| author | huffman | 
| Tue, 06 Sep 2011 13:16:46 -0700 | |
| changeset 44761 | 0694fc3248fd | 
| parent 44522 | 2f7e9d890efe | 
| child 44890 | 22f665a2e91c | 
| permissions | -rw-r--r-- | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1  | 
header {* Kurzweil-Henstock Gauge Integration in many dimensions. *}
 | 
| 35172 | 2  | 
(* Author: John Harrison  | 
3  | 
Translation from HOL light: Robert Himmelmann, TU Muenchen *)  | 
|
4  | 
||
| 
35292
 
e4a431b6d9b7
Replaced Integration by Multivariate-Analysis/Real_Integration
 
hoelzl 
parents: 
35291 
diff
changeset
 | 
5  | 
theory Integration  | 
| 
41413
 
64cd30d6b0b8
explicit file specifications -- avoid secondary load path;
 
wenzelm 
parents: 
40513 
diff
changeset
 | 
6  | 
imports  | 
| 
 
64cd30d6b0b8
explicit file specifications -- avoid secondary load path;
 
wenzelm 
parents: 
40513 
diff
changeset
 | 
7  | 
Derivative  | 
| 
 
64cd30d6b0b8
explicit file specifications -- avoid secondary load path;
 
wenzelm 
parents: 
40513 
diff
changeset
 | 
8  | 
"~~/src/HOL/Library/Indicator_Function"  | 
| 35172 | 9  | 
begin  | 
10  | 
||
| 40513 | 11  | 
declare [[smt_certificates="Integration.certs"]]  | 
| 
40163
 
