec> g \<longleftrightarrow> (\<forall>c. \<exists>n. \<forall>m>n. f m < Suc c * g m)"} but did not manage to
 | 
|  |    179 |   do so.
 | 
|  |    180 | *}
 | 
|  |    181 | 
 | 
|  |    182 | 
 | 
|  |    183 | subsection {* Assert that @{text "\<lesssim>"} is ineed a preorder *}
 | 
|  |    184 | 
 | 
|  |    185 | interpretation fun_order: preorder_equiv less_eq_fun less_fun
 | 
|  |    186 |   where "preorder_equiv.equiv less_eq_fun = equiv_fun"
 | 
|  |    187 | proof -
 | 
|  |    188 |   interpret preorder_equiv less_eq_fun less_fun proof
 | 
|  |    189 |   qed (simp_all add: less_fun_def less_eq_fun_refl, auto intro: less_eq_fun_trans)
 | 
|  |    190 |   show "preorder_equiv less_eq_fun less_fun" using preorder_equiv_axioms .
 | 
|  |    191 |   show "preorder_equiv.equiv less_eq_fun = equiv_fun"
 | 
|  |    192 |     by (simp add: expand_fun_eq equiv_def equiv_fun_less_eq_fun)
 | 
|  |    193 | qed
 | 
|  |    194 | 
 | 
|  |    195 | 
 | 
|  |    196 | subsection {* Simple examples *}
 | 
|  |    197 | 
 | 
|  |    198 | lemma "(\<lambda>_. n) \<lesssim> (\<lambda>n. n)"
 | 
|  |    199 | proof (rule less_eq_fun_intro)
 | 
|  |    200 |   show "\<exists>c q. \<forall>m\<ge>q. n \<le> Suc c * m"
 | 
|  |    201 |   proof -
 | 
|  |    202 |     have "\<forall>m\<ge>n. n \<le> Suc 0 * m" by simp
 | 
|  |    203 |     then show ?thesis by blast
 | 
|  |    204 |   qed
 | 
|  |    205 | qed
 | 
|  |    206 | 
 | 
|  |    207 | lemma "(\<lambda>n. n) \<cong> (\<lambda>n. Suc k * n)"
 | 
|  |    208 | proof (rule equiv_fun_intro)
 | 
|  |    209 |   show "\<exists>d c n. \<forall>m\<ge>n. Suc k * m \<le> Suc d * m \<and> m \<le> Suc c * (Suc k * m)"
 | 
|  |    210 |   proof -
 | 
|  |    211 |     have "\<forall>m\<ge>n. Suc k * m \<le> Suc k * m \<and> m \<le> Suc c * (Suc k * m)" by simp
 | 
|  |    212 |     then show ?thesis by blast
 | 
|  |    213 |   qed
 | 
|  |    214 | qed  
 | 
|  |    215 | 
 | 
|  |    216 | lemma "(\<lambda>_. n) \<prec> (\<lambda>n. n)"
 | 
|  |    217 | proof (rule less_fun_intro)
 | 
|  |    218 |   fix c
 | 
|  |    219 |   show "\<exists>q. \<forall>m\<ge>q. Suc c * n < m"
 | 
|  |    220 |   proof -
 | 
|  |    221 |     have "\<forall>m\<ge>Suc c * n + 1. Suc c * n < m" by simp
 | 
|  |    222 |     then show ?thesis by blast
 | 
|  |    223 |   qed
 | 
|  |    224 | qed
 | 
|  |    225 | 
 | 
|  |    226 | end
 |