a462d5207aa6
changed SMT configuration options; updated SMT certificates
 
boehmes 
parents: 
39302 
diff
changeset
 | 
12  | 
declare [[smt_fixed=true]]  | 
| 41601 | 13  | 
declare [[smt_oracle=false]]  | 
| 35172 | 14  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
15  | 
(*declare not_less[simp] not_le[simp]*)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
16  | 
|
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
17  | 
lemmas scaleR_simps = scaleR_zero_left scaleR_minus_left scaleR_left_diff_distrib  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
18  | 
scaleR_zero_right scaleR_minus_right scaleR_right_diff_distrib scaleR_eq_0_iff  | 
| 
44282
 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 
huffman 
parents: 
44176 
diff
changeset
 | 
19  | 
scaleR_cancel_left scaleR_cancel_right scaleR_add_right scaleR_add_left real_vector_class.scaleR_one  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
20  | 
|
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
21  | 
lemma real_arch_invD:  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
22  | 
"0 < (e::real) \<Longrightarrow> (\<exists>n::nat. n \<noteq> 0 \<and> 0 < inverse (real n) \<and> inverse (real n) < e)"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
23  | 
by(subst(asm) real_arch_inv)  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
24  | 
subsection {* Sundries *}
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
25  | 
|
| 35172 | 26  | 
lemma conjunctD2: assumes "a \<and> b" shows a b using assms by auto  | 
27  | 
lemma conjunctD3: assumes "a \<and> b \<and> c" shows a b c using assms by auto  | 
|
28  | 
lemma conjunctD4: assumes "a \<and> b \<and> c \<and> d" shows a b c d using assms by auto  | 
|
29  | 
lemma conjunctD5: assumes "a \<and> b \<and> c \<and> d \<and> e" shows a b c d e using assms by auto  | 
|
30  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
31  | 
declare norm_triangle_ineq4[intro]  | 
| 35172 | 32  | 
|
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
33  | 
lemma simple_image: "{f x |x . x \<in> s} = f ` s" by blast
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
34  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
35  | 
lemma linear_simps: assumes "bounded_linear f"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
36  | 
shows "f (a + b) = f a + f b" "f (a - b) = f a - f b" "f 0 = 0" "f (- a) = - f a" "f (s *\<^sub>R v) = s *\<^sub>R (f v)"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
37  | 
apply(rule_tac[!] additive.add additive.minus additive.diff additive.zero bounded_linear.scaleR)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
38  | 
using assms unfolding bounded_linear_def additive_def by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
39  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
40  | 
lemma bounded_linearI:assumes "\<And>x y. f (x + y) = f x + f y"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
41  | 
"\<And>r x. f (r *\<^sub>R x) = r *\<^sub>R f x" "\<And>x. norm (f x) \<le> norm x * K"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
42  | 
shows "bounded_linear f"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
43  | 
unfolding bounded_linear_def additive_def bounded_linear_axioms_def using assms by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
44  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
45  | 
lemma real_le_inf_subset:  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
46  | 
  assumes "t \<noteq> {}" "t \<subseteq> s" "\<exists>b. b <=* s" shows "Inf s <= Inf (t::real set)"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
47  | 
apply(rule isGlb_le_isLb) apply(rule Inf[OF assms(1)])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
48  | 
using assms apply-apply(erule exE) apply(rule_tac x=b in exI)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
49  | 
unfolding isLb_def setge_def by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
50  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
51  | 
lemma real_ge_sup_subset:  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
52  | 
  assumes "t \<noteq> {}" "t \<subseteq> s" "\<exists>b. s *<= b" shows "Sup s >= Sup (t::real set)"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
53  | 
apply(rule isLub_le_isUb) apply(rule Sup[OF assms(1)])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
54  | 
using assms apply-apply(erule exE) apply(rule_tac x=b in exI)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
55  | 
unfolding isUb_def setle_def by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
56  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
57  | 
lemma bounded_linear_component[intro]: "bounded_linear (\<lambda>x::'a::euclidean_space. x $$ k)"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
58  | 
apply(rule bounded_linearI[where K=1])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
59  | 
using component_le_norm[of _ k] unfolding real_norm_def by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
60  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
61  | 
lemma transitive_stepwise_lt_eq:  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
62  | 
assumes "(\<And>x y z::nat. R x y \<Longrightarrow> R y z \<Longrightarrow> R x z)"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
63  | 
shows "((\<forall>m. \<forall>n>m. R m n) \<longleftrightarrow> (\<forall>n. R n (Suc n)))" (is "?l = ?r")  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
64  | 
proof(safe) assume ?r fix n m::nat assume "m < n" thus "R m n" apply-  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
65  | 
proof(induct n arbitrary: m) case (Suc n) show ?case  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
66  | 
proof(cases "m < n") case True  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
67  | 
show ?thesis apply(rule assms[OF Suc(1)[OF True]]) using `?r` by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
68  | 
next case False hence "m = n" using Suc(2) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
69  | 
thus ?thesis using `?r` by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
70  | 
qed qed auto qed auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
71  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
72  | 
lemma transitive_stepwise_gt:  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
73  | 
assumes "\<And>x y z. R x y \<Longrightarrow> R y z \<Longrightarrow> R x z" "\<And>n. R n (Suc n) "  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
74  | 
shows "\<forall>n>m. R m n"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
75  | 
proof- have "\<forall>m. \<forall>n>m. R m n" apply(subst transitive_stepwise_lt_eq)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
76  | 
apply(rule assms) apply(assumption,assumption) using assms(2) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
77  | 
thus ?thesis by auto qed  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
78  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
79  | 
lemma transitive_stepwise_le_eq:  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
80  | 
assumes "\<And>x. R x x" "\<And>x y z. R x y \<Longrightarrow> R y z \<Longrightarrow> R x z"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
81  | 
shows "(\<forall>m. \<forall>n\<ge>m. R m n) \<longleftrightarrow> (\<forall>n. R n (Suc n))" (is "?l = ?r")  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
82  | 
proof safe assume ?r fix m n::nat assume "m\<le>n" thus "R m n" apply-  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
83  | 
proof(induct n arbitrary: m) case (Suc n) show ?case  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
84  | 
proof(cases "m \<le> n") case True show ?thesis apply(rule assms(2))  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
85  | 
apply(rule Suc(1)[OF True]) using `?r` by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
86  | 
next case False hence "m = Suc n" using Suc(2) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
87  | 
thus ?thesis using assms(1) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
88  | 
qed qed(insert assms(1), auto) qed auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
89  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
90  | 
lemma transitive_stepwise_le:  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
91  | 
assumes "\<And>x. R x x" "\<And>x y z. R x y \<Longrightarrow> R y z \<Longrightarrow> R x z" "\<And>n. R n (Suc n) "  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
92  | 
shows "\<forall>n\<ge>m. R m n"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
93  | 
proof- have "\<forall>m. \<forall>n\<ge>m. R m n" apply(subst transitive_stepwise_le_eq)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
94  | 
apply(rule assms) apply(rule assms,assumption,assumption) using assms(3) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
95  | 
thus ?thesis by auto qed  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
96  | 
|
| 35172 | 97  | 
subsection {* Some useful lemmas about intervals. *}
 | 
98  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
99  | 
abbreviation One where "One \<equiv> ((\<chi>\<chi> i. 1)::_::ordered_euclidean_space)"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
100  | 
|
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
101  | 
lemma empty_as_interval: "{} = {One..0}"
 | 
| 
39302
 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 
nipkow 
parents: 
38656 
diff
changeset
 | 
102  | 
apply(rule set_eqI,rule) defer unfolding mem_interval  | 
| 35172 | 103  | 
using UNIV_witness[where 'a='n] apply(erule_tac exE,rule_tac x=x in allE) by auto  | 
104  | 
||
105  | 
lemma interior_subset_union_intervals:  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
106  | 
  assumes "i = {a..b::'a::ordered_euclidean_space}" "j = {c..d}" "interior j \<noteq> {}" "i \<subseteq> j \<union> s" "interior(i) \<inter> interior(j) = {}"
 | 
| 35172 | 107  | 
shows "interior i \<subseteq> interior s" proof-  | 
108  | 
  have "{a<..<b} \<inter> {c..d} = {}" using inter_interval_mixed_eq_empty[of c d a b] and assms(3,5)
 | 
|
109  | 
unfolding assms(1,2) interior_closed_interval by auto  | 
|
110  | 
  moreover have "{a<..<b} \<subseteq> {c..d} \<union> s" apply(rule order_trans,rule interval_open_subset_closed)
 | 
|
111  | 
using assms(4) unfolding assms(1,2) by auto  | 
|
112  | 
ultimately show ?thesis apply-apply(rule interior_maximal) defer apply(rule open_interior)  | 
|
113  | 
unfolding assms(1,2) interior_closed_interval by auto qed  | 
|
114  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
115  | 
lemma inter_interior_unions_intervals: fixes f::"('a::ordered_euclidean_space) set set"
 | 
| 35172 | 116  | 
  assumes "finite f" "open s" "\<forall>t\<in>f. \<exists>a b. t = {a..b}" "\<forall>t\<in>f. s \<inter> (interior t) = {}"
 | 
117  | 
  shows "s \<inter> interior(\<Union>f) = {}" proof(rule ccontr,unfold ex_in_conv[THEN sym]) case goal1
 | 
|
118  | 
have lem1:"\<And>x e s U. ball x e \<subseteq> s \<inter> interior U \<longleftrightarrow> ball x e \<subseteq> s \<inter> U" apply rule defer apply(rule_tac Int_greatest)  | 
|
119  | 
unfolding open_subset_interior[OF open_ball] using interior_subset by auto  | 
|
120  | 
have lem2:"\<And>x s P. \<exists>x\<in>s. P x \<Longrightarrow> \<exists>x\<in>insert x s. P x" by auto  | 
|
121  | 
  have "\<And>f. finite f \<Longrightarrow> (\<forall>t\<in>f. \<exists>a b. t = {a..b}) \<Longrightarrow> (\<exists>x. x \<in> s \<inter> interior (\<Union>f)) \<Longrightarrow> (\<exists>t\<in>f. \<exists>x. \<exists>e>0. ball x e \<subseteq> s \<inter> t)" proof- case goal1
 | 
|
122  | 
thus ?case proof(induct rule:finite_induct)  | 
|
123  | 
case empty from this(2) guess x .. hence False unfolding Union_empty interior_empty by auto thus ?case by auto next  | 
|
124  | 
case (insert i f) guess x using insert(5) .. note x = this  | 
|
125  | 
then guess e unfolding open_contains_ball_eq[OF open_Int[OF assms(2) open_interior],rule_format] .. note e=this  | 
|
126  | 
guess a using insert(4)[rule_format,OF insertI1] .. then guess b .. note ab = this  | 
|
127  | 
    show ?case proof(cases "x\<in>i") case False hence "x \<in> UNIV - {a..b}" unfolding ab by auto
 | 
|
128  | 
then guess d unfolding open_contains_ball_eq[OF open_Diff[OF open_UNIV closed_interval],rule_format] ..  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
129  | 
hence "0 < d" "ball x (min d e) \<subseteq> UNIV - i" unfolding ab ball_min_Int by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
130  | 
hence "ball x (min d e) \<subseteq> s \<inter> interior (\<Union>f)" using e unfolding lem1 unfolding ball_min_Int by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
131  | 
hence "x \<in> s \<inter> interior (\<Union>f)" using `d>0` e by auto  | 
| 35172 | 132  | 
hence "\<exists>t\<in>f. \<exists>x e. 0 < e \<and> ball x e \<subseteq> s \<inter> t" apply-apply(rule insert(3)) using insert(4) by auto thus ?thesis by auto next  | 
133  | 
    case True show ?thesis proof(cases "x\<in>{a<..<b}")
 | 
|
134  | 
case True then guess d unfolding open_contains_ball_eq[OF open_interval,rule_format] ..  | 
|
135  | 
thus ?thesis apply(rule_tac x=i in bexI,rule_tac x=x in exI,rule_tac x="min d e" in exI)  | 
|
| 41958 | 136  | 
unfolding ab using interval_open_subset_closed[of a b] and e by fastsimp+ next  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
137  | 
    case False then obtain k where "x$$k \<le> a$$k \<or> x$$k \<ge> b$$k" and k:"k<DIM('a)" unfolding mem_interval by(auto simp add:not_less) 
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
138  | 
hence "x$$k = a$$k \<or> x$$k = b$$k" using True unfolding ab and mem_interval apply(erule_tac x=k in allE) by auto  | 
| 35172 | 139  | 
hence "\<exists>x. ball x (e/2) \<subseteq> s \<inter> (\<Union>f)" proof(erule_tac disjE)  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
140  | 
      let ?z = "x - (e/2) *\<^sub>R basis k" assume as:"x$$k = a$$k" have "ball ?z (e / 2) \<inter> i = {}" apply(rule ccontr) unfolding ex_in_conv[THEN sym] proof(erule exE)
 | 
| 41958 | 141  | 
fix y assume "y \<in> ball ?z (e / 2) \<inter> i" hence "dist ?z y < e/2" and yi:"y\<in>i" by auto  | 
142  | 
hence "\<bar>(?z - y) $$ k\<bar> < e/2" using component_le_norm[of "?z - y" k] unfolding dist_norm by auto  | 
|
| 44167 | 143  | 
hence "y$$k < a$$k" using e[THEN conjunct1] k by(auto simp add:field_simps as)  | 
| 41958 | 144  | 
hence "y \<notin> i" unfolding ab mem_interval not_all apply(rule_tac x=k in exI) using k by auto thus False using yi by auto qed  | 
| 35172 | 145  | 
moreover have "ball ?z (e/2) \<subseteq> s \<inter> (\<Union>insert i f)" apply(rule order_trans[OF _ e[THEN conjunct2, unfolded lem1]]) proof  | 
| 41958 | 146  | 
fix y assume as:"y\<in> ball ?z (e/2)" have "norm (x - y) \<le> \<bar>e\<bar> / 2 + norm (x - y - (e / 2) *\<^sub>R basis k)"  | 
147  | 
apply-apply(rule order_trans,rule norm_triangle_sub[of "x - y" "(e/2) *\<^sub>R basis k"])  | 
|
148  | 
unfolding norm_scaleR norm_basis by auto  | 
|
149  | 
also have "\<dots> < \<bar>e\<bar> / 2 + \<bar>e\<bar> / 2" apply(rule add_strict_left_mono) using as unfolding mem_ball dist_norm using e by(auto simp add:field_simps)  | 
|
150  | 
finally show "y\<in>ball x e" unfolding mem_ball dist_norm using e by(auto simp add:field_simps) qed  | 
|
| 35172 | 151  | 
ultimately show ?thesis apply(rule_tac x="?z" in exI) unfolding Union_insert by auto  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
152  | 
    next let ?z = "x + (e/2) *\<^sub>R basis k" assume as:"x$$k = b$$k" have "ball ?z (e / 2) \<inter> i = {}" apply(rule ccontr) unfolding ex_in_conv[THEN sym] proof(erule exE)
 | 
| 41958 | 153  | 
fix y assume "y \<in> ball ?z (e / 2) \<inter> i" hence "dist ?z y < e/2" and yi:"y\<in>i" by auto  | 
154  | 
hence "\<bar>(?z - y) $$ k\<bar> < e/2" using component_le_norm[of "?z - y" k] unfolding dist_norm by auto  | 
|
155  | 
hence "y$$k > b$$k" using e[THEN conjunct1] k by(auto simp add:field_simps as)  | 
|
156  | 
hence "y \<notin> i" unfolding ab mem_interval not_all using k by(rule_tac x=k in exI,auto) thus False using yi by auto qed  | 
|
| 35172 | 157  | 
moreover have "ball ?z (e/2) \<subseteq> s \<inter> (\<Union>insert i f)" apply(rule order_trans[OF _ e[THEN conjunct2, unfolded lem1]]) proof  | 
| 41958 | 158  | 
fix y assume as:"y\<in> ball ?z (e/2)" have "norm (x - y) \<le> \<bar>e\<bar> / 2 + norm (x - y + (e / 2) *\<^sub>R basis k)"  | 
159  | 
apply-apply(rule order_trans,rule norm_triangle_sub[of "x - y" "- (e/2) *\<^sub>R basis k"])  | 
|
160  | 
unfolding norm_scaleR by auto  | 
|
161  | 
also have "\<dots> < \<bar>e\<bar> / 2 + \<bar>e\<bar> / 2" apply(rule add_strict_left_mono) using as unfolding mem_ball dist_norm using e by(auto simp add:field_simps)  | 
|
162  | 
finally show "y\<in>ball x e" unfolding mem_ball dist_norm using e by(auto simp add:field_simps) qed  | 
|
| 35172 | 163  | 
ultimately show ?thesis apply(rule_tac x="?z" in exI) unfolding Union_insert by auto qed  | 
164  | 
then guess x .. hence "x \<in> s \<inter> interior (\<Union>f)" unfolding lem1[where U="\<Union>f",THEN sym] using centre_in_ball e[THEN conjunct1] by auto  | 
|
165  | 
thus ?thesis apply-apply(rule lem2,rule insert(3)) using insert(4) by auto qed qed qed qed note * = this  | 
|
166  | 
guess t using *[OF assms(1,3) goal1] .. from this(2) guess x .. then guess e ..  | 
|
167  | 
hence "x \<in> s" "x\<in>interior t" defer using open_subset_interior[OF open_ball, of x e t] by auto  | 
|
168  | 
thus False using `t\<in>f` assms(4) by auto qed  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
169  | 
|
| 35172 | 170  | 
subsection {* Bounds on intervals where they exist. *}
 | 
171  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
172  | 
definition "interval_upperbound (s::('a::ordered_euclidean_space) set) = ((\<chi>\<chi> i. Sup {a. \<exists>x\<in>s. x$$i = a})::'a)"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
173  | 
|
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
174  | 
definition "interval_lowerbound (s::('a::ordered_euclidean_space) set) = ((\<chi>\<chi> i. Inf {a. \<exists>x\<in>s. x$$i = a})::'a)"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
175  | 
|
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
176  | 
lemma interval_upperbound[simp]: assumes "\<forall>i<DIM('a::ordered_euclidean_space). a$$i \<le> (b::'a)$$i" shows "interval_upperbound {a..b} = b"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
177  | 
using assms unfolding interval_upperbound_def apply(subst euclidean_eq[where 'a='a]) apply safe  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
178  | 
unfolding euclidean_lambda_beta' apply(erule_tac x=i in allE)  | 
| 35172 | 179  | 
apply(rule Sup_unique) unfolding setle_def apply rule unfolding mem_Collect_eq apply(erule bexE) unfolding mem_interval defer  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
180  | 
apply(rule,rule) apply(rule_tac x="b$$i" in bexI) defer unfolding mem_Collect_eq apply(rule_tac x=b in bexI)  | 
| 35172 | 181  | 
unfolding mem_interval using assms by auto  | 
182  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
183  | 
lemma interval_lowerbound[simp]: assumes "\<forall>i<DIM('a::ordered_euclidean_space). a$$i \<le> (b::'a)$$i" shows "interval_lowerbound {a..b} = a"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
184  | 
using assms unfolding interval_lowerbound_def apply(subst euclidean_eq[where 'a='a]) apply safe  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
185  | 
unfolding euclidean_lambda_beta' apply(erule_tac x=i in allE)  | 
| 35172 | 186  | 
apply(rule Inf_unique) unfolding setge_def apply rule unfolding mem_Collect_eq apply(erule bexE) unfolding mem_interval defer  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
187  | 
apply(rule,rule) apply(rule_tac x="a$$i" in bexI) defer unfolding mem_Collect_eq apply(rule_tac x=a in bexI)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
188  | 
unfolding mem_interval using assms by auto  | 
| 35172 | 189  | 
|
190  | 
lemmas interval_bounds = interval_upperbound interval_lowerbound  | 
|
191  | 
||
192  | 
lemma interval_bounds'[simp]: assumes "{a..b}\<noteq>{}" shows "interval_upperbound {a..b} = b" "interval_lowerbound {a..b} = a"
 | 
|
193  | 
using assms unfolding interval_ne_empty by auto  | 
|
194  | 
||
195  | 
subsection {* Content (length, area, volume...) of an interval. *}
 | 
|
196  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
197  | 
definition "content (s::('a::ordered_euclidean_space) set) =
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
198  | 
       (if s = {} then 0 else (\<Prod>i<DIM('a). (interval_upperbound s)$$i - (interval_lowerbound s)$$i))"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
199  | 
|
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
200  | 
lemma interval_not_empty:"\<forall>i<DIM('a). a$$i \<le> b$$i \<Longrightarrow> {a..b::'a::ordered_euclidean_space} \<noteq> {}"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
201  | 
unfolding interval_eq_empty unfolding not_ex not_less by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
202  | 
|
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
203  | 
lemma content_closed_interval: fixes a::"'a::ordered_euclidean_space" assumes "\<forall>i<DIM('a). a$$i \<le> b$$i"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
204  | 
  shows "content {a..b} = (\<Prod>i<DIM('a). b$$i - a$$i)"
 | 
| 35172 | 205  | 
using interval_not_empty[OF assms] unfolding content_def interval_upperbound[OF assms] interval_lowerbound[OF assms] by auto  | 
206  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
207  | 
lemma content_closed_interval': fixes a::"'a::ordered_euclidean_space" assumes "{a..b}\<noteq>{}" shows "content {a..b} = (\<Prod>i<DIM('a). b$$i - a$$i)"
 | 
| 35172 | 208  | 
apply(rule content_closed_interval) using assms unfolding interval_ne_empty .  | 
209  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
210  | 
lemma content_real:assumes "a\<le>b" shows "content {a..b} = b-a"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
211  | 
proof- have *:"{..<Suc 0} = {0}" by auto
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
212  | 
show ?thesis unfolding content_def using assms by(auto simp: *)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
213  | 
qed  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
214  | 
|
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
215  | 
lemma content_unit[intro]: "content{0..One::'a::ordered_euclidean_space} = 1" proof-
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
216  | 
  have *:"\<forall>i<DIM('a). (0::'a)$$i \<le> (One::'a)$$i" by auto
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
217  | 
  have "0 \<in> {0..One::'a}" unfolding mem_interval by auto
 | 
| 35172 | 218  | 
thus ?thesis unfolding content_def interval_bounds[OF *] using setprod_1 by auto qed  | 
219  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
220  | 
lemma content_pos_le[intro]: fixes a::"'a::ordered_euclidean_space" shows "0 \<le> content {a..b}" proof(cases "{a..b}={}")
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
221  | 
  case False hence *:"\<forall>i<DIM('a). a $$ i \<le> b $$ i" unfolding interval_ne_empty by assumption
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
222  | 
  have "(\<Prod>i<DIM('a). interval_upperbound {a..b} $$ i - interval_lowerbound {a..b} $$ i) \<ge> 0"
 | 
| 35172 | 223  | 
apply(rule setprod_nonneg) unfolding interval_bounds[OF *] using * apply(erule_tac x=x in allE) by auto  | 
224  | 
thus ?thesis unfolding content_def by(auto simp del:interval_bounds') qed(unfold content_def, auto)  | 
|
225  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
226  | 
lemma content_pos_lt: fixes a::"'a::ordered_euclidean_space" assumes "\<forall>i<DIM('a). a$$i < b$$i" shows "0 < content {a..b}"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
227  | 
proof- have help_lemma1: "\<forall>i<DIM('a). a$$i < b$$i \<Longrightarrow> \<forall>i<DIM('a). a$$i \<le> ((b$$i)::real)" apply(rule,erule_tac x=i in allE) by auto
 | 
| 35172 | 228  | 
show ?thesis unfolding content_closed_interval[OF help_lemma1[OF assms]] apply(rule setprod_pos)  | 
229  | 
using assms apply(erule_tac x=x in allE) by auto qed  | 
|
230  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
231  | 
lemma content_eq_0: "content{a..b::'a::ordered_euclidean_space} = 0 \<longleftrightarrow> (\<exists>i<DIM('a). b$$i \<le> a$$i)" proof(cases "{a..b} = {}")
 | 
| 35172 | 232  | 
case True thus ?thesis unfolding content_def if_P[OF True] unfolding interval_eq_empty apply-  | 
233  | 
apply(rule,erule exE) apply(rule_tac x=i in exI) by auto next  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
234  | 
case False note this[unfolded interval_eq_empty not_ex not_less]  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
235  | 
  hence as:"\<forall>i<DIM('a). b $$ i \<ge> a $$ i" by fastsimp
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
236  | 
show ?thesis unfolding content_def if_not_P[OF False] setprod_zero_iff[OF finite_lessThan]  | 
| 35172 | 237  | 
apply(rule) apply(erule_tac[!] exE bexE) unfolding interval_bounds[OF as] apply(rule_tac x=x in exI) defer  | 
238  | 
apply(rule_tac x=i in bexI) using as apply(erule_tac x=i in allE) by auto qed  | 
|
239  | 
||
240  | 
lemma cond_cases:"(P \<Longrightarrow> Q x) \<Longrightarrow> (\<not> P \<Longrightarrow> Q y) \<Longrightarrow> Q (if P then x else y)" by auto  | 
|
241  | 
||
242  | 
lemma content_closed_interval_cases:  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
243  | 
  "content {a..b::'a::ordered_euclidean_space} = (if \<forall>i<DIM('a). a$$i \<le> b$$i then setprod (\<lambda>i. b$$i - a$$i) {..<DIM('a)} else 0)" apply(rule cond_cases) 
 | 
| 35172 | 244  | 
apply(rule content_closed_interval) unfolding content_eq_0 not_all not_le defer apply(erule exE,rule_tac x=x in exI) by auto  | 
245  | 
||
246  | 
lemma content_eq_0_interior: "content {a..b} = 0 \<longleftrightarrow> interior({a..b}) = {}"
 | 
|
247  | 
unfolding content_eq_0 interior_closed_interval interval_eq_empty by auto  | 
|
248  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
249  | 
(*lemma content_eq_0_1: "content {a..b::real^1} = 0 \<longleftrightarrow> dest_vec1 b \<le> dest_vec1 a"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
250  | 
unfolding content_eq_0 by auto*)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
251  | 
|
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
252  | 
lemma content_pos_lt_eq: "0 < content {a..b::'a::ordered_euclidean_space} \<longleftrightarrow> (\<forall>i<DIM('a). a$$i < b$$i)"
 | 
| 35172 | 253  | 
  apply(rule) defer apply(rule content_pos_lt,assumption) proof- assume "0 < content {a..b}"
 | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
254  | 
  hence "content {a..b} \<noteq> 0" by auto thus "\<forall>i<DIM('a). a$$i < b$$i" unfolding content_eq_0 not_ex not_le by fastsimp qed
 | 
| 35172 | 255  | 
|
256  | 
lemma content_empty[simp]: "content {} = 0" unfolding content_def by auto
 | 
|
257  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
258  | 
lemma content_subset: assumes "{a..b} \<subseteq> {c..d}" shows "content {a..b::'a::ordered_euclidean_space} \<le> content {c..d}" proof(cases "{a..b}={}")
 | 
| 35172 | 259  | 
case True thus ?thesis using content_pos_le[of c d] by auto next  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
260  | 
  case False hence ab_ne:"\<forall>i<DIM('a). a $$ i \<le> b $$ i" unfolding interval_ne_empty by auto
 | 
| 35172 | 261  | 
  hence ab_ab:"a\<in>{a..b}" "b\<in>{a..b}" unfolding mem_interval by auto
 | 
262  | 
  have "{c..d} \<noteq> {}" using assms False by auto
 | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
263  | 
  hence cd_ne:"\<forall>i<DIM('a). c $$ i \<le> d $$ i" using assms unfolding interval_ne_empty by auto
 | 
| 35172 | 264  | 
show ?thesis unfolding content_def unfolding interval_bounds[OF ab_ne] interval_bounds[OF cd_ne]  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
265  | 
    unfolding if_not_P[OF False] if_not_P[OF `{c..d} \<noteq> {}`] apply(rule setprod_mono,rule) proof
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
266  | 
    fix i assume i:"i\<in>{..<DIM('a)}"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
267  | 
show "0 \<le> b $$ i - a $$ i" using ab_ne[THEN spec[where x=i]] i by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
268  | 
show "b $$ i - a $$ i \<le> d $$ i - c $$ i"  | 
| 35172 | 269  | 
using assms[unfolded subset_eq mem_interval,rule_format,OF ab_ab(2),of i]  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
270  | 
using assms[unfolded subset_eq mem_interval,rule_format,OF ab_ab(1),of i] using i by auto qed qed  | 
| 35172 | 271  | 
|
272  | 
lemma content_lt_nz: "0 < content {a..b} \<longleftrightarrow> content {a..b} \<noteq> 0"
 | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
273  | 
unfolding content_pos_lt_eq content_eq_0 unfolding not_ex not_le by fastsimp  | 
| 35172 | 274  | 
|
275  | 
subsection {* The notion of a gauge --- simply an open set containing the point. *}
 | 
|
276  | 
||
277  | 
definition gauge where "gauge d \<longleftrightarrow> (\<forall>x. x\<in>(d x) \<and> open(d x))"  | 
|
278  | 
||
279  | 
lemma gaugeI:assumes "\<And>x. x\<in>g x" "\<And>x. open (g x)" shows "gauge g"  | 
|
280  | 
using assms unfolding gauge_def by auto  | 
|
281  | 
||
282  | 
lemma gaugeD[dest]: assumes "gauge d" shows "x\<in>d x" "open (d x)" using assms unfolding gauge_def by auto  | 
|
283  | 
||
284  | 
lemma gauge_ball_dependent: "\<forall>x. 0 < e x \<Longrightarrow> gauge (\<lambda>x. ball x (e x))"  | 
|
285  | 
unfolding gauge_def by auto  | 
|
286  | 
||
| 35751 | 287  | 
lemma gauge_ball[intro]: "0 < e \<Longrightarrow> gauge (\<lambda>x. ball x e)" unfolding gauge_def by auto  | 
| 35172 | 288  | 
|
289  | 
lemma gauge_trivial[intro]: "gauge (\<lambda>x. ball x 1)" apply(rule gauge_ball) by auto  | 
|
290  | 
||
| 35751 | 291  | 
lemma gauge_inter[intro]: "gauge d1 \<Longrightarrow> gauge d2 \<Longrightarrow> gauge (\<lambda>x. (d1 x) \<inter> (d2 x))"  | 
| 35172 | 292  | 
unfolding gauge_def by auto  | 
293  | 
||
294  | 
lemma gauge_inters: assumes "finite s" "\<forall>d\<in>s. gauge (f d)" shows "gauge(\<lambda>x. \<Inter> {f d x | d. d \<in> s})" proof-
 | 
|
295  | 
  have *:"\<And>x. {f d x |d. d \<in> s} = (\<lambda>d. f d x) ` s" by auto show ?thesis
 | 
|
296  | 
unfolding gauge_def unfolding *  | 
|
297  | 
using assms unfolding Ball_def Inter_iff mem_Collect_eq gauge_def by auto qed  | 
|
298  | 
||
299  | 
lemma gauge_existence_lemma: "(\<forall>x. \<exists>d::real. p x \<longrightarrow> 0 < d \<and> q d x) \<longleftrightarrow> (\<forall>x. \<exists>d>0. p x \<longrightarrow> q d x)" by(meson zero_less_one)  | 
|
300  | 
||
301  | 
subsection {* Divisions. *}
 | 
|
302  | 
||
303  | 
definition division_of (infixl "division'_of" 40) where  | 
|
304  | 
"s division_of i \<equiv>  | 
|
305  | 
finite s \<and>  | 
|
306  | 
        (\<forall>k\<in>s. k \<subseteq> i \<and> k \<noteq> {} \<and> (\<exists>a b. k = {a..b})) \<and>
 | 
|
307  | 
        (\<forall>k1\<in>s. \<forall>k2\<in>s. k1 \<noteq> k2 \<longrightarrow> interior(k1) \<inter> interior(k2) = {}) \<and>
 | 
|
308  | 
(\<Union>s = i)"  | 
|
309  | 
||
310  | 
lemma division_ofD[dest]: assumes "s division_of i"  | 
|
311  | 
  shows"finite s" "\<And>k. k\<in>s \<Longrightarrow> k \<subseteq> i" "\<And>k. k\<in>s \<Longrightarrow>  k \<noteq> {}" "\<And>k. k\<in>s \<Longrightarrow> (\<exists>a b. k = {a..b})"
 | 
|
312  | 
  "\<And>k1 k2. \<lbrakk>k1\<in>s; k2\<in>s; k1 \<noteq> k2\<rbrakk> \<Longrightarrow> interior(k1) \<inter> interior(k2) = {}" "\<Union>s = i" using assms unfolding division_of_def by auto
 | 
|
313  | 
||
314  | 
lemma division_ofI:  | 
|
315  | 
  assumes "finite s" "\<And>k. k\<in>s \<Longrightarrow> k \<subseteq> i" "\<And>k. k\<in>s \<Longrightarrow>  k \<noteq> {}" "\<And>k. k\<in>s \<Longrightarrow> (\<exists>a b. k = {a..b})"
 | 
|
316  | 
  "\<And>k1 k2. \<lbrakk>k1\<in>s; k2\<in>s; k1 \<noteq> k2\<rbrakk> \<Longrightarrow> interior(k1) \<inter> interior(k2) = {}" "\<Union>s = i"
 | 
|
317  | 
shows "s division_of i" using assms unfolding division_of_def by auto  | 
|
318  | 
||
319  | 
lemma division_of_finite: "s division_of i \<Longrightarrow> finite s"  | 
|
320  | 
unfolding division_of_def by auto  | 
|
321  | 
||
322  | 
lemma division_of_self[intro]: "{a..b} \<noteq> {} \<Longrightarrow> {{a..b}} division_of {a..b}"
 | 
|
323  | 
unfolding division_of_def by auto  | 
|
324  | 
||
325  | 
lemma division_of_trivial[simp]: "s division_of {} \<longleftrightarrow> s = {}" unfolding division_of_def by auto 
 | 
|
326  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
327  | 
lemma division_of_sing[simp]: "s division_of {a..a::'a::ordered_euclidean_space} \<longleftrightarrow> s = {{a..a}}" (is "?l = ?r") proof
 | 
| 35172 | 328  | 
  assume ?r moreover { assume "s = {{a}}" moreover fix k assume "k\<in>s" 
 | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
329  | 
    ultimately have"\<exists>x y. k = {x..y}" apply(rule_tac x=a in exI)+ unfolding interval_sing by auto }
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
330  | 
ultimately show ?l unfolding division_of_def interval_sing by auto next  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
331  | 
assume ?l note as=conjunctD4[OF this[unfolded division_of_def interval_sing]]  | 
| 35172 | 332  | 
  { fix x assume x:"x\<in>s" have "x={a}" using as(2)[rule_format,OF x] by auto }
 | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
333  | 
  moreover have "s \<noteq> {}" using as(4) by auto ultimately show ?r unfolding interval_sing by auto qed
 | 
| 35172 | 334  | 
|
335  | 
lemma elementary_empty: obtains p where "p division_of {}"
 | 
|
336  | 
unfolding division_of_trivial by auto  | 
|
337  | 
||
338  | 
lemma elementary_interval: obtains p where  "p division_of {a..b}"
 | 
|
339  | 
by(metis division_of_trivial division_of_self)  | 
|
340  | 
||
341  | 
lemma division_contains: "s division_of i \<Longrightarrow> \<forall>x\<in>i. \<exists>k\<in>s. x \<in> k"  | 
|
342  | 
unfolding division_of_def by auto  | 
|
343  | 
||
344  | 
lemma forall_in_division:  | 
|
345  | 
 "d division_of i \<Longrightarrow> ((\<forall>x\<in>d. P x) \<longleftrightarrow> (\<forall>a b. {a..b} \<in> d \<longrightarrow> P {a..b}))"
 | 
|
346  | 
unfolding division_of_def by fastsimp  | 
|
347  | 
||
348  | 
lemma division_of_subset: assumes "p division_of (\<Union>p)" "q \<subseteq> p" shows "q division_of (\<Union>q)"  | 
|
349  | 
apply(rule division_ofI) proof- note as=division_ofD[OF assms(1)]  | 
|
350  | 
show "finite q" apply(rule finite_subset) using as(1) assms(2) by auto  | 
|
351  | 
  { fix k assume "k \<in> q" hence kp:"k\<in>p" using assms(2) by auto show "k\<subseteq>\<Union>q" using `k \<in> q` by auto
 | 
|
352  | 
  show "\<exists>a b. k = {a..b}" using as(4)[OF kp] by auto show "k \<noteq> {}" using as(3)[OF kp] by auto }
 | 
|
353  | 
fix k1 k2 assume "k1 \<in> q" "k2 \<in> q" "k1 \<noteq> k2" hence *:"k1\<in>p" "k2\<in>p" "k1\<noteq>k2" using assms(2) by auto  | 
|
354  | 
  show "interior k1 \<inter> interior k2 = {}" using as(5)[OF *] by auto qed auto
 | 
|
355  | 
||
356  | 
lemma division_of_union_self[intro]: "p division_of s \<Longrightarrow> p division_of (\<Union>p)" unfolding division_of_def by auto  | 
|
357  | 
||
358  | 
lemma division_of_content_0: assumes "content {a..b} = 0" "d division_of {a..b}" shows "\<forall>k\<in>d. content k = 0"
 | 
|
359  | 
unfolding forall_in_division[OF assms(2)] apply(rule,rule,rule) apply(drule division_ofD(2)[OF assms(2)])  | 
|
360  | 
apply(drule content_subset) unfolding assms(1) proof- case goal1 thus ?case using content_pos_le[of a b] by auto qed  | 
|
361  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
362  | 
lemma division_inter: assumes "p1 division_of s1" "p2 division_of (s2::('a::ordered_euclidean_space) set)"
 | 
| 35172 | 363  | 
  shows "{k1 \<inter> k2 | k1 k2 .k1 \<in> p1 \<and> k2 \<in> p2 \<and> k1 \<inter> k2 \<noteq> {}} division_of (s1 \<inter> s2)" (is "?A' division_of _") proof-
 | 
364  | 
let ?A = "{s. s \<in>  (\<lambda>(k1,k2). k1 \<inter> k2) ` (p1 \<times> p2) \<and> s \<noteq> {}}" have *:"?A' = ?A" by auto
 | 
|
365  | 
show ?thesis unfolding * proof(rule division_ofI) have "?A \<subseteq> (\<lambda>(x, y). x \<inter> y) ` (p1 \<times> p2)" by auto  | 
|
366  | 
moreover have "finite (p1 \<times> p2)" using assms unfolding division_of_def by auto ultimately show "finite ?A" by auto  | 
|
| 
39302
 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 
nipkow 
parents: 
38656 
diff
changeset
 | 
367  | 
  have *:"\<And>s. \<Union>{x\<in>s. x \<noteq> {}} = \<Union>s" by auto show "\<Union>?A = s1 \<inter> s2" apply(rule set_eqI) unfolding * and Union_image_eq UN_iff
 | 
| 35172 | 368  | 
using division_ofD(6)[OF assms(1)] and division_ofD(6)[OF assms(2)] by auto  | 
369  | 
  { fix k assume "k\<in>?A" then obtain k1 k2 where k:"k = k1 \<inter> k2" "k1\<in>p1" "k2\<in>p2" "k\<noteq>{}" by auto thus "k \<noteq> {}" by auto
 | 
|
370  | 
show "k \<subseteq> s1 \<inter> s2" using division_ofD(2)[OF assms(1) k(2)] and division_ofD(2)[OF assms(2) k(3)] unfolding k by auto  | 
|
371  | 
guess a1 using division_ofD(4)[OF assms(1) k(2)] .. then guess b1 .. note ab1=this  | 
|
372  | 
guess a2 using division_ofD(4)[OF assms(2) k(3)] .. then guess b2 .. note ab2=this  | 
|
373  | 
  show "\<exists>a b. k = {a..b}" unfolding k ab1 ab2 unfolding inter_interval by auto } fix k1 k2
 | 
|
374  | 
  assume "k1\<in>?A" then obtain x1 y1 where k1:"k1 = x1 \<inter> y1" "x1\<in>p1" "y1\<in>p2" "k1\<noteq>{}" by auto
 | 
|
375  | 
  assume "k2\<in>?A" then obtain x2 y2 where k2:"k2 = x2 \<inter> y2" "x2\<in>p1" "y2\<in>p2" "k2\<noteq>{}" by auto
 | 
|
376  | 
assume "k1 \<noteq> k2" hence th:"x1\<noteq>x2 \<or> y1\<noteq>y2" unfolding k1 k2 by auto  | 
|
377  | 
  have *:"(interior x1 \<inter> interior x2 = {} \<or> interior y1 \<inter> interior y2 = {}) \<Longrightarrow>
 | 
|
378  | 
interior(x1 \<inter> y1) \<subseteq> interior(x1) \<Longrightarrow> interior(x1 \<inter> y1) \<subseteq> interior(y1) \<Longrightarrow>  | 
|
379  | 
interior(x2 \<inter> y2) \<subseteq> interior(x2) \<Longrightarrow> interior(x2 \<inter> y2) \<subseteq> interior(y2)  | 
|
380  | 
      \<Longrightarrow> interior(x1 \<inter> y1) \<inter> interior(x2 \<inter> y2) = {}" by auto
 | 
|
| 
44522
 
2f7e9d890efe
rename subset_{interior,closure} to {interior,closure}_mono;
 
huffman 
parents: 
44514 
diff
changeset
 | 
381  | 
  show "interior k1 \<inter> interior k2 = {}" unfolding k1 k2 apply(rule *) defer apply(rule_tac[1-4] interior_mono)
 | 
| 35172 | 382  | 
using division_ofD(5)[OF assms(1) k1(2) k2(2)]  | 
383  | 
using division_ofD(5)[OF assms(2) k1(3) k2(3)] using th by auto qed qed  | 
|
384  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
385  | 
lemma division_inter_1: assumes "d division_of i" "{a..b::'a::ordered_euclidean_space} \<subseteq> i"
 | 
| 35172 | 386  | 
  shows "{ {a..b} \<inter> k |k. k \<in> d \<and> {a..b} \<inter> k \<noteq> {} } division_of {a..b}" proof(cases "{a..b} = {}")
 | 
387  | 
case True show ?thesis unfolding True and division_of_trivial by auto next  | 
|
388  | 
  have *:"{a..b} \<inter> i = {a..b}" using assms(2) by auto 
 | 
|
389  | 
case False show ?thesis using division_inter[OF division_of_self[OF False] assms(1)] unfolding * by auto qed  | 
|
390  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
391  | 
lemma elementary_inter: assumes "p1 division_of s" "p2 division_of (t::('a::ordered_euclidean_space) set)"
 | 
| 35172 | 392  | 
shows "\<exists>p. p division_of (s \<inter> t)"  | 
393  | 
by(rule,rule division_inter[OF assms])  | 
|
394  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
395  | 
lemma elementary_inters: assumes "finite f" "f\<noteq>{}" "\<forall>s\<in>f. \<exists>p. p division_of (s::('a::ordered_euclidean_space) set)"
 | 
| 35172 | 396  | 
shows "\<exists>p. p division_of (\<Inter> f)" using assms apply-proof(induct f rule:finite_induct)  | 
397  | 
case (insert x f) show ?case proof(cases "f={}")
 | 
|
398  | 
case True thus ?thesis unfolding True using insert by auto next  | 
|
399  | 
case False guess p using insert(3)[OF False insert(5)[unfolded ball_simps,THEN conjunct2]] ..  | 
|
400  | 
moreover guess px using insert(5)[rule_format,OF insertI1] .. ultimately  | 
|
401  | 
show ?thesis unfolding Inter_insert apply(rule_tac elementary_inter) by assumption+ qed qed auto  | 
|
402  | 
||
403  | 
lemma division_disjoint_union:  | 
|
404  | 
  assumes "p1 division_of s1" "p2 division_of s2" "interior s1 \<inter> interior s2 = {}"
 | 
|
405  | 
shows "(p1 \<union> p2) division_of (s1 \<union> s2)" proof(rule division_ofI)  | 
|
406  | 
note d1 = division_ofD[OF assms(1)] and d2 = division_ofD[OF assms(2)]  | 
|
407  | 
show "finite (p1 \<union> p2)" using d1(1) d2(1) by auto  | 
|
408  | 
show "\<Union>(p1 \<union> p2) = s1 \<union> s2" using d1(6) d2(6) by auto  | 
|
409  | 
  { fix k1 k2 assume as:"k1 \<in> p1 \<union> p2" "k2 \<in> p1 \<union> p2" "k1 \<noteq> k2" moreover let ?g="interior k1 \<inter> interior k2 = {}"
 | 
|
| 
44522
 
2f7e9d890efe
rename subset_{interior,closure} to {interior,closure}_mono;
 
huffman 
parents: 
44514 
diff
changeset
 | 
410  | 
  { assume as:"k1\<in>p1" "k2\<in>p2" have ?g using interior_mono[OF d1(2)[OF as(1)]] interior_mono[OF d2(2)[OF as(2)]]
 | 
| 35172 | 411  | 
using assms(3) by blast } moreover  | 
| 
44522
 
2f7e9d890efe
rename subset_{interior,closure} to {interior,closure}_mono;
 
huffman 
parents: 
44514 
diff
changeset
 | 
412  | 
  { assume as:"k1\<in>p2" "k2\<in>p1" have ?g using interior_mono[OF d1(2)[OF as(2)]] interior_mono[OF d2(2)[OF as(1)]]
 | 
| 35172 | 413  | 
using assms(3) by blast} ultimately  | 
414  | 
show ?g using d1(5)[OF _ _ as(3)] and d2(5)[OF _ _ as(3)] by auto }  | 
|
415  | 
fix k assume k:"k \<in> p1 \<union> p2" show "k \<subseteq> s1 \<union> s2" using k d1(2) d2(2) by auto  | 
|
416  | 
  show "k \<noteq> {}" using k d1(3) d2(3) by auto show "\<exists>a b. k = {a..b}" using k d1(4) d2(4) by auto qed
 | 
|
417  | 
||
418  | 
lemma partial_division_extend_1:  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
419  | 
  assumes "{c..d} \<subseteq> {a..b::'a::ordered_euclidean_space}" "{c..d} \<noteq> {}"
 | 
| 35172 | 420  | 
  obtains p where "p division_of {a..b}" "{c..d} \<in> p"
 | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
421  | 
proof- def n \<equiv> "DIM('a)" have n:"1 \<le> n" "0 < n" "n \<noteq> 0" unfolding n_def using DIM_positive[where 'a='a] by auto
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
422  | 
  guess \<pi> using ex_bij_betw_nat_finite_1[OF finite_lessThan[of "DIM('a)"]] .. note \<pi>=this
 | 
| 35172 | 423  | 
  def \<pi>' \<equiv> "inv_into {1..n} \<pi>"
 | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
424  | 
  have \<pi>':"bij_betw \<pi>' {..<DIM('a)} {1..n}" using bij_betw_inv_into[OF \<pi>] unfolding \<pi>'_def n_def by auto
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
425  | 
  hence \<pi>'i:"\<And>i. i<DIM('a) \<Longrightarrow> \<pi>' i \<in> {1..n}" unfolding bij_betw_def by auto 
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
426  | 
  have \<pi>i:"\<And>i. i\<in>{1..n} \<Longrightarrow> \<pi> i <DIM('a)" using \<pi> unfolding bij_betw_def n_def by auto 
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
427  | 
  have \<pi>\<pi>'[simp]:"\<And>i. i<DIM('a) \<Longrightarrow> \<pi> (\<pi>' i) = i" unfolding \<pi>'_def
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
428  | 
apply(rule f_inv_into_f) unfolding n_def using \<pi> unfolding bij_betw_def by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
429  | 
  have \<pi>'\<pi>[simp]:"\<And>i. i\<in>{1..n} \<Longrightarrow> \<pi>' (\<pi> i) = i" unfolding \<pi>'_def apply(rule inv_into_f_eq)
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
430  | 
using \<pi> unfolding n_def bij_betw_def by auto  | 
| 35172 | 431  | 
  have "{c..d} \<noteq> {}" using assms by auto
 | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
432  | 
  let ?p1 = "\<lambda>l. {(\<chi>\<chi> i. if \<pi>' i < l then c$$i else a$$i)::'a .. (\<chi>\<chi> i. if \<pi>' i < l then d$$i else if \<pi>' i = l then c$$\<pi> l else b$$i)}"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
433  | 
  let ?p2 = "\<lambda>l. {(\<chi>\<chi> i. if \<pi>' i < l then c$$i else if \<pi>' i = l then d$$\<pi> l else a$$i)::'a .. (\<chi>\<chi> i. if \<pi>' i < l then d$$i else b$$i)}"
 | 
| 35172 | 434  | 
  let ?p =  "{?p1 l |l. l \<in> {1..n+1}} \<union> {?p2 l |l. l \<in> {1..n+1}}"
 | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
435  | 
  have abcd:"\<And>i. i<DIM('a) \<Longrightarrow> a $$ i \<le> c $$ i \<and> c$$i \<le> d$$i \<and> d $$ i \<le> b $$ i" using assms
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
436  | 
unfolding subset_interval interval_eq_empty by auto  | 
| 35172 | 437  | 
show ?thesis apply(rule that[of ?p]) apply(rule division_ofI)  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
438  | 
  proof- have "\<And>i. i<DIM('a) \<Longrightarrow> \<pi>' i < Suc n"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
439  | 
    proof(rule ccontr,unfold not_less) fix i assume i:"i<DIM('a)" and "Suc n \<le> \<pi>' i"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
440  | 
      hence "\<pi>' i \<notin> {1..n}" by auto thus False using \<pi>' i unfolding bij_betw_def by auto
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
441  | 
qed hence "c = (\<chi>\<chi> i. if \<pi>' i < Suc n then c $$ i else a $$ i)"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
442  | 
"d = (\<chi>\<chi> i. if \<pi>' i < Suc n then d $$ i else if \<pi>' i = n + 1 then c $$ \<pi> (n + 1) else b $$ i)"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
443  | 
unfolding euclidean_eq[where 'a='a] using \<pi>' unfolding bij_betw_def by auto  | 
| 35172 | 444  | 
    thus cdp:"{c..d} \<in> ?p" apply-apply(rule UnI1) unfolding mem_Collect_eq apply(rule_tac x="n + 1" in exI) by auto
 | 
445  | 
    have "\<And>l. l\<in>{1..n+1} \<Longrightarrow> ?p1 l \<subseteq> {a..b}"  "\<And>l. l\<in>{1..n+1} \<Longrightarrow> ?p2 l \<subseteq> {a..b}"
 | 
|
446  | 
unfolding subset_eq apply(rule_tac[!] ballI,rule_tac[!] ccontr)  | 
|
447  | 
    proof- fix l assume l:"l\<in>{1..n+1}" fix x assume "x\<notin>{a..b}"
 | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
448  | 
then guess i unfolding mem_interval not_all not_imp .. note i=conjunctD2[OF this]  | 
| 35172 | 449  | 
show "x \<in> ?p1 l \<Longrightarrow> False" "x \<in> ?p2 l \<Longrightarrow> False" unfolding mem_interval apply(erule_tac[!] x=i in allE)  | 
450  | 
apply(case_tac[!] "\<pi>' i < l", case_tac[!] "\<pi>' i = l") using abcd[of i] i by auto  | 
|
451  | 
    qed moreover have "\<And>x. x \<in> {a..b} \<Longrightarrow> x \<in> \<Union>?p"
 | 
|
452  | 
    proof- fix x assume x:"x\<in>{a..b}"
 | 
|
453  | 
      { presume "x\<notin>{c..d} \<Longrightarrow> x \<in> \<Union>?p" thus "x \<in> \<Union>?p" using cdp by blast }
 | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
454  | 
      let ?M = "{i. i\<in>{1..n+1} \<and> \<not> (c $$ \<pi> i \<le> x $$ \<pi> i \<and> x $$ \<pi> i \<le> d $$ \<pi> i)}"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
455  | 
      assume "x\<notin>{c..d}" then guess i0 unfolding mem_interval not_all not_imp ..
 | 
| 35172 | 456  | 
hence "\<pi>' i0 \<in> ?M" using \<pi>' unfolding bij_betw_def by(auto intro!:le_SucI)  | 
457  | 
      hence M:"finite ?M" "?M \<noteq> {}" by auto
 | 
|
458  | 
def l \<equiv> "Min ?M" note l = Min_less_iff[OF M,unfolded l_def[symmetric]] Min_in[OF M,unfolded mem_Collect_eq l_def[symmetric]]  | 
|
459  | 
Min_gr_iff[OF M,unfolded l_def[symmetric]]  | 
|
460  | 
have "x\<in>?p1 l \<or> x\<in>?p2 l" using l(2)[THEN conjunct2] unfolding de_Morgan_conj not_le  | 
|
461  | 
apply- apply(erule disjE) apply(rule disjI1) defer apply(rule disjI2)  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
462  | 
proof- assume as:"x $$ \<pi> l < c $$ \<pi> l"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
463  | 
show "x \<in> ?p1 l" unfolding mem_interval apply safe unfolding euclidean_lambda_beta'  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
464  | 
        proof- case goal1 have "\<pi>' i \<in> {1..n}" using \<pi>' unfolding bij_betw_def not_le using goal1 by auto
 | 
| 35172 | 465  | 
thus ?case using as x[unfolded mem_interval,rule_format,of i]  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
466  | 
apply auto using l(3)[of "\<pi>' i"] using goal1 by(auto elim!:ballE[where x="\<pi>' i"])  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
467  | 
        next case goal2 have "\<pi>' i \<in> {1..n}" using \<pi>' unfolding bij_betw_def not_le using goal2 by auto
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
468  | 
thus ?case using as x[unfolded mem_interval,rule_format,of i]  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
469  | 
apply auto using l(3)[of "\<pi>' i"] using goal2 by(auto elim!:ballE[where x="\<pi>' i"])  | 
| 35172 | 470  | 
qed  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
471  | 
next assume as:"x $$ \<pi> l > d $$ \<pi> l"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
472  | 
show "x \<in> ?p2 l" unfolding mem_interval apply safe unfolding euclidean_lambda_beta'  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
473  | 
        proof- fix i assume i:"i<DIM('a)"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
474  | 
          have "\<pi>' i \<in> {1..n}" using \<pi>' unfolding bij_betw_def not_le using i by auto
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
475  | 
thus "(if \<pi>' i < l then c $$ i else if \<pi>' i = l then d $$ \<pi> l else a $$ i) \<le> x $$ i"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
476  | 
"x $$ i \<le> (if \<pi>' i < l then d $$ i else b $$ i)"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
477  | 
using as x[unfolded mem_interval,rule_format,of i]  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
478  | 
apply auto using l(3)[of "\<pi>' i"] i by(auto elim!:ballE[where x="\<pi>' i"])  | 
| 35172 | 479  | 
qed qed  | 
480  | 
thus "x \<in> \<Union>?p" using l(2) by blast  | 
|
481  | 
    qed ultimately show "\<Union>?p = {a..b}" apply-apply(rule) defer apply(rule) by(assumption,blast)
 | 
|
482  | 
||
483  | 
show "finite ?p" by auto  | 
|
484  | 
    fix k assume k:"k\<in>?p" then obtain l where l:"k = ?p1 l \<or> k = ?p2 l" "l \<in> {1..n + 1}" by auto
 | 
|
485  | 
    show "k\<subseteq>{a..b}" apply(rule,unfold mem_interval,rule,rule) 
 | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
486  | 
    proof fix i x assume i:"i<DIM('a)" assume "x \<in> k" moreover have "\<pi>' i < l \<or> \<pi>' i = l \<or> \<pi>' i > l" by auto
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
487  | 
ultimately show "a$$i \<le> x$$i" "x$$i \<le> b$$i" using abcd[of i] using l using i  | 
| 
44457
 
d366fa5551ef
declare euclidean_simps [simp] at the point they are proved;
 
huffman 
parents: 
44282 
diff
changeset
 | 
488  | 
by(auto elim!:allE[where x=i] simp add:eucl_le[where 'a='a]) (* FIXME: SLOW *)  | 
| 35172 | 489  | 
    qed have "\<And>l. ?p1 l \<noteq> {}" "\<And>l. ?p2 l \<noteq> {}" unfolding interval_eq_empty not_ex apply(rule_tac[!] allI)
 | 
490  | 
proof- case goal1 thus ?case using abcd[of x] by auto  | 
|
491  | 
next case goal2 thus ?case using abcd[of x] by auto  | 
|
492  | 
    qed thus "k \<noteq> {}" using k by auto
 | 
|
493  | 
    show "\<exists>a b. k = {a..b}" using k by auto
 | 
|
494  | 
    fix k' assume k':"k' \<in> ?p" "k \<noteq> k'" then obtain l' where l':"k' = ?p1 l' \<or> k' = ?p2 l'" "l' \<in> {1..n + 1}" by auto
 | 
|
495  | 
    { fix k k' l l'
 | 
|
496  | 
      assume k:"k\<in>?p" and l:"k = ?p1 l \<or> k = ?p2 l" "l \<in> {1..n + 1}" 
 | 
|
497  | 
      assume k':"k' \<in> ?p" "k \<noteq> k'" and  l':"k' = ?p1 l' \<or> k' = ?p2 l'" "l' \<in> {1..n + 1}" 
 | 
|
498  | 
assume "l \<le> l'" fix x  | 
|
499  | 
have "x \<notin> interior k \<inter> interior k'"  | 
|
500  | 
proof(rule,cases "l' = n+1") assume x:"x \<in> interior k \<inter> interior k'"  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
501  | 
        case True hence "\<And>i. i<DIM('a) \<Longrightarrow> \<pi>' i < l'" using \<pi>'i using l' by(auto simp add:less_Suc_eq_le)
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
502  | 
hence *:"\<And> P Q. (\<chi>\<chi> i. if \<pi>' i < l' then P i else Q i) = ((\<chi>\<chi> i. P i)::'a)" apply-apply(subst euclidean_eq) by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
503  | 
        hence k':"k' = {c..d}" using l'(1) unfolding * by auto
 | 
| 35172 | 504  | 
have ln:"l < n + 1"  | 
505  | 
proof(rule ccontr) case goal1 hence l2:"l = n+1" using l by auto  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
506  | 
          hence "\<And>i. i<DIM('a) \<Longrightarrow> \<pi>' i < l" using \<pi>'i by(auto simp add:less_Suc_eq_le)
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
507  | 
hence *:"\<And> P Q. (\<chi>\<chi> i. if \<pi>' i < l then P i else Q i) = ((\<chi>\<chi> i. P i)::'a)" apply-apply(subst euclidean_eq) by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
508  | 
          hence "k = {c..d}" using l(1) \<pi>'i unfolding * by(auto)
 | 
| 35172 | 509  | 
thus False using `k\<noteq>k'` k' by auto  | 
510  | 
qed have **:"\<pi>' (\<pi> l) = l" using \<pi>'\<pi>[of l] using l ln by auto  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
511  | 
have "x $$ \<pi> l < c $$ \<pi> l \<or> d $$ \<pi> l < x $$ \<pi> l" using l(1) apply-  | 
| 35172 | 512  | 
proof(erule disjE)  | 
513  | 
assume as:"k = ?p1 l" note * = conjunct1[OF x[unfolded as Int_iff interior_closed_interval mem_interval],rule_format]  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
514  | 
show ?thesis using *[of "\<pi> l"] using ln l(2) using \<pi>i[of l] by(auto simp add:** not_less)  | 
| 35172 | 515  | 
next assume as:"k = ?p2 l" note * = conjunct1[OF x[unfolded as Int_iff interior_closed_interval mem_interval],rule_format]  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
516  | 
show ?thesis using *[of "\<pi> l"] using ln l(2) using \<pi>i[of l] unfolding ** by auto  | 
| 35172 | 517  | 
qed thus False using x unfolding k' unfolding Int_iff interior_closed_interval mem_interval  | 
518  | 
by(auto elim!:allE[where x="\<pi> l"])  | 
|
519  | 
next case False hence "l < n + 1" using l'(2) using `l\<le>l'` by auto  | 
|
520  | 
        hence ln:"l \<in> {1..n}" "l' \<in> {1..n}" using l l' False by auto
 | 
|
521  | 
note \<pi>l = \<pi>'\<pi>[OF ln(1)] \<pi>'\<pi>[OF ln(2)]  | 
|
522  | 
assume x:"x \<in> interior k \<inter> interior k'"  | 
|
523  | 
show False using l(1) l'(1) apply-  | 
|
524  | 
proof(erule_tac[!] disjE)+  | 
|
525  | 
assume as:"k = ?p1 l" "k' = ?p1 l'"  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
526  | 
note * = conjunctD2[OF x[unfolded as Int_iff interior_closed_interval mem_interval],rule_format]  | 
| 35172 | 527  | 
have "l \<noteq> l'" using k'(2)[unfolded as] by auto  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
528  | 
thus False using *[of "\<pi> l'"] *[of "\<pi> l"] ln using \<pi>i[OF ln(1)] \<pi>i[OF ln(2)] apply(cases "l<l'")  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
529  | 
by(auto simp add:euclidean_lambda_beta' \<pi>l \<pi>i n_def)  | 
| 35172 | 530  | 
next assume as:"k = ?p2 l" "k' = ?p2 l'"  | 
531  | 
note * = conjunctD2[OF x[unfolded as Int_iff interior_closed_interval mem_interval],rule_format]  | 
|
532  | 
have "l \<noteq> l'" apply(rule) using k'(2)[unfolded as] by auto  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
533  | 
thus False using *[of "\<pi> l"] *[of "\<pi> l'"] `l \<le> l'` ln by(auto simp add:euclidean_lambda_beta' \<pi>l \<pi>i n_def)  | 
| 35172 | 534  | 
next assume as:"k = ?p1 l" "k' = ?p2 l'"  | 
535  | 
note * = conjunctD2[OF x[unfolded as Int_iff interior_closed_interval mem_interval],rule_format]  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
536  | 
show False using abcd[of "\<pi> l'"] using *[of "\<pi> l"] *[of "\<pi> l'"] `l \<le> l'` ln apply(cases "l=l'")  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
537  | 
by(auto simp add:euclidean_lambda_beta' \<pi>l \<pi>i n_def)  | 
| 35172 | 538  | 
next assume as:"k = ?p2 l" "k' = ?p1 l'"  | 
539  | 
note * = conjunctD2[OF x[unfolded as Int_iff interior_closed_interval mem_interval],rule_format]  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
540  | 
show False using *[of "\<pi> l"] *[of "\<pi> l'"] ln `l \<le> l'` apply(cases "l=l'") using abcd[of "\<pi> l'"]  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
541  | 
by(auto simp add:euclidean_lambda_beta' \<pi>l \<pi>i n_def)  | 
| 35172 | 542  | 
qed qed }  | 
543  | 
from this[OF k l k' l'] this[OF k'(1) l' k _ l] have "\<And>x. x \<notin> interior k \<inter> interior k'"  | 
|
544  | 
apply - apply(cases "l' \<le> l") using k'(2) by auto  | 
|
545  | 
    thus "interior k \<inter> interior k' = {}" by auto        
 | 
|
546  | 
qed qed  | 
|
547  | 
||
548  | 
lemma partial_division_extend_interval: assumes "p division_of (\<Union>p)" "(\<Union>p) \<subseteq> {a..b}"
 | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
549  | 
  obtains q where "p \<subseteq> q" "q division_of {a..b::'a::ordered_euclidean_space}" proof(cases "p = {}")
 | 
| 35172 | 550  | 
case True guess q apply(rule elementary_interval[of a b]) .  | 
551  | 
thus ?thesis apply- apply(rule that[of q]) unfolding True by auto next  | 
|
552  | 
case False note p = division_ofD[OF assms(1)]  | 
|
553  | 
  have *:"\<forall>k\<in>p. \<exists>q. q division_of {a..b} \<and> k\<in>q" proof case goal1
 | 
|
554  | 
guess c using p(4)[OF goal1] .. then guess d .. note cd_ = this  | 
|
555  | 
    have *:"{c..d} \<subseteq> {a..b}" "{c..d} \<noteq> {}" using p(2,3)[OF goal1, unfolded cd_] using assms(2) by auto
 | 
|
556  | 
guess q apply(rule partial_division_extend_1[OF *]) . thus ?case unfolding cd_ by auto qed  | 
|
557  | 
guess q using bchoice[OF *] .. note q = conjunctD2[OF this[rule_format]]  | 
|
558  | 
  have "\<And>x. x\<in>p \<Longrightarrow> \<exists>d. d division_of \<Union>(q x - {x})" apply(rule,rule_tac p="q x" in division_of_subset) proof-
 | 
|
559  | 
fix x assume x:"x\<in>p" show "q x division_of \<Union>q x" apply-apply(rule division_ofI)  | 
|
560  | 
      using division_ofD[OF q(1)[OF x]] by auto show "q x - {x} \<subseteq> q x" by auto qed
 | 
|
561  | 
  hence "\<exists>d. d division_of \<Inter> ((\<lambda>i. \<Union>(q i - {i})) ` p)" apply- apply(rule elementary_inters)
 | 
|
562  | 
apply(rule finite_imageI[OF p(1)]) unfolding image_is_empty apply(rule False) by auto  | 
|
563  | 
then guess d .. note d = this  | 
|
564  | 
show ?thesis apply(rule that[of "d \<union> p"]) proof-  | 
|
565  | 
    have *:"\<And>s f t. s \<noteq> {} \<Longrightarrow> (\<forall>i\<in>s. f i \<union> i = t) \<Longrightarrow> t = \<Inter> (f ` s) \<union> (\<Union>s)" by auto
 | 
|
566  | 
    have *:"{a..b} = \<Inter> (\<lambda>i. \<Union>(q i - {i})) ` p \<union> \<Union>p" apply(rule *[OF False]) proof fix i assume i:"i\<in>p"
 | 
|
567  | 
      show "\<Union>(q i - {i}) \<union> i = {a..b}" using division_ofD(6)[OF q(1)[OF i]] using q(2)[OF i] by auto qed
 | 
|
568  | 
    show "d \<union> p division_of {a..b}" unfolding * apply(rule division_disjoint_union[OF d assms(1)])
 | 
|
569  | 
apply(rule inter_interior_unions_intervals) apply(rule p open_interior ballI)+ proof(assumption,rule)  | 
|
570  | 
      fix k assume k:"k\<in>p" have *:"\<And>u t s. u \<subseteq> s \<Longrightarrow> s \<inter> t = {} \<Longrightarrow> u \<inter> t = {}" by auto
 | 
|
571  | 
      show "interior (\<Inter>(\<lambda>i. \<Union>(q i - {i})) ` p) \<inter> interior k = {}" apply(rule *[of _ "interior (\<Union>(q k - {k}))"])
 | 
|
| 41958 | 572  | 
defer apply(subst Int_commute) apply(rule inter_interior_unions_intervals) proof- note qk=division_ofD[OF q(1)[OF k]]  | 
573  | 
        show "finite (q k - {k})" "open (interior k)"  "\<forall>t\<in>q k - {k}. \<exists>a b. t = {a..b}" using qk by auto
 | 
|
574  | 
        show "\<forall>t\<in>q k - {k}. interior k \<inter> interior t = {}" using qk(5) using q(2)[OF k] by auto
 | 
|
575  | 
        have *:"\<And>x s. x \<in> s \<Longrightarrow> \<Inter>s \<subseteq> x" by auto show "interior (\<Inter>(\<lambda>i. \<Union>(q i - {i})) ` p) \<subseteq> interior (\<Union>(q k - {k}))"
 | 
|
| 
44522
 
2f7e9d890efe
rename subset_{interior,closure} to {interior,closure}_mono;
 
huffman 
parents: 
44514 
diff
changeset
 | 
576  | 
apply(rule interior_mono *)+ using k by auto qed qed qed auto qed  | 
| 35172 | 577  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
578  | 
lemma elementary_bounded[dest]: "p division_of s \<Longrightarrow> bounded (s::('a::ordered_euclidean_space) set)"
 | 
| 35172 | 579  | 
unfolding division_of_def by(metis bounded_Union bounded_interval)  | 
580  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
581  | 
lemma elementary_subset_interval: "p division_of s \<Longrightarrow> \<exists>a b. s \<subseteq> {a..b::'a::ordered_euclidean_space}"
 | 
| 35172 | 582  | 
by(meson elementary_bounded bounded_subset_closed_interval)  | 
583  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
584  | 
lemma division_union_intervals_exists: assumes "{a..b::'a::ordered_euclidean_space} \<noteq> {}"
 | 
| 35172 | 585  | 
  obtains p where "(insert {a..b} p) division_of ({a..b} \<union> {c..d})" proof(cases "{c..d} = {}")
 | 
586  | 
  case True show ?thesis apply(rule that[of "{}"]) unfolding True using assms by auto next
 | 
|
587  | 
  case False note false=this show ?thesis proof(cases "{a..b} \<inter> {c..d} = {}")
 | 
|
588  | 
  have *:"\<And>a b. {a,b} = {a} \<union> {b}" by auto
 | 
|
589  | 
  case True show ?thesis apply(rule that[of "{{c..d}}"]) unfolding * apply(rule division_disjoint_union)
 | 
|
590  | 
using false True assms using interior_subset by auto next  | 
|
591  | 
  case False obtain u v where uv:"{a..b} \<inter> {c..d} = {u..v}" unfolding inter_interval by auto
 | 
|
592  | 
  have *:"{u..v} \<subseteq> {c..d}" using uv by auto
 | 
|
593  | 
guess p apply(rule partial_division_extend_1[OF * False[unfolded uv]]) . note p=this division_ofD[OF this(1)]  | 
|
594  | 
  have *:"{a..b} \<union> {c..d} = {a..b} \<union> \<Union>(p - {{u..v}})" "\<And>x s. insert x s = {x} \<union> s" using p(8) unfolding uv[THEN sym] by auto
 | 
|
595  | 
  show thesis apply(rule that[of "p - {{u..v}}"]) unfolding *(1) apply(subst *(2)) apply(rule division_disjoint_union)
 | 
|
596  | 
apply(rule,rule assms) apply(rule division_of_subset[of p]) apply(rule division_of_union_self[OF p(1)]) defer  | 
|
597  | 
unfolding interior_inter[THEN sym] proof-  | 
|
598  | 
have *:"\<And>cd p uv ab. p \<subseteq> cd \<Longrightarrow> ab \<inter> cd = uv \<Longrightarrow> ab \<inter> p = uv \<inter> p" by auto  | 
|
599  | 
    have "interior ({a..b} \<inter> \<Union>(p - {{u..v}})) = interior({u..v} \<inter> \<Union>(p - {{u..v}}))" 
 | 
|
600  | 
apply(rule arg_cong[of _ _ interior]) apply(rule *[OF _ uv]) using p(8) by auto  | 
|
601  | 
    also have "\<dots> = {}" unfolding interior_inter apply(rule inter_interior_unions_intervals) using p(6) p(7)[OF p(2)] p(3) by auto
 | 
|
602  | 
    finally show "interior ({a..b} \<inter> \<Union>(p - {{u..v}})) = {}" by assumption qed auto qed qed
 | 
|
603  | 
||
604  | 
lemma division_of_unions: assumes "finite f" "\<And>p. p\<in>f \<Longrightarrow> p division_of (\<Union>p)"  | 
|
605  | 
  "\<And>k1 k2. \<lbrakk>k1 \<in> \<Union>f; k2 \<in> \<Union>f; k1 \<noteq> k2\<rbrakk> \<Longrightarrow> interior k1 \<inter> interior k2 = {}"
 | 
|
606  | 
shows "\<Union>f division_of \<Union>\<Union>f" apply(rule division_ofI) prefer 5 apply(rule assms(3)|assumption)+  | 
|
607  | 
apply(rule finite_Union assms(1))+ prefer 3 apply(erule UnionE) apply(rule_tac s=X in division_ofD(3)[OF assms(2)])  | 
|
608  | 
using division_ofD[OF assms(2)] by auto  | 
|
609  | 
||
610  | 
lemma elementary_union_interval: assumes "p division_of \<Union>p"  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
611  | 
  obtains q where "q division_of ({a..b::'a::ordered_euclidean_space} \<union> \<Union>p)" proof-
 | 
| 35172 | 612  | 
note assm=division_ofD[OF assms]  | 
613  | 
have lem1:"\<And>f s. \<Union>\<Union> (f ` s) = \<Union>(\<lambda>x.\<Union>(f x)) ` s" by auto  | 
|
614  | 
  have lem2:"\<And>f s. f \<noteq> {} \<Longrightarrow> \<Union>{s \<union> t |t. t \<in> f} = s \<union> \<Union>f" by auto
 | 
|
615  | 
{ presume "p={} \<Longrightarrow> thesis" "{a..b} = {} \<Longrightarrow> thesis" "{a..b} \<noteq> {} \<Longrightarrow> interior {a..b} = {} \<Longrightarrow> thesis"
 | 
|
616  | 
    "p\<noteq>{} \<Longrightarrow> interior {a..b}\<noteq>{} \<Longrightarrow> {a..b} \<noteq> {} \<Longrightarrow> thesis"
 | 
|
617  | 
thus thesis by auto  | 
|
618  | 
next assume as:"p={}" guess p apply(rule elementary_interval[of a b]) .
 | 
|
619  | 
thus thesis apply(rule_tac that[of p]) unfolding as by auto  | 
|
620  | 
next assume as:"{a..b}={}" show thesis apply(rule that) unfolding as using assms by auto
 | 
|
621  | 
next assume as:"interior {a..b} = {}" "{a..b} \<noteq> {}"
 | 
|
622  | 
  show thesis apply(rule that[of "insert {a..b} p"],rule division_ofI)
 | 
|
623  | 
unfolding finite_insert apply(rule assm(1)) unfolding Union_insert  | 
|
624  | 
using assm(2-4) as apply- by(fastsimp dest: assm(5))+  | 
|
625  | 
next assume as:"p \<noteq> {}" "interior {a..b} \<noteq> {}" "{a..b}\<noteq>{}"
 | 
|
626  | 
  have "\<forall>k\<in>p. \<exists>q. (insert {a..b} q) division_of ({a..b} \<union> k)" proof case goal1
 | 
|
627  | 
from assm(4)[OF this] guess c .. then guess d ..  | 
|
628  | 
thus ?case apply-apply(rule division_union_intervals_exists[OF as(3),of c d]) by auto  | 
|
629  | 
qed from bchoice[OF this] guess q .. note q=division_ofD[OF this[rule_format]]  | 
|
630  | 
  let ?D = "\<Union>{insert {a..b} (q k) | k. k \<in> p}"
 | 
|
631  | 
show thesis apply(rule that[of "?D"]) proof(rule division_ofI)  | 
|
632  | 
    have *:"{insert {a..b} (q k) |k. k \<in> p} = (\<lambda>k. insert {a..b} (q k)) ` p" by auto
 | 
|
633  | 
show "finite ?D" apply(rule finite_Union) unfolding * apply(rule finite_imageI) using assm(1) q(1) by auto  | 
|
634  | 
    show "\<Union>?D = {a..b} \<union> \<Union>p" unfolding * lem1 unfolding lem2[OF as(1), of "{a..b}",THEN sym]
 | 
|
635  | 
using q(6) by auto  | 
|
636  | 
    fix k assume k:"k\<in>?D" thus " k \<subseteq> {a..b} \<union> \<Union>p" using q(2) by auto
 | 
|
637  | 
    show "k \<noteq> {}" using q(3) k by auto show "\<exists>a b. k = {a..b}" using q(4) k by auto
 | 
|
638  | 
fix k' assume k':"k'\<in>?D" "k\<noteq>k'"  | 
|
639  | 
    obtain x  where x: "k \<in>insert {a..b} (q x)"  "x\<in>p"  using k  by auto
 | 
|
640  | 
    obtain x' where x':"k'\<in>insert {a..b} (q x')" "x'\<in>p" using k' by auto
 | 
|
641  | 
    show "interior k \<inter> interior k' = {}" proof(cases "x=x'")
 | 
|
642  | 
case True show ?thesis apply(rule q(5)) using x x' k' unfolding True by auto  | 
|
643  | 
next case False  | 
|
644  | 
      { presume "k = {a..b} \<Longrightarrow> ?thesis" "k' = {a..b} \<Longrightarrow> ?thesis" 
 | 
|
645  | 
        "k \<noteq> {a..b} \<Longrightarrow> k' \<noteq> {a..b} \<Longrightarrow> ?thesis"
 | 
|
646  | 
thus ?thesis by auto }  | 
|
647  | 
      { assume as':"k  = {a..b}" show ?thesis apply(rule q(5)) using x' k'(2) unfolding as' by auto }
 | 
|
648  | 
      { assume as':"k' = {a..b}" show ?thesis apply(rule q(5)) using x  k'(2) unfolding as' by auto }
 | 
|
649  | 
      assume as':"k \<noteq> {a..b}" "k' \<noteq> {a..b}"
 | 
|
650  | 
guess c using q(4)[OF x(2,1)] .. then guess d .. note c_d=this  | 
|
651  | 
      have "interior k  \<inter> interior {a..b} = {}" apply(rule q(5)) using x  k'(2) using as' by auto
 | 
|
652  | 
hence "interior k \<subseteq> interior x" apply-  | 
|
653  | 
apply(rule interior_subset_union_intervals[OF c_d _ as(2) q(2)[OF x(2,1)]]) by auto moreover  | 
|
654  | 
guess c using q(4)[OF x'(2,1)] .. then guess d .. note c_d=this  | 
|
655  | 
      have "interior k' \<inter> interior {a..b} = {}" apply(rule q(5)) using x' k'(2) using as' by auto
 | 
|
656  | 
hence "interior k' \<subseteq> interior x'" apply-  | 
|
657  | 
apply(rule interior_subset_union_intervals[OF c_d _ as(2) q(2)[OF x'(2,1)]]) by auto  | 
|
658  | 
ultimately show ?thesis using assm(5)[OF x(2) x'(2) False] by auto  | 
|
659  | 
qed qed } qed  | 
|
660  | 
||
661  | 
lemma elementary_unions_intervals:  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
662  | 
  assumes "finite f" "\<And>s. s \<in> f \<Longrightarrow> \<exists>a b. s = {a..b::'a::ordered_euclidean_space}"
 | 
| 35172 | 663  | 
obtains p where "p division_of (\<Union>f)" proof-  | 
664  | 
have "\<exists>p. p division_of (\<Union>f)" proof(induct_tac f rule:finite_subset_induct)  | 
|
665  | 
    show "\<exists>p. p division_of \<Union>{}" using elementary_empty by auto
 | 
|
666  | 
fix x F assume as:"finite F" "x \<notin> F" "\<exists>p. p division_of \<Union>F" "x\<in>f"  | 
|
667  | 
from this(3) guess p .. note p=this  | 
|
668  | 
from assms(2)[OF as(4)] guess a .. then guess b .. note ab=this  | 
|
669  | 
have *:"\<Union>F = \<Union>p" using division_ofD[OF p] by auto  | 
|
670  | 
show "\<exists>p. p division_of \<Union>insert x F" using elementary_union_interval[OF p[unfolded *], of a b]  | 
|
671  | 
unfolding Union_insert ab * by auto  | 
|
672  | 
qed(insert assms,auto) thus ?thesis apply-apply(erule exE,rule that) by auto qed  | 
|
673  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
674  | 
lemma elementary_union: assumes "ps division_of s" "pt division_of (t::('a::ordered_euclidean_space) set)"
 | 
| 35172 | 675  | 
obtains p where "p division_of (s \<union> t)"  | 
676  | 
proof- have "s \<union> t = \<Union>ps \<union> \<Union>pt" using assms unfolding division_of_def by auto  | 
|
677  | 
hence *:"\<Union>(ps \<union> pt) = s \<union> t" by auto  | 
|
678  | 
show ?thesis apply-apply(rule elementary_unions_intervals[of "ps\<union>pt"])  | 
|
679  | 
unfolding * prefer 3 apply(rule_tac p=p in that)  | 
|
680  | 
using assms[unfolded division_of_def] by auto qed  | 
|
681  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
682  | 
lemma partial_division_extend: fixes t::"('a::ordered_euclidean_space) set"
 | 
| 35172 | 683  | 
assumes "p division_of s" "q division_of t" "s \<subseteq> t"  | 
684  | 
obtains r where "p \<subseteq> r" "r division_of t" proof-  | 
|
685  | 
note divp = division_ofD[OF assms(1)] and divq = division_ofD[OF assms(2)]  | 
|
686  | 
  obtain a b where ab:"t\<subseteq>{a..b}" using elementary_subset_interval[OF assms(2)] by auto
 | 
|
687  | 
guess r1 apply(rule partial_division_extend_interval) apply(rule assms(1)[unfolded divp(6)[THEN sym]])  | 
|
688  | 
apply(rule subset_trans) by(rule ab assms[unfolded divp(6)[THEN sym]])+ note r1 = this division_ofD[OF this(2)]  | 
|
689  | 
guess p' apply(rule elementary_unions_intervals[of "r1 - p"]) using r1(3,6) by auto  | 
|
690  | 
then obtain r2 where r2:"r2 division_of (\<Union>(r1 - p)) \<inter> (\<Union>q)"  | 
|
691  | 
apply- apply(drule elementary_inter[OF _ assms(2)[unfolded divq(6)[THEN sym]]]) by auto  | 
|
692  | 
  { fix x assume x:"x\<in>t" "x\<notin>s"
 | 
|
693  | 
hence "x\<in>\<Union>r1" unfolding r1 using ab by auto  | 
|
694  | 
then guess r unfolding Union_iff .. note r=this moreover  | 
|
695  | 
have "r \<notin> p" proof assume "r\<in>p" hence "x\<in>s" using divp(2) r by auto  | 
|
696  | 
thus False using x by auto qed  | 
|
697  | 
ultimately have "x\<in>\<Union>(r1 - p)" by auto }  | 
|
698  | 
hence *:"t = \<Union>p \<union> (\<Union>(r1 - p) \<inter> \<Union>q)" unfolding divp divq using assms(3) by auto  | 
|
699  | 
show ?thesis apply(rule that[of "p \<union> r2"]) unfolding * defer apply(rule division_disjoint_union)  | 
|
700  | 
unfolding divp(6) apply(rule assms r2)+  | 
|
701  | 
  proof- have "interior s \<inter> interior (\<Union>(r1-p)) = {}"
 | 
|
702  | 
proof(rule inter_interior_unions_intervals)  | 
|
703  | 
      show "finite (r1 - p)" "open (interior s)" "\<forall>t\<in>r1-p. \<exists>a b. t = {a..b}" using r1 by auto
 | 
|
704  | 
      have *:"\<And>s. (\<And>x. x \<in> s \<Longrightarrow> False) \<Longrightarrow> s = {}" by auto
 | 
|
705  | 
      show "\<forall>t\<in>r1-p. interior s \<inter> interior t = {}" proof(rule)
 | 
|
706  | 
fix m x assume as:"m\<in>r1-p"  | 
|
707  | 
        have "interior m \<inter> interior (\<Union>p) = {}" proof(rule inter_interior_unions_intervals)
 | 
|
708  | 
          show "finite p" "open (interior m)" "\<forall>t\<in>p. \<exists>a b. t = {a..b}" using divp by auto
 | 
|
709  | 
          show "\<forall>t\<in>p. interior m \<inter> interior t = {}" apply(rule, rule r1(7)) using as using r1 by auto
 | 
|
710  | 
        qed thus "interior s \<inter> interior m = {}" unfolding divp by auto
 | 
|
711  | 
qed qed  | 
|
712  | 
    thus "interior s \<inter> interior (\<Union>(r1-p) \<inter> (\<Union>q)) = {}" using interior_subset by auto
 | 
|
713  | 
qed auto qed  | 
|
714  | 
||
715  | 
subsection {* Tagged (partial) divisions. *}
 | 
|
716  | 
||
717  | 
definition tagged_partial_division_of (infixr "tagged'_partial'_division'_of" 40) where  | 
|
718  | 
"(s tagged_partial_division_of i) \<equiv>  | 
|
719  | 
finite s \<and>  | 
|
720  | 
        (\<forall>x k. (x,k) \<in> s \<longrightarrow> x \<in> k \<and> k \<subseteq> i \<and> (\<exists>a b. k = {a..b})) \<and>
 | 
|
721  | 
(\<forall>x1 k1 x2 k2. (x1,k1) \<in> s \<and> (x2,k2) \<in> s \<and> ((x1,k1) \<noteq> (x2,k2))  | 
|
722  | 
                       \<longrightarrow> (interior(k1) \<inter> interior(k2) = {}))"
 | 
|
723  | 
||
724  | 
lemma tagged_partial_division_ofD[dest]: assumes "s tagged_partial_division_of i"  | 
|
725  | 
shows "finite s" "\<And>x k. (x,k) \<in> s \<Longrightarrow> x \<in> k" "\<And>x k. (x,k) \<in> s \<Longrightarrow> k \<subseteq> i"  | 
|
726  | 
  "\<And>x k. (x,k) \<in> s \<Longrightarrow> \<exists>a b. k = {a..b}"
 | 
|
727  | 
  "\<And>x1 k1 x2 k2. (x1,k1) \<in> s \<Longrightarrow> (x2,k2) \<in> s \<Longrightarrow> (x1,k1) \<noteq> (x2,k2) \<Longrightarrow> interior(k1) \<inter> interior(k2) = {}"
 | 
|
728  | 
using assms unfolding tagged_partial_division_of_def apply- by blast+  | 
|
729  | 
||
730  | 
definition tagged_division_of (infixr "tagged'_division'_of" 40) where  | 
|
731  | 
"(s tagged_division_of i) \<equiv>  | 
|
732  | 
        (s tagged_partial_division_of i) \<and> (\<Union>{k. \<exists>x. (x,k) \<in> s} = i)"
 | 
|
733  | 
||
| 44167 | 734  | 
lemma tagged_division_of_finite: "s tagged_division_of i \<Longrightarrow> finite s"  | 
| 35172 | 735  | 
unfolding tagged_division_of_def tagged_partial_division_of_def by auto  | 
736  | 
||
737  | 
lemma tagged_division_of:  | 
|
738  | 
"(s tagged_division_of i) \<longleftrightarrow>  | 
|
739  | 
finite s \<and>  | 
|
740  | 
(\<forall>x k. (x,k) \<in> s  | 
|
741  | 
               \<longrightarrow> x \<in> k \<and> k \<subseteq> i \<and> (\<exists>a b. k = {a..b})) \<and>
 | 
|
742  | 
(\<forall>x1 k1 x2 k2. (x1,k1) \<in> s \<and> (x2,k2) \<in> s \<and> ~((x1,k1) = (x2,k2))  | 
|
743  | 
                       \<longrightarrow> (interior(k1) \<inter> interior(k2) = {})) \<and>
 | 
|
744  | 
        (\<Union>{k. \<exists>x. (x,k) \<in> s} = i)"
 | 
|
745  | 
unfolding tagged_division_of_def tagged_partial_division_of_def by auto  | 
|
746  | 
||
747  | 
lemma tagged_division_ofI: assumes  | 
|
748  | 
  "finite s" "\<And>x k. (x,k) \<in> s \<Longrightarrow> x \<in> k" "\<And>x k. (x,k) \<in> s \<Longrightarrow> k \<subseteq> i"  "\<And>x k. (x,k) \<in> s \<Longrightarrow> \<exists>a b. k = {a..b}"
 | 
|
749  | 
  "\<And>x1 k1 x2 k2. (x1,k1) \<in> s \<Longrightarrow> (x2,k2) \<in> s \<Longrightarrow> ~((x1,k1) = (x2,k2)) \<Longrightarrow> (interior(k1) \<inter> interior(k2) = {})"
 | 
|
750  | 
  "(\<Union>{k. \<exists>x. (x,k) \<in> s} = i)"
 | 
|
751  | 
shows "s tagged_division_of i"  | 
|
752  | 
unfolding tagged_division_of apply(rule) defer apply rule  | 
|
753  | 
apply(rule allI impI conjI assms)+ apply assumption  | 
|
754  | 
apply(rule, rule assms, assumption) apply(rule assms, assumption)  | 
|
755  | 
using assms(1,5-) apply- by blast+  | 
|
756  | 
||
757  | 
lemma tagged_division_ofD[dest]: assumes "s tagged_division_of i"  | 
|
758  | 
  shows "finite s" "\<And>x k. (x,k) \<in> s \<Longrightarrow> x \<in> k" "\<And>x k. (x,k) \<in> s \<Longrightarrow> k \<subseteq> i"  "\<And>x k. (x,k) \<in> s \<Longrightarrow> \<exists>a b. k = {a..b}"
 | 
|
759  | 
  "\<And>x1 k1 x2 k2. (x1,k1) \<in> s \<Longrightarrow> (x2,k2) \<in> s \<Longrightarrow> ~((x1,k1) = (x2,k2)) \<Longrightarrow> (interior(k1) \<inter> interior(k2) = {})"
 | 
|
760  | 
  "(\<Union>{k. \<exists>x. (x,k) \<in> s} = i)" using assms unfolding tagged_division_of apply- by blast+
 | 
|
761  | 
||
762  | 
lemma division_of_tagged_division: assumes"s tagged_division_of i" shows "(snd ` s) division_of i"  | 
|
763  | 
proof(rule division_ofI) note assm=tagged_division_ofD[OF assms]  | 
|
764  | 
show "\<Union>snd ` s = i" "finite (snd ` s)" using assm by auto  | 
|
765  | 
fix k assume k:"k \<in> snd ` s" then obtain xk where xk:"(xk, k) \<in> s" by auto  | 
|
766  | 
  thus  "k \<subseteq> i" "k \<noteq> {}" "\<exists>a b. k = {a..b}" using assm apply- by fastsimp+
 | 
|
767  | 
fix k' assume k':"k' \<in> snd ` s" "k \<noteq> k'" from this(1) obtain xk' where xk':"(xk', k') \<in> s" by auto  | 
|
768  | 
  thus "interior k \<inter> interior k' = {}" apply-apply(rule assm(5)) apply(rule xk xk')+ using k' by auto
 | 
|
769  | 
qed  | 
|
770  | 
||
771  | 
lemma partial_division_of_tagged_division: assumes "s tagged_partial_division_of i"  | 
|
772  | 
shows "(snd ` s) division_of \<Union>(snd ` s)"  | 
|
773  | 
proof(rule division_ofI) note assm=tagged_partial_division_ofD[OF assms]  | 
|
774  | 
show "finite (snd ` s)" "\<Union>snd ` s = \<Union>snd ` s" using assm by auto  | 
|
775  | 
fix k assume k:"k \<in> snd ` s" then obtain xk where xk:"(xk, k) \<in> s" by auto  | 
|
776  | 
  thus "k\<noteq>{}" "\<exists>a b. k = {a..b}" "k \<subseteq> \<Union>snd ` s" using assm by auto
 | 
|
777  | 
fix k' assume k':"k' \<in> snd ` s" "k \<noteq> k'" from this(1) obtain xk' where xk':"(xk', k') \<in> s" by auto  | 
|
778  | 
  thus "interior k \<inter> interior k' = {}" apply-apply(rule assm(5)) apply(rule xk xk')+ using k' by auto
 | 
|
779  | 
qed  | 
|
780  | 
||
781  | 
lemma tagged_partial_division_subset: assumes "s tagged_partial_division_of i" "t \<subseteq> s"  | 
|
782  | 
shows "t tagged_partial_division_of i"  | 
|
783  | 
using assms unfolding tagged_partial_division_of_def using finite_subset[OF assms(2)] by blast  | 
|
784  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
785  | 
lemma setsum_over_tagged_division_lemma: fixes d::"('m::ordered_euclidean_space) set \<Rightarrow> 'a::real_normed_vector"
 | 
| 35172 | 786  | 
  assumes "p tagged_division_of i" "\<And>u v. {u..v} \<noteq> {} \<Longrightarrow> content {u..v} = 0 \<Longrightarrow> d {u..v} = 0"
 | 
787  | 
shows "setsum (\<lambda>(x,k). d k) p = setsum d (snd ` p)"  | 
|
788  | 
proof- note assm=tagged_division_ofD[OF assms(1)]  | 
|
789  | 
have *:"(\<lambda>(x,k). d k) = d \<circ> snd" unfolding o_def apply(rule ext) by auto  | 
|
790  | 
show ?thesis unfolding * apply(subst eq_commute) proof(rule setsum_reindex_nonzero)  | 
|
791  | 
show "finite p" using assm by auto  | 
|
792  | 
fix x y assume as:"x\<in>p" "y\<in>p" "x\<noteq>y" "snd x = snd y"  | 
|
793  | 
    obtain a b where ab:"snd x = {a..b}" using assm(4)[of "fst x" "snd x"] as(1) by auto
 | 
|
794  | 
have "(fst x, snd y) \<in> p" "(fst x, snd y) \<noteq> y" unfolding as(4)[THEN sym] using as(1-3) by auto  | 
|
795  | 
    hence "interior (snd x) \<inter> interior (snd y) = {}" apply-apply(rule assm(5)[of "fst x" _ "fst y"]) using as by auto 
 | 
|
796  | 
    hence "content {a..b} = 0" unfolding as(4)[THEN sym] ab content_eq_0_interior by auto
 | 
|
797  | 
    hence "d {a..b} = 0" apply-apply(rule assms(2)) using assm(2)[of "fst x" "snd x"] as(1) unfolding ab[THEN sym] by auto
 | 
|
798  | 
thus "d (snd x) = 0" unfolding ab by auto qed qed  | 
|
799  | 
||
800  | 
lemma tag_in_interval: "p tagged_division_of i \<Longrightarrow> (x,k) \<in> p \<Longrightarrow> x \<in> i" by auto  | 
|
801  | 
||
802  | 
lemma tagged_division_of_empty: "{} tagged_division_of {}"
 | 
|
803  | 
unfolding tagged_division_of by auto  | 
|
804  | 
||
805  | 
lemma tagged_partial_division_of_trivial[simp]:  | 
|
806  | 
 "p tagged_partial_division_of {} \<longleftrightarrow> p = {}"
 | 
|
807  | 
unfolding tagged_partial_division_of_def by auto  | 
|
808  | 
||
809  | 
lemma tagged_division_of_trivial[simp]:  | 
|
810  | 
 "p tagged_division_of {} \<longleftrightarrow> p = {}"
 | 
|
811  | 
unfolding tagged_division_of by auto  | 
|
812  | 
||
813  | 
lemma tagged_division_of_self:  | 
|
814  | 
 "x \<in> {a..b} \<Longrightarrow> {(x,{a..b})} tagged_division_of {a..b}"
 | 
|
815  | 
apply(rule tagged_division_ofI) by auto  | 
|
816  | 
||
817  | 
lemma tagged_division_union:  | 
|
818  | 
  assumes "p1 tagged_division_of s1"  "p2 tagged_division_of s2" "interior s1 \<inter> interior s2 = {}"
 | 
|
819  | 
shows "(p1 \<union> p2) tagged_division_of (s1 \<union> s2)"  | 
|
820  | 
proof(rule tagged_division_ofI) note p1=tagged_division_ofD[OF assms(1)] and p2=tagged_division_ofD[OF assms(2)]  | 
|
821  | 
show "finite (p1 \<union> p2)" using p1(1) p2(1) by auto  | 
|
822  | 
  show "\<Union>{k. \<exists>x. (x, k) \<in> p1 \<union> p2} = s1 \<union> s2" using p1(6) p2(6) by blast
 | 
|
823  | 
  fix x k assume xk:"(x,k)\<in>p1\<union>p2" show "x\<in>k" "\<exists>a b. k = {a..b}" using xk p1(2,4) p2(2,4) by auto
 | 
|
824  | 
show "k\<subseteq>s1\<union>s2" using xk p1(3) p2(3) by blast  | 
|
825  | 
fix x' k' assume xk':"(x',k')\<in>p1\<union>p2" "(x,k) \<noteq> (x',k')"  | 
|
| 
44522
 
2f7e9d890efe
rename subset_{interior,closure} to {interior,closure}_mono;
 
huffman 
parents: 
44514 
diff
changeset
 | 
826  | 
  have *:"\<And>a b. a\<subseteq> s1 \<Longrightarrow> b\<subseteq> s2 \<Longrightarrow> interior a \<inter> interior b = {}" using assms(3) interior_mono by blast
 | 
| 35172 | 827  | 
  show "interior k \<inter> interior k' = {}" apply(cases "(x,k)\<in>p1", case_tac[!] "(x',k')\<in>p1")
 | 
828  | 
apply(rule p1(5)) prefer 4 apply(rule *) prefer 6 apply(subst Int_commute,rule *) prefer 8 apply(rule p2(5))  | 
|
829  | 
using p1(3) p2(3) using xk xk' by auto qed  | 
|
830  | 
||
831  | 
lemma tagged_division_unions:  | 
|
832  | 
assumes "finite iset" "\<forall>i\<in>iset. (pfn(i) tagged_division_of i)"  | 
|
833  | 
  "\<forall>i1 \<in> iset. \<forall>i2 \<in> iset. ~(i1 = i2) \<longrightarrow> (interior(i1) \<inter> interior(i2) = {})"
 | 
|
834  | 
shows "\<Union>(pfn ` iset) tagged_division_of (\<Union>iset)"  | 
|
835  | 
proof(rule tagged_division_ofI)  | 
|
836  | 
note assm = tagged_division_ofD[OF assms(2)[rule_format]]  | 
|
837  | 
show "finite (\<Union>pfn ` iset)" apply(rule finite_Union) using assms by auto  | 
|
838  | 
  have "\<Union>{k. \<exists>x. (x, k) \<in> \<Union>pfn ` iset} = \<Union>(\<lambda>i. \<Union>{k. \<exists>x. (x, k) \<in> pfn i}) ` iset" by blast 
 | 
|
839  | 
also have "\<dots> = \<Union>iset" using assm(6) by auto  | 
|
840  | 
  finally show "\<Union>{k. \<exists>x. (x, k) \<in> \<Union>pfn ` iset} = \<Union>iset" . 
 | 
|
841  | 
fix x k assume xk:"(x,k)\<in>\<Union>pfn ` iset" then obtain i where i:"i \<in> iset" "(x, k) \<in> pfn i" by auto  | 
|
842  | 
  show "x\<in>k" "\<exists>a b. k = {a..b}" "k \<subseteq> \<Union>iset" using assm(2-4)[OF i] using i(1) by auto
 | 
|
843  | 
fix x' k' assume xk':"(x',k')\<in>\<Union>pfn ` iset" "(x, k) \<noteq> (x', k')" then obtain i' where i':"i' \<in> iset" "(x', k') \<in> pfn i'" by auto  | 
|
844  | 
  have *:"\<And>a b. i\<noteq>i' \<Longrightarrow> a\<subseteq> i \<Longrightarrow> b\<subseteq> i' \<Longrightarrow> interior a \<inter> interior b = {}" using i(1) i'(1)
 | 
|
| 
44522
 
2f7e9d890efe
rename subset_{interior,closure} to {interior,closure}_mono;
 
huffman 
parents: 
44514 
diff
changeset
 | 
845  | 
using assms(3)[rule_format] interior_mono by blast  | 
| 35172 | 846  | 
  show "interior k \<inter> interior k' = {}" apply(cases "i=i'")
 | 
847  | 
using assm(5)[OF i _ xk'(2)] i'(2) using assm(3)[OF i] assm(3)[OF i'] defer apply-apply(rule *) by auto  | 
|
848  | 
qed  | 
|
849  | 
||
850  | 
lemma tagged_partial_division_of_union_self:  | 
|
851  | 
assumes "p tagged_partial_division_of s" shows "p tagged_division_of (\<Union>(snd ` p))"  | 
|
852  | 
apply(rule tagged_division_ofI) using tagged_partial_division_ofD[OF assms] by auto  | 
|
853  | 
||
854  | 
lemma tagged_division_of_union_self: assumes "p tagged_division_of s"  | 
|
855  | 
shows "p tagged_division_of (\<Union>(snd ` p))"  | 
|
856  | 
apply(rule tagged_division_ofI) using tagged_division_ofD[OF assms] by auto  | 
|
857  | 
||
858  | 
subsection {* Fine-ness of a partition w.r.t. a gauge. *}
 | 
|
859  | 
||
860  | 
definition fine (infixr "fine" 46) where  | 
|
861  | 
"d fine s \<longleftrightarrow> (\<forall>(x,k) \<in> s. k \<subseteq> d(x))"  | 
|
862  | 
||
863  | 
lemma fineI: assumes "\<And>x k. (x,k) \<in> s \<Longrightarrow> k \<subseteq> d x"  | 
|
864  | 
shows "d fine s" using assms unfolding fine_def by auto  | 
|
865  | 
||
866  | 
lemma fineD[dest]: assumes "d fine s"  | 
|
867  | 
shows "\<And>x k. (x,k) \<in> s \<Longrightarrow> k \<subseteq> d x" using assms unfolding fine_def by auto  | 
|
868  | 
||
869  | 
lemma fine_inter: "(\<lambda>x. d1 x \<inter> d2 x) fine p \<longleftrightarrow> d1 fine p \<and> d2 fine p"  | 
|
870  | 
unfolding fine_def by auto  | 
|
871  | 
||
872  | 
lemma fine_inters:  | 
|
873  | 
 "(\<lambda>x. \<Inter> {f d x | d.  d \<in> s}) fine p \<longleftrightarrow> (\<forall>d\<in>s. (f d) fine p)"
 | 
|
874  | 
unfolding fine_def by blast  | 
|
875  | 
||
876  | 
lemma fine_union:  | 
|
877  | 
"d fine p1 \<Longrightarrow> d fine p2 \<Longrightarrow> d fine (p1 \<union> p2)"  | 
|
878  | 
unfolding fine_def by blast  | 
|
879  | 
||
880  | 
lemma fine_unions:"(\<And>p. p \<in> ps \<Longrightarrow> d fine p) \<Longrightarrow> d fine (\<Union>ps)"  | 
|
881  | 
unfolding fine_def by auto  | 
|
882  | 
||
883  | 
lemma fine_subset: "p \<subseteq> q \<Longrightarrow> d fine q \<Longrightarrow> d fine p"  | 
|
884  | 
unfolding fine_def by blast  | 
|
885  | 
||
886  | 
subsection {* Gauge integral. Define on compact intervals first, then use a limit. *}
 | 
|
887  | 
||
888  | 
definition has_integral_compact_interval (infixr "has'_integral'_compact'_interval" 46) where  | 
|
889  | 
"(f has_integral_compact_interval y) i \<equiv>  | 
|
890  | 
(\<forall>e>0. \<exists>d. gauge d \<and>  | 
|
891  | 
(\<forall>p. p tagged_division_of i \<and> d fine p  | 
|
892  | 
\<longrightarrow> norm(setsum (\<lambda>(x,k). content k *\<^sub>R f x) p - y) < e))"  | 
|
893  | 
||
894  | 
definition has_integral (infixr "has'_integral" 46) where  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
895  | 
"((f::('n::ordered_euclidean_space \<Rightarrow> 'b::real_normed_vector)) has_integral y) i \<equiv>
 | 
| 35172 | 896  | 
        if (\<exists>a b. i = {a..b}) then (f has_integral_compact_interval y) i
 | 
897  | 
        else (\<forall>e>0. \<exists>B>0. \<forall>a b. ball 0 B \<subseteq> {a..b}
 | 
|
898  | 
              \<longrightarrow> (\<exists>z. ((\<lambda>x. if x \<in> i then f x else 0) has_integral_compact_interval z) {a..b} \<and>
 | 
|
899  | 
norm(z - y) < e))"  | 
|
900  | 
||
901  | 
lemma has_integral:  | 
|
902  | 
 "(f has_integral y) ({a..b}) \<longleftrightarrow>
 | 
|
903  | 
        (\<forall>e>0. \<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {a..b} \<and> d fine p
 | 
|
904  | 
\<longrightarrow> norm(setsum (\<lambda>(x,k). content(k) *\<^sub>R f x) p - y) < e))"  | 
|
905  | 
unfolding has_integral_def has_integral_compact_interval_def by auto  | 
|
906  | 
||
907  | 
lemma has_integralD[dest]: assumes  | 
|
908  | 
 "(f has_integral y) ({a..b})" "e>0"
 | 
|
909  | 
  obtains d where "gauge d" "\<And>p. p tagged_division_of {a..b} \<Longrightarrow> d fine p
 | 
|
910  | 
\<Longrightarrow> norm(setsum (\<lambda>(x,k). content(k) *\<^sub>R f(x)) p - y) < e"  | 
|
911  | 
using assms unfolding has_integral by auto  | 
|
912  | 
||
913  | 
lemma has_integral_alt:  | 
|
914  | 
"(f has_integral y) i \<longleftrightarrow>  | 
|
915  | 
      (if (\<exists>a b. i = {a..b}) then (f has_integral y) i
 | 
|
916  | 
       else (\<forall>e>0. \<exists>B>0. \<forall>a b. ball 0 B \<subseteq> {a..b}
 | 
|
917  | 
\<longrightarrow> (\<exists>z. ((\<lambda>x. if x \<in> i then f(x) else 0)  | 
|
918  | 
                                        has_integral z) ({a..b}) \<and>
 | 
|
919  | 
norm(z - y) < e)))"  | 
|
920  | 
unfolding has_integral unfolding has_integral_compact_interval_def has_integral_def by auto  | 
|
921  | 
||
922  | 
lemma has_integral_altD:  | 
|
923  | 
  assumes "(f has_integral y) i" "\<not> (\<exists>a b. i = {a..b})" "e>0"
 | 
|
924  | 
  obtains B where "B>0" "\<forall>a b. ball 0 B \<subseteq> {a..b}\<longrightarrow> (\<exists>z. ((\<lambda>x. if x \<in> i then f(x) else 0) has_integral z) ({a..b}) \<and> norm(z - y) < e)"
 | 
|
925  | 
using assms unfolding has_integral unfolding has_integral_compact_interval_def has_integral_def by auto  | 
|
926  | 
||
927  | 
definition integrable_on (infixr "integrable'_on" 46) where  | 
|
928  | 
"(f integrable_on i) \<equiv> \<exists>y. (f has_integral y) i"  | 
|
929  | 
||
930  | 
definition "integral i f \<equiv> SOME y. (f has_integral y) i"  | 
|
931  | 
||
932  | 
lemma integrable_integral[dest]:  | 
|
933  | 
"f integrable_on i \<Longrightarrow> (f has_integral (integral i f)) i"  | 
|
934  | 
unfolding integrable_on_def integral_def by(rule someI_ex)  | 
|
935  | 
||
936  | 
lemma has_integral_integrable[intro]: "(f has_integral i) s \<Longrightarrow> f integrable_on s"  | 
|
937  | 
unfolding integrable_on_def by auto  | 
|
938  | 
||
939  | 
lemma has_integral_integral:"f integrable_on s \<longleftrightarrow> (f has_integral (integral s f)) s"  | 
|
940  | 
by auto  | 
|
941  | 
||
942  | 
lemma setsum_content_null:  | 
|
943  | 
  assumes "content({a..b}) = 0" "p tagged_division_of {a..b}"
 | 
|
944  | 
shows "setsum (\<lambda>(x,k). content k *\<^sub>R f x) p = (0::'a::real_normed_vector)"  | 
|
945  | 
proof(rule setsum_0',rule) fix y assume y:"y\<in>p"  | 
|
946  | 
obtain x k where xk:"y = (x,k)" using surj_pair[of y] by blast  | 
|
947  | 
note assm = tagged_division_ofD(3-4)[OF assms(2) y[unfolded xk]]  | 
|
948  | 
from this(2) guess c .. then guess d .. note c_d=this  | 
|
949  | 
have "(\<lambda>(x, k). content k *\<^sub>R f x) y = content k *\<^sub>R f x" unfolding xk by auto  | 
|
950  | 
also have "\<dots> = 0" using content_subset[OF assm(1)[unfolded c_d]] content_pos_le[of c d]  | 
|
951  | 
unfolding assms(1) c_d by auto  | 
|
952  | 
finally show "(\<lambda>(x, k). content k *\<^sub>R f x) y = 0" .  | 
|
953  | 
qed  | 
|
954  | 
||
955  | 
subsection {* Some basic combining lemmas. *}
 | 
|
956  | 
||
957  | 
lemma tagged_division_unions_exists:  | 
|
958  | 
assumes "finite iset" "\<forall>i \<in> iset. \<exists>p. p tagged_division_of i \<and> d fine p"  | 
|
959  | 
  "\<forall>i1\<in>iset. \<forall>i2\<in>iset. ~(i1 = i2) \<longrightarrow> (interior(i1) \<inter> interior(i2) = {})" "(\<Union>iset = i)"
 | 
|
960  | 
obtains p where "p tagged_division_of i" "d fine p"  | 
|
961  | 
proof- guess pfn using bchoice[OF assms(2)] .. note pfn = conjunctD2[OF this[rule_format]]  | 
|
962  | 
show thesis apply(rule_tac p="\<Union>(pfn ` iset)" in that) unfolding assms(4)[THEN sym]  | 
|
963  | 
apply(rule tagged_division_unions[OF assms(1) _ assms(3)]) defer  | 
|
964  | 
apply(rule fine_unions) using pfn by auto  | 
|
965  | 
qed  | 
|
966  | 
||
967  | 
subsection {* The set we're concerned with must be closed. *}
 | 
|
968  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
969  | 
lemma division_of_closed: "s division_of i \<Longrightarrow> closed (i::('n::ordered_euclidean_space) set)"
 | 
| 
44457
 
d366fa5551ef
declare euclidean_simps [simp] at the point they are proved;
 
huffman 
parents: 
44282 
diff
changeset
 | 
970  | 
unfolding division_of_def by fastsimp  | 
| 35172 | 971  | 
|
972  | 
subsection {* General bisection principle for intervals; might be useful elsewhere. *}
 | 
|
973  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
974  | 
lemma interval_bisection_step: fixes type::"'a::ordered_euclidean_space"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
975  | 
  assumes "P {}" "(\<forall>s t. P s \<and> P t \<and> interior(s) \<inter> interior(t) = {} \<longrightarrow> P(s \<union> t))" "~(P {a..b::'a})"
 | 
| 35172 | 976  | 
  obtains c d where "~(P{c..d})"
 | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
977  | 
  "\<forall>i<DIM('a). a$$i \<le> c$$i \<and> c$$i \<le> d$$i \<and> d$$i \<le> b$$i \<and> 2 * (d$$i - c$$i) \<le> b$$i - a$$i"
 | 
| 35172 | 978  | 
proof- have "{a..b} \<noteq> {}" using assms(1,3) by auto
 | 
979  | 
note ab=this[unfolded interval_eq_empty not_ex not_less]  | 
|
980  | 
  { fix f have "finite f \<Longrightarrow>
 | 
|
981  | 
(\<forall>s\<in>f. P s) \<Longrightarrow>  | 
|
982  | 
        (\<forall>s\<in>f. \<exists>a b. s = {a..b}) \<Longrightarrow>
 | 
|
983  | 
        (\<forall>s\<in>f.\<forall>t\<in>f. ~(s = t) \<longrightarrow> interior(s) \<inter> interior(t) = {}) \<Longrightarrow> P(\<Union>f)"
 | 
|
984  | 
proof(induct f rule:finite_induct)  | 
|
985  | 
case empty show ?case using assms(1) by auto  | 
|
986  | 
next case (insert x f) show ?case unfolding Union_insert apply(rule assms(2)[rule_format])  | 
|
987  | 
apply rule defer apply rule defer apply(rule inter_interior_unions_intervals)  | 
|
988  | 
using insert by auto  | 
|
989  | 
qed } note * = this  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
990  | 
  let ?A = "{{c..d} | c d::'a. \<forall>i<DIM('a). (c$$i = a$$i) \<and> (d$$i = (a$$i + b$$i) / 2) \<or> (c$$i = (a$$i + b$$i) / 2) \<and> (d$$i = b$$i)}"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
991  | 
  let ?PP = "\<lambda>c d. \<forall>i<DIM('a). a$$i \<le> c$$i \<and> c$$i \<le> d$$i \<and> d$$i \<le> b$$i \<and> 2 * (d$$i - c$$i) \<le> b$$i - a$$i"
 | 
| 35172 | 992  | 
  { presume "\<forall>c d. ?PP c d \<longrightarrow> P {c..d} \<Longrightarrow> False"
 | 
993  | 
thus thesis unfolding atomize_not not_all apply-apply(erule exE)+ apply(rule_tac c=x and d=xa in that) by auto }  | 
|
994  | 
  assume as:"\<forall>c d. ?PP c d \<longrightarrow> P {c..d}"
 | 
|
995  | 
have "P (\<Union> ?A)" proof(rule *, rule_tac[2-] ballI, rule_tac[4] ballI, rule_tac[4] impI)  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
996  | 
    let ?B = "(\<lambda>s.{(\<chi>\<chi> i. if i \<in> s then a$$i else (a$$i + b$$i) / 2)::'a ..
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
997  | 
      (\<chi>\<chi> i. if i \<in> s then (a$$i + b$$i) / 2 else b$$i)}) ` {s. s \<subseteq> {..<DIM('a)}}"
 | 
| 35172 | 998  | 
have "?A \<subseteq> ?B" proof case goal1  | 
999  | 
then guess c unfolding mem_Collect_eq .. then guess d apply- by(erule exE,(erule conjE)+) note c_d=this[rule_format]  | 
|
1000  | 
      have *:"\<And>a b c d. a = c \<Longrightarrow> b = d \<Longrightarrow> {a..b} = {c..d}" by auto
 | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1001  | 
      show "x\<in>?B" unfolding image_iff apply(rule_tac x="{i. i<DIM('a) \<and> c$$i = a$$i}" in bexI)
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1002  | 
unfolding c_d apply(rule * ) unfolding euclidean_eq[where 'a='a] apply safe unfolding euclidean_lambda_beta' mem_Collect_eq  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1003  | 
      proof- fix i assume "i<DIM('a)" thus " c $$ i = (if i < DIM('a) \<and> c $$ i = a $$ i then a $$ i else (a $$ i + b $$ i) / 2)"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1004  | 
          "d $$ i = (if i < DIM('a) \<and> c $$ i = a $$ i then (a $$ i + b $$ i) / 2 else b $$ i)"
 | 
| 35172 | 1005  | 
using c_d(2)[of i] ab[THEN spec[where x=i]] by(auto simp add:field_simps)  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1006  | 
qed qed  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1007  | 
thus "finite ?A" apply(rule finite_subset) by auto  | 
| 35172 | 1008  | 
fix s assume "s\<in>?A" then guess c unfolding mem_Collect_eq .. then guess d apply- by(erule exE,(erule conjE)+)  | 
1009  | 
note c_d=this[rule_format]  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1010  | 
show "P s" unfolding c_d apply(rule as[rule_format]) proof- case goal1 thus ?case  | 
| 35172 | 1011  | 
using c_d(2)[of i] using ab[THEN spec[where x=i]] by auto qed  | 
1012  | 
    show "\<exists>a b. s = {a..b}" unfolding c_d by auto
 | 
|
1013  | 
fix t assume "t\<in>?A" then guess e unfolding mem_Collect_eq .. then guess f apply- by(erule exE,(erule conjE)+)  | 
|
1014  | 
note e_f=this[rule_format]  | 
|
1015  | 
assume "s \<noteq> t" hence "\<not> (c = e \<and> d = f)" unfolding c_d e_f by auto  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1016  | 
    then obtain i where "c$$i \<noteq> e$$i \<or> d$$i \<noteq> f$$i" and i':"i<DIM('a)" unfolding de_Morgan_conj euclidean_eq[where 'a='a] by auto
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1017  | 
hence i:"c$$i \<noteq> e$$i" "d$$i \<noteq> f$$i" apply- apply(erule_tac[!] disjE)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1018  | 
proof- assume "c$$i \<noteq> e$$i" thus "d$$i \<noteq> f$$i" using c_d(2)[of i] e_f(2)[of i] by fastsimp  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1019  | 
next assume "d$$i \<noteq> f$$i" thus "c$$i \<noteq> e$$i" using c_d(2)[of i] e_f(2)[of i] by fastsimp  | 
| 35172 | 1020  | 
    qed have *:"\<And>s t. (\<And>a. a\<in>s \<Longrightarrow> a\<in>t \<Longrightarrow> False) \<Longrightarrow> s \<inter> t = {}" by auto
 | 
1021  | 
    show "interior s \<inter> interior t = {}" unfolding e_f c_d interior_closed_interval proof(rule *)
 | 
|
1022  | 
      fix x assume "x\<in>{c<..<d}" "x\<in>{e<..<f}"
 | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1023  | 
hence x:"c$$i < d$$i" "e$$i < f$$i" "c$$i < f$$i" "e$$i < d$$i" unfolding mem_interval using i'  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1024  | 
apply-apply(erule_tac[!] x=i in allE)+ by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1025  | 
show False using c_d(2)[OF i'] apply- apply(erule_tac disjE)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1026  | 
proof(erule_tac[!] conjE) assume as:"c $$ i = a $$ i" "d $$ i = (a $$ i + b $$ i) / 2"  | 
| 35172 | 1027  | 
show False using e_f(2)[of i] and i x unfolding as by(fastsimp simp add:field_simps)  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1028  | 
next assume as:"c $$ i = (a $$ i + b $$ i) / 2" "d $$ i = b $$ i"  | 
| 35172 | 1029  | 
show False using e_f(2)[of i] and i x unfolding as by(fastsimp simp add:field_simps)  | 
1030  | 
qed qed qed  | 
|
| 
39302
 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 
nipkow 
parents: 
38656 
diff
changeset
 | 
1031  | 
  also have "\<Union> ?A = {a..b}" proof(rule set_eqI,rule)
 | 
| 35172 | 1032  | 
fix x assume "x\<in>\<Union>?A" then guess Y unfolding Union_iff ..  | 
1033  | 
from this(1) guess c unfolding mem_Collect_eq .. then guess d ..  | 
|
1034  | 
note c_d = this[THEN conjunct2,rule_format] `x\<in>Y`[unfolded this[THEN conjunct1]]  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1035  | 
    show "x\<in>{a..b}" unfolding mem_interval proof safe
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1036  | 
      fix i assume "i<DIM('a)" thus "a $$ i \<le> x $$ i" "x $$ i \<le> b $$ i"
 | 
| 35172 | 1037  | 
using c_d(1)[of i] c_d(2)[unfolded mem_interval,THEN spec[where x=i]] by auto qed  | 
1038  | 
  next fix x assume x:"x\<in>{a..b}"
 | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1039  | 
    have "\<forall>i<DIM('a). \<exists>c d. (c = a$$i \<and> d = (a$$i + b$$i) / 2 \<or> c = (a$$i + b$$i) / 2 \<and> d = b$$i) \<and> c\<le>x$$i \<and> x$$i \<le> d"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1040  | 
      (is "\<forall>i<DIM('a). \<exists>c d. ?P i c d") unfolding mem_interval proof(rule,rule) fix i
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1041  | 
have "?P i (a$$i) ((a $$ i + b $$ i) / 2) \<or> ?P i ((a $$ i + b $$ i) / 2) (b$$i)"  | 
| 35172 | 1042  | 
using x[unfolded mem_interval,THEN spec[where x=i]] by auto thus "\<exists>c d. ?P i c d" by blast  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1043  | 
qed thus "x\<in>\<Union>?A" unfolding Union_iff unfolding lambda_skolem' unfolding Bex_def mem_Collect_eq  | 
| 35172 | 1044  | 
      apply-apply(erule exE)+ apply(rule_tac x="{xa..xaa}" in exI) unfolding mem_interval by auto
 | 
1045  | 
qed finally show False using assms by auto qed  | 
|
1046  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1047  | 
lemma interval_bisection: fixes type::"'a::ordered_euclidean_space"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1048  | 
  assumes "P {}" "(\<forall>s t. P s \<and> P t \<and> interior(s) \<inter> interior(t) = {} \<longrightarrow> P(s \<union> t))" "\<not> P {a..b::'a}"
 | 
| 35172 | 1049  | 
  obtains x where "x \<in> {a..b}" "\<forall>e>0. \<exists>c d. x \<in> {c..d} \<and> {c..d} \<subseteq> ball x e \<and> {c..d} \<subseteq> {a..b} \<and> ~P({c..d})"
 | 
1050  | 
proof-  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1051  | 
  have "\<forall>x. \<exists>y. \<not> P {fst x..snd x} \<longrightarrow> (\<not> P {fst y..snd y} \<and>
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1052  | 
    (\<forall>i<DIM('a). fst x$$i \<le> fst y$$i \<and> fst y$$i \<le> snd y$$i \<and> snd y$$i \<le> snd x$$i \<and>
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1053  | 
2 * (snd y$$i - fst y$$i) \<le> snd x$$i - fst x$$i))" proof case goal1 thus ?case proof-  | 
| 35172 | 1054  | 
      presume "\<not> P {fst x..snd x} \<Longrightarrow> ?thesis"
 | 
1055  | 
      thus ?thesis apply(cases "P {fst x..snd x}") by auto
 | 
|
1056  | 
    next assume as:"\<not> P {fst x..snd x}" from interval_bisection_step[of P, OF assms(1-2) as] guess c d . 
 | 
|
1057  | 
thus ?thesis apply- apply(rule_tac x="(c,d)" in exI) by auto  | 
|
1058  | 
qed qed then guess f apply-apply(drule choice) by(erule exE) note f=this  | 
|
1059  | 
def AB \<equiv> "\<lambda>n. (f ^^ n) (a,b)" def A \<equiv> "\<lambda>n. fst(AB n)" and B \<equiv> "\<lambda>n. snd(AB n)" note ab_def = this AB_def  | 
|
1060  | 
  have "A 0 = a" "B 0 = b" "\<And>n. \<not> P {A(Suc n)..B(Suc n)} \<and>
 | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1061  | 
    (\<forall>i<DIM('a). A(n)$$i \<le> A(Suc n)$$i \<and> A(Suc n)$$i \<le> B(Suc n)$$i \<and> B(Suc n)$$i \<le> B(n)$$i \<and> 
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1062  | 
2 * (B(Suc n)$$i - A(Suc n)$$i) \<le> B(n)$$i - A(n)$$i)" (is "\<And>n. ?P n")  | 
| 35172 | 1063  | 
proof- show "A 0 = a" "B 0 = b" unfolding ab_def by auto  | 
1064  | 
case goal3 note S = ab_def funpow.simps o_def id_apply show ?case  | 
|
1065  | 
proof(induct n) case 0 thus ?case unfolding S apply(rule f[rule_format]) using assms(3) by auto  | 
|
1066  | 
next case (Suc n) show ?case unfolding S apply(rule f[rule_format]) using Suc unfolding S by auto  | 
|
1067  | 
qed qed note AB = this(1-2) conjunctD2[OF this(3),rule_format]  | 
|
1068  | 
||
1069  | 
  have interv:"\<And>e. 0 < e \<Longrightarrow> \<exists>n. \<forall>x\<in>{A n..B n}. \<forall>y\<in>{A n..B n}. dist x y < e"
 | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1070  | 
  proof- case goal1 guess n using real_arch_pow2[of "(setsum (\<lambda>i. b$$i - a$$i) {..<DIM('a)}) / e"] .. note n=this
 | 
| 35172 | 1071  | 
show ?case apply(rule_tac x=n in exI) proof(rule,rule)  | 
1072  | 
      fix x y assume xy:"x\<in>{A n..B n}" "y\<in>{A n..B n}"
 | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1073  | 
      have "dist x y \<le> setsum (\<lambda>i. abs((x - y)$$i)) {..<DIM('a)}" unfolding dist_norm by(rule norm_le_l1)
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1074  | 
      also have "\<dots> \<le> setsum (\<lambda>i. B n$$i - A n$$i) {..<DIM('a)}"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1075  | 
proof(rule setsum_mono) fix i show "\<bar>(x - y) $$ i\<bar> \<le> B n $$ i - A n $$ i"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1076  | 
using xy[unfolded mem_interval,THEN spec[where x=i]] by auto qed  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1077  | 
      also have "\<dots> \<le> setsum (\<lambda>i. b$$i - a$$i) {..<DIM('a)} / 2^n" unfolding setsum_divide_distrib
 | 
| 35172 | 1078  | 
proof(rule setsum_mono) case goal1 thus ?case  | 
1079  | 
proof(induct n) case 0 thus ?case unfolding AB by auto  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1080  | 
next case (Suc n) have "B (Suc n) $$ i - A (Suc n) $$ i \<le> (B n $$ i - A n $$ i) / 2"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1081  | 
using AB(4)[of i n] using goal1 by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1082  | 
also have "\<dots> \<le> (b $$ i - a $$ i) / 2 ^ Suc n" using Suc by(auto simp add:field_simps) finally show ?case .  | 
| 35172 | 1083  | 
qed qed  | 
1084  | 
also have "\<dots> < e" using n using goal1 by(auto simp add:field_simps) finally show "dist x y < e" .  | 
|
1085  | 
qed qed  | 
|
1086  | 
  { fix n m ::nat assume "m \<le> n" then guess d unfolding le_Suc_ex_iff .. note d=this
 | 
|
1087  | 
    have "{A n..B n} \<subseteq> {A m..B m}" unfolding d 
 | 
|
1088  | 
proof(induct d) case 0 thus ?case by auto  | 
|
1089  | 
next case (Suc d) show ?case apply(rule subset_trans[OF _ Suc])  | 
|
1090  | 
apply(rule) unfolding mem_interval apply(rule,erule_tac x=i in allE)  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1091  | 
proof- case goal1 thus ?case using AB(4)[of i "m + d"] by(auto simp add:field_simps)  | 
| 35172 | 1092  | 
qed qed } note ABsubset = this  | 
1093  | 
  have "\<exists>a. \<forall>n. a\<in>{A n..B n}" apply(rule decreasing_closed_nest[rule_format,OF closed_interval _ ABsubset interv])
 | 
|
1094  | 
  proof- fix n show "{A n..B n} \<noteq> {}" apply(cases "0<n") using AB(3)[of "n - 1"] assms(1,3) AB(1-2) by auto qed auto
 | 
|
1095  | 
then guess x0 .. note x0=this[rule_format]  | 
|
1096  | 
show thesis proof(rule that[rule_format,of x0])  | 
|
1097  | 
    show "x0\<in>{a..b}" using x0[of 0] unfolding AB .
 | 
|
1098  | 
fix e assume "0 < (e::real)" from interv[OF this] guess n .. note n=this  | 
|
1099  | 
    show "\<exists>c d. x0 \<in> {c..d} \<and> {c..d} \<subseteq> ball x0 e \<and> {c..d} \<subseteq> {a..b} \<and> \<not> P {c..d}"
 | 
|
1100  | 
apply(rule_tac x="A n" in exI,rule_tac x="B n" in exI) apply(rule,rule x0) apply rule defer  | 
|
1101  | 
    proof show "\<not> P {A n..B n}" apply(cases "0<n") using AB(3)[of "n - 1"] assms(3) AB(1-2) by auto
 | 
|
1102  | 
      show "{A n..B n} \<subseteq> ball x0 e" using n using x0[of n] by auto
 | 
|
1103  | 
      show "{A n..B n} \<subseteq> {a..b}" unfolding AB(1-2)[symmetric] apply(rule ABsubset) by auto
 | 
|
1104  | 
qed qed qed  | 
|
1105  | 
||
1106  | 
subsection {* Cousin's lemma. *}
 | 
|
1107  | 
||
1108  | 
lemma fine_division_exists: assumes "gauge g"  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1109  | 
  obtains p where "p tagged_division_of {a..b::'a::ordered_euclidean_space}" "g fine p"
 | 
| 35172 | 1110  | 
proof- presume "\<not> (\<exists>p. p tagged_division_of {a..b} \<and> g fine p) \<Longrightarrow> False"
 | 
1111  | 
then guess p unfolding atomize_not not_not .. thus thesis apply-apply(rule that[of p]) by auto  | 
|
1112  | 
next assume as:"\<not> (\<exists>p. p tagged_division_of {a..b} \<and> g fine p)"
 | 
|
1113  | 
guess x apply(rule interval_bisection[of "\<lambda>s. \<exists>p. p tagged_division_of s \<and> g fine p",rule_format,OF _ _ as])  | 
|
1114  | 
    apply(rule_tac x="{}" in exI) defer apply(erule conjE exE)+
 | 
|
1115  | 
  proof- show "{} tagged_division_of {} \<and> g fine {}" unfolding fine_def by auto
 | 
|
1116  | 
    fix s t p p' assume "p tagged_division_of s" "g fine p" "p' tagged_division_of t" "g fine p'" "interior s \<inter> interior t = {}"
 | 
|
1117  | 
thus "\<exists>p. p tagged_division_of s \<union> t \<and> g fine p" apply-apply(rule_tac x="p \<union> p'" in exI) apply rule  | 
|
1118  | 
apply(rule tagged_division_union) prefer 4 apply(rule fine_union) by auto  | 
|
1119  | 
qed note x=this  | 
|
1120  | 
obtain e where e:"e>0" "ball x e \<subseteq> g x" using gaugeD[OF assms, of x] unfolding open_contains_ball by auto  | 
|
1121  | 
from x(2)[OF e(1)] guess c d apply-apply(erule exE conjE)+ . note c_d = this  | 
|
1122  | 
  have "g fine {(x, {c..d})}" unfolding fine_def using e using c_d(2) by auto
 | 
|
1123  | 
thus False using tagged_division_of_self[OF c_d(1)] using c_d by auto qed  | 
|
1124  | 
||
1125  | 
subsection {* Basic theorems about integrals. *}
 | 
|
1126  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1127  | 
lemma has_integral_unique: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::real_normed_vector"  | 
| 35172 | 1128  | 
assumes "(f has_integral k1) i" "(f has_integral k2) i" shows "k1 = k2"  | 
1129  | 
proof(rule ccontr) let ?e = "norm(k1 - k2) / 2" assume as:"k1 \<noteq> k2" hence e:"?e > 0" by auto  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1130  | 
have lem:"\<And>f::'n \<Rightarrow> 'a. \<And> a b k1 k2.  | 
| 35172 | 1131  | 
    (f has_integral k1) ({a..b}) \<Longrightarrow> (f has_integral k2) ({a..b}) \<Longrightarrow> k1 \<noteq> k2 \<Longrightarrow> False"
 | 
1132  | 
proof- case goal1 let ?e = "norm(k1 - k2) / 2" from goal1(3) have e:"?e > 0" by auto  | 
|
1133  | 
guess d1 by(rule has_integralD[OF goal1(1) e]) note d1=this  | 
|
1134  | 
guess d2 by(rule has_integralD[OF goal1(2) e]) note d2=this  | 
|
1135  | 
guess p by(rule fine_division_exists[OF gauge_inter[OF d1(1) d2(1)],of a b]) note p=this  | 
|
1136  | 
let ?c = "(\<Sum>(x, k)\<in>p. content k *\<^sub>R f x)" have "norm (k1 - k2) \<le> norm (?c - k2) + norm (?c - k1)"  | 
|
| 36350 | 1137  | 
using norm_triangle_ineq4[of "k1 - ?c" "k2 - ?c"] by(auto simp add:algebra_simps norm_minus_commute)  | 
| 35172 | 1138  | 
also have "\<dots> < norm (k1 - k2) / 2 + norm (k1 - k2) / 2"  | 
1139  | 
apply(rule add_strict_mono) apply(rule_tac[!] d2(2) d1(2)) using p unfolding fine_def by auto  | 
|
1140  | 
finally show False by auto  | 
|
1141  | 
  qed { presume "\<not> (\<exists>a b. i = {a..b}) \<Longrightarrow> False"
 | 
|
1142  | 
    thus False apply-apply(cases "\<exists>a b. i = {a..b}")
 | 
|
1143  | 
using assms by(auto simp add:has_integral intro:lem[OF _ _ as]) }  | 
|
1144  | 
  assume as:"\<not> (\<exists>a b. i = {a..b})"
 | 
|
1145  | 
guess B1 by(rule has_integral_altD[OF assms(1) as,OF e]) note B1=this[rule_format]  | 
|
1146  | 
guess B2 by(rule has_integral_altD[OF assms(2) as,OF e]) note B2=this[rule_format]  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1147  | 
  have "\<exists>a b::'n. ball 0 B1 \<union> ball 0 B2 \<subseteq> {a..b}" apply(rule bounded_subset_closed_interval)
 | 
| 35172 | 1148  | 
using bounded_Un bounded_ball by auto then guess a b apply-by(erule exE)+  | 
1149  | 
note ab=conjunctD2[OF this[unfolded Un_subset_iff]]  | 
|
1150  | 
guess w using B1(2)[OF ab(1)] .. note w=conjunctD2[OF this]  | 
|
1151  | 
guess z using B2(2)[OF ab(2)] .. note z=conjunctD2[OF this]  | 
|
1152  | 
have "z = w" using lem[OF w(1) z(1)] by auto  | 
|
1153  | 
hence "norm (k1 - k2) \<le> norm (z - k2) + norm (w - k1)"  | 
|
1154  | 
using norm_triangle_ineq4[of "k1 - w" "k2 - z"] by(auto simp add: norm_minus_commute)  | 
|
1155  | 
also have "\<dots> < norm (k1 - k2) / 2 + norm (k1 - k2) / 2" apply(rule add_strict_mono) by(rule_tac[!] z(2) w(2))  | 
|
1156  | 
finally show False by auto qed  | 
|
1157  | 
||
1158  | 
lemma integral_unique[intro]:  | 
|
1159  | 
"(f has_integral y) k \<Longrightarrow> integral k f = y"  | 
|
1160  | 
unfolding integral_def apply(rule some_equality) by(auto intro: has_integral_unique)  | 
|
1161  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1162  | 
lemma has_integral_is_0: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::real_normed_vector"  | 
| 35172 | 1163  | 
assumes "\<forall>x\<in>s. f x = 0" shows "(f has_integral 0) s"  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1164  | 
proof- have lem:"\<And>a b. \<And>f::'n \<Rightarrow> 'a.  | 
| 35172 | 1165  | 
    (\<forall>x\<in>{a..b}. f(x) = 0) \<Longrightarrow> (f has_integral 0) ({a..b})" unfolding has_integral
 | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1166  | 
proof(rule,rule) fix a b e and f::"'n \<Rightarrow> 'a"  | 
| 35172 | 1167  | 
    assume as:"\<forall>x\<in>{a..b}. f x = 0" "0 < (e::real)"
 | 
1168  | 
    show "\<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {a..b} \<and> d fine p \<longrightarrow> norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - 0) < e)"
 | 
|
1169  | 
apply(rule_tac x="\<lambda>x. ball x 1" in exI) apply(rule,rule gaugeI) unfolding centre_in_ball defer apply(rule open_ball)  | 
|
1170  | 
proof(rule,rule,erule conjE) case goal1  | 
|
1171  | 
have "(\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) = 0" proof(rule setsum_0',rule)  | 
|
1172  | 
fix x assume x:"x\<in>p" have "f (fst x) = 0" using tagged_division_ofD(2-3)[OF goal1(1), of "fst x" "snd x"] using as x by auto  | 
|
1173  | 
thus "(\<lambda>(x, k). content k *\<^sub>R f x) x = 0" apply(subst surjective_pairing[of x]) unfolding split_conv by auto  | 
|
1174  | 
qed thus ?case using as by auto  | 
|
1175  | 
    qed auto qed  { presume "\<not> (\<exists>a b. s = {a..b}) \<Longrightarrow> ?thesis"
 | 
|
1176  | 
    thus ?thesis apply-apply(cases "\<exists>a b. s = {a..b}")
 | 
|
1177  | 
using assms by(auto simp add:has_integral intro:lem) }  | 
|
1178  | 
have *:"(\<lambda>x. if x \<in> s then f x else 0) = (\<lambda>x. 0)" apply(rule ext) using assms by auto  | 
|
1179  | 
  assume "\<not> (\<exists>a b. s = {a..b})" thus ?thesis apply(subst has_integral_alt) unfolding if_not_P *
 | 
|
1180  | 
apply(rule,rule,rule_tac x=1 in exI,rule) defer apply(rule,rule,rule)  | 
|
1181  | 
proof- fix e::real and a b assume "e>0"  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1182  | 
    thus "\<exists>z. ((\<lambda>x::'n. 0::'a) has_integral z) {a..b} \<and> norm (z - 0) < e"
 | 
| 35172 | 1183  | 
apply(rule_tac x=0 in exI) apply(rule,rule lem) by auto  | 
1184  | 
qed auto qed  | 
|
1185  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1186  | 
lemma has_integral_0[simp]: "((\<lambda>x::'n::ordered_euclidean_space. 0) has_integral 0) s"  | 
| 35172 | 1187  | 
apply(rule has_integral_is_0) by auto  | 
1188  | 
||
1189  | 
lemma has_integral_0_eq[simp]: "((\<lambda>x. 0) has_integral i) s \<longleftrightarrow> i = 0"  | 
|
1190  | 
using has_integral_unique[OF has_integral_0] by auto  | 
|
1191  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1192  | 
lemma has_integral_linear: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::real_normed_vector"  | 
| 35172 | 1193  | 
assumes "(f has_integral y) s" "bounded_linear h" shows "((h o f) has_integral ((h y))) s"  | 
1194  | 
proof- interpret bounded_linear h using assms(2) . from pos_bounded guess B .. note B=conjunctD2[OF this,rule_format]  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1195  | 
have lem:"\<And>f::'n \<Rightarrow> 'a. \<And> y a b.  | 
| 35172 | 1196  | 
    (f has_integral y) ({a..b}) \<Longrightarrow> ((h o f) has_integral h(y)) ({a..b})"
 | 
1197  | 
proof(subst has_integral,rule,rule) case goal1  | 
|
1198  | 
from pos_bounded guess B .. note B=conjunctD2[OF this,rule_format]  | 
|
1199  | 
have *:"e / B > 0" apply(rule divide_pos_pos) using goal1(2) B by auto  | 
|
1200  | 
guess g using has_integralD[OF goal1(1) *] . note g=this  | 
|
1201  | 
show ?case apply(rule_tac x=g in exI) apply(rule,rule g(1))  | 
|
1202  | 
    proof(rule,rule,erule conjE) fix p assume as:"p tagged_division_of {a..b}" "g fine p" 
 | 
|
1203  | 
have *:"\<And>x k. h ((\<lambda>(x, k). content k *\<^sub>R f x) x) = (\<lambda>(x, k). h (content k *\<^sub>R f x)) x" by auto  | 
|
1204  | 
have "(\<Sum>(x, k)\<in>p. content k *\<^sub>R (h \<circ> f) x) = setsum (h \<circ> (\<lambda>(x, k). content k *\<^sub>R f x)) p"  | 
|
1205  | 
unfolding o_def unfolding scaleR[THEN sym] * by simp  | 
|
1206  | 
also have "\<dots> = h (\<Sum>(x, k)\<in>p. content k *\<^sub>R f x)" using setsum[of "\<lambda>(x,k). content k *\<^sub>R f x" p] using as by auto  | 
|
1207  | 
finally have *:"(\<Sum>(x, k)\<in>p. content k *\<^sub>R (h \<circ> f) x) = h (\<Sum>(x, k)\<in>p. content k *\<^sub>R f x)" .  | 
|
1208  | 
show "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R (h \<circ> f) x) - h y) < e" unfolding * diff[THEN sym]  | 
|
1209  | 
apply(rule le_less_trans[OF B(2)]) using g(2)[OF as] B(1) by(auto simp add:field_simps)  | 
|
1210  | 
    qed qed { presume "\<not> (\<exists>a b. s = {a..b}) \<Longrightarrow> ?thesis"
 | 
|
1211  | 
    thus ?thesis apply-apply(cases "\<exists>a b. s = {a..b}") using assms by(auto simp add:has_integral intro!:lem) }
 | 
|
1212  | 
  assume as:"\<not> (\<exists>a b. s = {a..b})" thus ?thesis apply(subst has_integral_alt) unfolding if_not_P
 | 
|
1213  | 
proof(rule,rule) fix e::real assume e:"0<e"  | 
|
1214  | 
have *:"0 < e/B" by(rule divide_pos_pos,rule e,rule B(1))  | 
|
1215  | 
guess M using has_integral_altD[OF assms(1) as *,rule_format] . note M=this  | 
|
1216  | 
    show "\<exists>B>0. \<forall>a b. ball 0 B \<subseteq> {a..b} \<longrightarrow> (\<exists>z. ((\<lambda>x. if x \<in> s then (h \<circ> f) x else 0) has_integral z) {a..b} \<and> norm (z - h y) < e)"
 | 
|
1217  | 
apply(rule_tac x=M in exI) apply(rule,rule M(1))  | 
|
1218  | 
proof(rule,rule,rule) case goal1 guess z using M(2)[OF goal1(1)] .. note z=conjunctD2[OF this]  | 
|
1219  | 
have *:"(\<lambda>x. if x \<in> s then (h \<circ> f) x else 0) = h \<circ> (\<lambda>x. if x \<in> s then f x else 0)"  | 
|
1220  | 
unfolding o_def apply(rule ext) using zero by auto  | 
|
1221  | 
show ?case apply(rule_tac x="h z" in exI,rule) unfolding * apply(rule lem[OF z(1)]) unfolding diff[THEN sym]  | 
|
1222  | 
apply(rule le_less_trans[OF B(2)]) using B(1) z(2) by(auto simp add:field_simps)  | 
|
1223  | 
qed qed qed  | 
|
1224  | 
||
1225  | 
lemma has_integral_cmul:  | 
|
1226  | 
shows "(f has_integral k) s \<Longrightarrow> ((\<lambda>x. c *\<^sub>R f x) has_integral (c *\<^sub>R k)) s"  | 
|
1227  | 
unfolding o_def[THEN sym] apply(rule has_integral_linear,assumption)  | 
|
| 
44282
 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 
huffman 
parents: 
44176 
diff
changeset
 | 
1228  | 
by(rule bounded_linear_scaleR_right)  | 
| 35172 | 1229  | 
|
1230  | 
lemma has_integral_neg:  | 
|
1231  | 
shows "(f has_integral k) s \<Longrightarrow> ((\<lambda>x. -(f x)) has_integral (-k)) s"  | 
|
1232  | 
apply(drule_tac c="-1" in has_integral_cmul) by auto  | 
|
1233  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1234  | 
lemma has_integral_add: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::real_normed_vector"  | 
| 35172 | 1235  | 
assumes "(f has_integral k) s" "(g has_integral l) s"  | 
1236  | 
shows "((\<lambda>x. f x + g x) has_integral (k + l)) s"  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1237  | 
proof- have lem:"\<And>f g::'n \<Rightarrow> 'a. \<And>a b k l.  | 
| 35172 | 1238  | 
    (f has_integral k) ({a..b}) \<Longrightarrow> (g has_integral l) ({a..b}) \<Longrightarrow>
 | 
1239  | 
     ((\<lambda>x. f(x) + g(x)) has_integral (k + l)) ({a..b})" proof- case goal1
 | 
|
1240  | 
show ?case unfolding has_integral proof(rule,rule) fix e::real assume e:"e>0" hence *:"e/2>0" by auto  | 
|
1241  | 
guess d1 using has_integralD[OF goal1(1) *] . note d1=this  | 
|
1242  | 
guess d2 using has_integralD[OF goal1(2) *] . note d2=this  | 
|
1243  | 
      show "\<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {a..b} \<and> d fine p \<longrightarrow> norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R (f x + g x)) - (k + l)) < e)"
 | 
|
1244  | 
apply(rule_tac x="\<lambda>x. (d1 x) \<inter> (d2 x)" in exI) apply(rule,rule gauge_inter[OF d1(1) d2(1)])  | 
|
1245  | 
      proof(rule,rule,erule conjE) fix p assume as:"p tagged_division_of {a..b}" "(\<lambda>x. d1 x \<inter> d2 x) fine p"
 | 
|
1246  | 
have *:"(\<Sum>(x, k)\<in>p. content k *\<^sub>R (f x + g x)) = (\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) + (\<Sum>(x, k)\<in>p. content k *\<^sub>R g x)"  | 
|
1247  | 
unfolding scaleR_right_distrib setsum_addf[of "\<lambda>(x,k). content k *\<^sub>R f x" "\<lambda>(x,k). content k *\<^sub>R g x" p,THEN sym]  | 
|
1248  | 
by(rule setsum_cong2,auto)  | 
|
1249  | 
have "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R (f x + g x)) - (k + l)) = norm (((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - k) + ((\<Sum>(x, k)\<in>p. content k *\<^sub>R g x) - l))"  | 
|
| 36350 | 1250  | 
unfolding * by(auto simp add:algebra_simps) also let ?res = "\<dots>"  | 
| 35172 | 1251  | 
from as have *:"d1 fine p" "d2 fine p" unfolding fine_inter by auto  | 
1252  | 
have "?res < e/2 + e/2" apply(rule le_less_trans[OF norm_triangle_ineq])  | 
|
1253  | 
apply(rule add_strict_mono) using d1(2)[OF as(1) *(1)] and d2(2)[OF as(1) *(2)] by auto  | 
|
1254  | 
finally show "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R (f x + g x)) - (k + l)) < e" by auto  | 
|
1255  | 
      qed qed qed { presume "\<not> (\<exists>a b. s = {a..b}) \<Longrightarrow> ?thesis"
 | 
|
1256  | 
    thus ?thesis apply-apply(cases "\<exists>a b. s = {a..b}") using assms by(auto simp add:has_integral intro!:lem) }
 | 
|
1257  | 
  assume as:"\<not> (\<exists>a b. s = {a..b})" thus ?thesis apply(subst has_integral_alt) unfolding if_not_P
 | 
|
1258  | 
proof(rule,rule) case goal1 hence *:"e/2 > 0" by auto  | 
|
1259  | 
from has_integral_altD[OF assms(1) as *] guess B1 . note B1=this[rule_format]  | 
|
1260  | 
from has_integral_altD[OF assms(2) as *] guess B2 . note B2=this[rule_format]  | 
|
1261  | 
show ?case apply(rule_tac x="max B1 B2" in exI) apply(rule,rule min_max.less_supI1,rule B1)  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1262  | 
    proof(rule,rule,rule) fix a b assume "ball 0 (max B1 B2) \<subseteq> {a..b::'n}"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1263  | 
      hence *:"ball 0 B1 \<subseteq> {a..b::'n}" "ball 0 B2 \<subseteq> {a..b::'n}" by auto
 | 
| 35172 | 1264  | 
guess w using B1(2)[OF *(1)] .. note w=conjunctD2[OF this]  | 
1265  | 
guess z using B2(2)[OF *(2)] .. note z=conjunctD2[OF this]  | 
|
1266  | 
have *:"\<And>x. (if x \<in> s then f x + g x else 0) = (if x \<in> s then f x else 0) + (if x \<in> s then g x else 0)" by auto  | 
|
1267  | 
      show "\<exists>z. ((\<lambda>x. if x \<in> s then f x + g x else 0) has_integral z) {a..b} \<and> norm (z - (k + l)) < e"
 | 
|
1268  | 
apply(rule_tac x="w + z" in exI) apply(rule,rule lem[OF w(1) z(1), unfolded *[THEN sym]])  | 
|
1269  | 
using norm_triangle_ineq[of "w - k" "z - l"] w(2) z(2) by(auto simp add:field_simps)  | 
|
1270  | 
qed qed qed  | 
|
1271  | 
||
1272  | 
lemma has_integral_sub:  | 
|
1273  | 
shows "(f has_integral k) s \<Longrightarrow> (g has_integral l) s \<Longrightarrow> ((\<lambda>x. f(x) - g(x)) has_integral (k - l)) s"  | 
|
| 36350 | 1274  | 
using has_integral_add[OF _ has_integral_neg,of f k s g l] unfolding algebra_simps by auto  | 
| 35172 | 1275  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1276  | 
lemma integral_0: "integral s (\<lambda>x::'n::ordered_euclidean_space. 0::'m::real_normed_vector) = 0"  | 
| 35172 | 1277  | 
by(rule integral_unique has_integral_0)+  | 
1278  | 
||
1279  | 
lemma integral_add:  | 
|
1280  | 
shows "f integrable_on s \<Longrightarrow> g integrable_on s \<Longrightarrow>  | 
|
1281  | 
integral s (\<lambda>x. f x + g x) = integral s f + integral s g"  | 
|
1282  | 
apply(rule integral_unique) apply(drule integrable_integral)+  | 
|
1283  | 
apply(rule has_integral_add) by assumption+  | 
|
1284  | 
||
1285  | 
lemma integral_cmul:  | 
|
1286  | 
shows "f integrable_on s \<Longrightarrow> integral s (\<lambda>x. c *\<^sub>R f x) = c *\<^sub>R integral s f"  | 
|
1287  | 
apply(rule integral_unique) apply(drule integrable_integral)+  | 
|
1288  | 
apply(rule has_integral_cmul) by assumption+  | 
|
1289  | 
||
1290  | 
lemma integral_neg:  | 
|
1291  | 
shows "f integrable_on s \<Longrightarrow> integral s (\<lambda>x. - f x) = - integral s f"  | 
|
1292  | 
apply(rule integral_unique) apply(drule integrable_integral)+  | 
|
1293  | 
apply(rule has_integral_neg) by assumption+  | 
|
1294  | 
||
1295  | 
lemma integral_sub:  | 
|
1296  | 
shows "f integrable_on s \<Longrightarrow> g integrable_on s \<Longrightarrow> integral s (\<lambda>x. f x - g x) = integral s f - integral s g"  | 
|
1297  | 
apply(rule integral_unique) apply(drule integrable_integral)+  | 
|
1298  | 
apply(rule has_integral_sub) by assumption+  | 
|
1299  | 
||
1300  | 
lemma integrable_0: "(\<lambda>x. 0) integrable_on s"  | 
|
1301  | 
unfolding integrable_on_def using has_integral_0 by auto  | 
|
1302  | 
||
1303  | 
lemma integrable_add:  | 
|
1304  | 
shows "f integrable_on s \<Longrightarrow> g integrable_on s \<Longrightarrow> (\<lambda>x. f x + g x) integrable_on s"  | 
|
1305  | 
unfolding integrable_on_def by(auto intro: has_integral_add)  | 
|
1306  | 
||
1307  | 
lemma integrable_cmul:  | 
|
1308  | 
shows "f integrable_on s \<Longrightarrow> (\<lambda>x. c *\<^sub>R f(x)) integrable_on s"  | 
|
1309  | 
unfolding integrable_on_def by(auto intro: has_integral_cmul)  | 
|
1310  | 
||
1311  | 
lemma integrable_neg:  | 
|
1312  | 
shows "f integrable_on s \<Longrightarrow> (\<lambda>x. -f(x)) integrable_on s"  | 
|
1313  | 
unfolding integrable_on_def by(auto intro: has_integral_neg)  | 
|
1314  | 
||
1315  | 
lemma integrable_sub:  | 
|
1316  | 
shows "f integrable_on s \<Longrightarrow> g integrable_on s \<Longrightarrow> (\<lambda>x. f x - g x) integrable_on s"  | 
|
1317  | 
unfolding integrable_on_def by(auto intro: has_integral_sub)  | 
|
1318  | 
||
1319  | 
lemma integrable_linear:  | 
|
1320  | 
shows "f integrable_on s \<Longrightarrow> bounded_linear h \<Longrightarrow> (h o f) integrable_on s"  | 
|
1321  | 
unfolding integrable_on_def by(auto intro: has_integral_linear)  | 
|
1322  | 
||
1323  | 
lemma integral_linear:  | 
|
1324  | 
shows "f integrable_on s \<Longrightarrow> bounded_linear h \<Longrightarrow> integral s (h o f) = h(integral s f)"  | 
|
1325  | 
apply(rule has_integral_unique) defer unfolding has_integral_integral  | 
|
1326  | 
apply(drule has_integral_linear,assumption,assumption) unfolding has_integral_integral[THEN sym]  | 
|
1327  | 
apply(rule integrable_linear) by assumption+  | 
|
1328  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1329  | 
lemma integral_component_eq[simp]: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1330  | 
assumes "f integrable_on s" shows "integral s (\<lambda>x. f x $$ k) = integral s f $$ k"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1331  | 
unfolding integral_linear[OF assms(1) bounded_linear_component,unfolded o_def] ..  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
1332  | 
|
| 35172 | 1333  | 
lemma has_integral_setsum:  | 
1334  | 
assumes "finite t" "\<forall>a\<in>t. ((f a) has_integral (i a)) s"  | 
|
1335  | 
shows "((\<lambda>x. setsum (\<lambda>a. f a x) t) has_integral (setsum i t)) s"  | 
|
1336  | 
proof(insert assms(1) subset_refl[of t],induct rule:finite_subset_induct)  | 
|
1337  | 
case (insert x F) show ?case unfolding setsum_insert[OF insert(1,3)]  | 
|
1338  | 
apply(rule has_integral_add) using insert assms by auto  | 
|
1339  | 
qed auto  | 
|
1340  | 
||
1341  | 
lemma integral_setsum:  | 
|
1342  | 
shows "finite t \<Longrightarrow> \<forall>a\<in>t. (f a) integrable_on s \<Longrightarrow>  | 
|
1343  | 
integral s (\<lambda>x. setsum (\<lambda>a. f a x) t) = setsum (\<lambda>a. integral s (f a)) t"  | 
|
1344  | 
apply(rule integral_unique) apply(rule has_integral_setsum)  | 
|
1345  | 
using integrable_integral by auto  | 
|
1346  | 
||
1347  | 
lemma integrable_setsum:  | 
|
1348  | 
shows "finite t \<Longrightarrow> \<forall>a \<in> t.(f a) integrable_on s \<Longrightarrow> (\<lambda>x. setsum (\<lambda>a. f a x) t) integrable_on s"  | 
|
1349  | 
unfolding integrable_on_def apply(drule bchoice) using has_integral_setsum[of t] by auto  | 
|
1350  | 
||
1351  | 
lemma has_integral_eq:  | 
|
1352  | 
assumes "\<forall>x\<in>s. f x = g x" "(f has_integral k) s" shows "(g has_integral k) s"  | 
|
1353  | 
using has_integral_sub[OF assms(2), of "\<lambda>x. f x - g x" 0]  | 
|
1354  | 
using has_integral_is_0[of s "\<lambda>x. f x - g x"] using assms(1) by auto  | 
|
1355  | 
||
1356  | 
lemma integrable_eq:  | 
|
1357  | 
shows "\<forall>x\<in>s. f x = g x \<Longrightarrow> f integrable_on s \<Longrightarrow> g integrable_on s"  | 
|
1358  | 
unfolding integrable_on_def using has_integral_eq[of s f g] by auto  | 
|
1359  | 
||
1360  | 
lemma has_integral_eq_eq:  | 
|
1361  | 
shows "\<forall>x\<in>s. f x = g x \<Longrightarrow> ((f has_integral k) s \<longleftrightarrow> (g has_integral k) s)"  | 
|
| 
36362
 
06475a1547cb
fix lots of looping simp calls and other warnings
 
huffman 
parents: 
36359 
diff
changeset
 | 
1362  | 
using has_integral_eq[of s f g] has_integral_eq[of s g f] by rule auto  | 
| 35172 | 1363  | 
|
1364  | 
lemma has_integral_null[dest]:  | 
|
1365  | 
  assumes "content({a..b}) = 0" shows  "(f has_integral 0) ({a..b})"
 | 
|
1366  | 
unfolding has_integral apply(rule,rule,rule_tac x="\<lambda>x. ball x 1" in exI,rule) defer  | 
|
1367  | 
proof(rule,rule,erule conjE) fix e::real assume e:"e>0" thus "gauge (\<lambda>x. ball x 1)" by auto  | 
|
1368  | 
  fix p assume p:"p tagged_division_of {a..b}" (*"(\<lambda>x. ball x 1) fine p"*)
 | 
|
1369  | 
have "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - 0) = 0" unfolding norm_eq_zero diff_0_right  | 
|
1370  | 
using setsum_content_null[OF assms(1) p, of f] .  | 
|
1371  | 
thus "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - 0) < e" using e by auto qed  | 
|
1372  | 
||
1373  | 
lemma has_integral_null_eq[simp]:  | 
|
1374  | 
  shows "content({a..b}) = 0 \<Longrightarrow> ((f has_integral i) ({a..b}) \<longleftrightarrow> i = 0)"
 | 
|
1375  | 
apply rule apply(rule has_integral_unique,assumption)  | 
|
1376  | 
apply(drule has_integral_null,assumption)  | 
|
1377  | 
apply(drule has_integral_null) by auto  | 
|
1378  | 
||
1379  | 
lemma integral_null[dest]: shows "content({a..b}) = 0 \<Longrightarrow> integral({a..b}) f = 0"
 | 
|
1380  | 
by(rule integral_unique,drule has_integral_null)  | 
|
1381  | 
||
1382  | 
lemma integrable_on_null[dest]: shows "content({a..b}) = 0 \<Longrightarrow> f integrable_on {a..b}"
 | 
|
1383  | 
unfolding integrable_on_def apply(drule has_integral_null) by auto  | 
|
1384  | 
||
1385  | 
lemma has_integral_empty[intro]: shows "(f has_integral 0) {}"
 | 
|
1386  | 
unfolding empty_as_interval apply(rule has_integral_null)  | 
|
1387  | 
using content_empty unfolding empty_as_interval .  | 
|
1388  | 
||
1389  | 
lemma has_integral_empty_eq[simp]: shows "(f has_integral i) {} \<longleftrightarrow> i = 0"
 | 
|
1390  | 
apply(rule,rule has_integral_unique,assumption) by auto  | 
|
1391  | 
||
1392  | 
lemma integrable_on_empty[intro]: shows "f integrable_on {}" unfolding integrable_on_def by auto
 | 
|
1393  | 
||
1394  | 
lemma integral_empty[simp]: shows "integral {} f = 0"
 | 
|
1395  | 
apply(rule integral_unique) using has_integral_empty .  | 
|
1396  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1397  | 
lemma has_integral_refl[intro]: shows "(f has_integral 0) {a..a}" "(f has_integral 0) {a::'a::ordered_euclidean_space}"
 | 
| 
39302
 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 
nipkow 
parents: 
38656 
diff
changeset
 | 
1398  | 
proof- have *:"{a} = {a..a}" apply(rule set_eqI) unfolding mem_interval singleton_iff euclidean_eq[where 'a='a]
 | 
| 35540 | 1399  | 
apply safe prefer 3 apply(erule_tac x=i in allE) by(auto simp add: field_simps)  | 
1400  | 
  show "(f has_integral 0) {a..a}" "(f has_integral 0) {a}" unfolding *
 | 
|
1401  | 
apply(rule_tac[!] has_integral_null) unfolding content_eq_0_interior  | 
|
1402  | 
unfolding interior_closed_interval using interval_sing by auto qed  | 
|
| 35172 | 1403  | 
|
1404  | 
lemma integrable_on_refl[intro]: shows "f integrable_on {a..a}" unfolding integrable_on_def by auto
 | 
|
1405  | 
||
1406  | 
lemma integral_refl: shows "integral {a..a} f = 0" apply(rule integral_unique) by auto
 | 
|
1407  | 
||
1408  | 
subsection {* Cauchy-type criterion for integrability. *}
 | 
|
1409  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1410  | 
(* XXXXXXX *)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1411  | 
lemma integrable_cauchy: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::{real_normed_vector,complete_space}" 
 | 
| 35172 | 1412  | 
  shows "f integrable_on {a..b} \<longleftrightarrow>
 | 
1413  | 
  (\<forall>e>0.\<exists>d. gauge d \<and> (\<forall>p1 p2. p1 tagged_division_of {a..b} \<and> d fine p1 \<and>
 | 
|
1414  | 
                            p2 tagged_division_of {a..b} \<and> d fine p2
 | 
|
1415  | 
\<longrightarrow> norm(setsum (\<lambda>(x,k). content k *\<^sub>R f x) p1 -  | 
|
1416  | 
setsum (\<lambda>(x,k). content k *\<^sub>R f x) p2) < e))" (is "?l = (\<forall>e>0. \<exists>d. ?P e d)")  | 
|
1417  | 
proof assume ?l  | 
|
1418  | 
then guess y unfolding integrable_on_def has_integral .. note y=this  | 
|
1419  | 
show "\<forall>e>0. \<exists>d. ?P e d" proof(rule,rule) case goal1 hence "e/2 > 0" by auto  | 
|
1420  | 
then guess d apply- apply(drule y[rule_format]) by(erule exE,erule conjE) note d=this[rule_format]  | 
|
1421  | 
show ?case apply(rule_tac x=d in exI,rule,rule d) apply(rule,rule,rule,(erule conjE)+)  | 
|
1422  | 
    proof- fix p1 p2 assume as:"p1 tagged_division_of {a..b}" "d fine p1" "p2 tagged_division_of {a..b}" "d fine p2"
 | 
|
1423  | 
show "norm ((\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x) - (\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x)) < e"  | 
|
| 36587 | 1424  | 
apply(rule dist_triangle_half_l[where y=y,unfolded dist_norm])  | 
| 35172 | 1425  | 
using d(2)[OF conjI[OF as(1-2)]] d(2)[OF conjI[OF as(3-4)]] .  | 
1426  | 
qed qed  | 
|
1427  | 
next assume "\<forall>e>0. \<exists>d. ?P e d" hence "\<forall>n::nat. \<exists>d. ?P (inverse(real (n + 1))) d" by auto  | 
|
1428  | 
from choice[OF this] guess d .. note d=conjunctD2[OF this[rule_format],rule_format]  | 
|
1429  | 
  have "\<And>n. gauge (\<lambda>x. \<Inter>{d i x |i. i \<in> {0..n}})" apply(rule gauge_inters) using d(1) by auto
 | 
|
1430  | 
  hence "\<forall>n. \<exists>p. p tagged_division_of {a..b} \<and> (\<lambda>x. \<Inter>{d i x |i. i \<in> {0..n}}) fine p" apply-
 | 
|
1431  | 
proof case goal1 from this[of n] show ?case apply(drule_tac fine_division_exists) by auto qed  | 
|
1432  | 
from choice[OF this] guess p .. note p = conjunctD2[OF this[rule_format]]  | 
|
1433  | 
have dp:"\<And>i n. i\<le>n \<Longrightarrow> d i fine p n" using p(2) unfolding fine_inters by auto  | 
|
1434  | 
have "Cauchy (\<lambda>n. setsum (\<lambda>(x,k). content k *\<^sub>R (f x)) (p n))"  | 
|
1435  | 
proof(rule CauchyI) case goal1 then guess N unfolding real_arch_inv[of e] .. note N=this  | 
|
1436  | 
show ?case apply(rule_tac x=N in exI)  | 
|
1437  | 
proof(rule,rule,rule,rule) fix m n assume mn:"N \<le> m" "N \<le> n" have *:"N = (N - 1) + 1" using N by auto  | 
|
1438  | 
show "norm ((\<Sum>(x, k)\<in>p m. content k *\<^sub>R f x) - (\<Sum>(x, k)\<in>p n. content k *\<^sub>R f x)) < e"  | 
|
1439  | 
apply(rule less_trans[OF _ N[THEN conjunct2,THEN conjunct2]]) apply(subst *) apply(rule d(2))  | 
|
1440  | 
using dp p(1) using mn by auto  | 
|
1441  | 
qed qed  | 
|
1442  | 
then guess y unfolding convergent_eq_cauchy[THEN sym] .. note y=this[unfolded Lim_sequentially,rule_format]  | 
|
1443  | 
show ?l unfolding integrable_on_def has_integral apply(rule_tac x=y in exI)  | 
|
1444  | 
proof(rule,rule) fix e::real assume "e>0" hence *:"e/2 > 0" by auto  | 
|
1445  | 
then guess N1 unfolding real_arch_inv[of "e/2"] .. note N1=this hence N1':"N1 = N1 - 1 + 1" by auto  | 
|
1446  | 
guess N2 using y[OF *] .. note N2=this  | 
|
1447  | 
    show "\<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {a..b} \<and> d fine p \<longrightarrow> norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - y) < e)"
 | 
|
1448  | 
apply(rule_tac x="d (N1 + N2)" in exI) apply rule defer  | 
|
1449  | 
proof(rule,rule,erule conjE) show "gauge (d (N1 + N2))" using d by auto  | 
|
1450  | 
      fix q assume as:"q tagged_division_of {a..b}" "d (N1 + N2) fine q"
 | 
|
1451  | 
have *:"inverse (real (N1 + N2 + 1)) < e / 2" apply(rule less_trans) using N1 by auto  | 
|
1452  | 
show "norm ((\<Sum>(x, k)\<in>q. content k *\<^sub>R f x) - y) < e" apply(rule norm_triangle_half_r)  | 
|
1453  | 
apply(rule less_trans[OF _ *]) apply(subst N1', rule d(2)[of "p (N1+N2)"]) defer  | 
|
| 36587 | 1454  | 
using N2[rule_format,unfolded dist_norm,of "N1+N2"]  | 
| 35172 | 1455  | 
using as dp[of "N1 - 1 + 1 + N2" "N1 + N2"] using p(1)[of "N1 + N2"] using N1 by auto qed qed qed  | 
1456  | 
||
1457  | 
subsection {* Additivity of integral on abutting intervals. *}
 | 
|
1458  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1459  | 
lemma interval_split: fixes a::"'a::ordered_euclidean_space" assumes "k<DIM('a)" shows
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1460  | 
  "{a..b} \<inter> {x. x$$k \<le> c} = {a .. (\<chi>\<chi> i. if i = k then min (b$$k) c else b$$i)}"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1461  | 
  "{a..b} \<inter> {x. x$$k \<ge> c} = {(\<chi>\<chi> i. if i = k then max (a$$k) c else a$$i) .. b}"
 | 
| 
39302
 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 
nipkow 
parents: 
38656 
diff
changeset
 | 
1462  | 
apply(rule_tac[!] set_eqI) unfolding Int_iff mem_interval mem_Collect_eq using assms by auto  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1463  | 
|
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1464  | 
lemma content_split: fixes a::"'a::ordered_euclidean_space" assumes "k<DIM('a)" shows
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1465  | 
  "content {a..b} = content({a..b} \<inter> {x. x$$k \<le> c}) + content({a..b} \<inter> {x. x$$k >= c})"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1466  | 
proof- note simps = interval_split[OF assms] content_closed_interval_cases eucl_le[where 'a='a]  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1467  | 
  { presume "a\<le>b \<Longrightarrow> ?thesis" thus ?thesis apply(cases "a\<le>b") unfolding simps using assms by auto }
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1468  | 
  have *:"{..<DIM('a)} = insert k ({..<DIM('a)} - {k})" "\<And>x. finite ({..<DIM('a)}-{x})" "\<And>x. x\<notin>{..<DIM('a)}-{x}"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1469  | 
using assms by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1470  | 
  have *:"\<And>X Y Z. (\<Prod>i\<in>{..<DIM('a)}. Z i (if i = k then X else Y i)) = Z k X * (\<Prod>i\<in>{..<DIM('a)}-{k}. Z i (Y i))"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1471  | 
    "(\<Prod>i\<in>{..<DIM('a)}. b$$i - a$$i) = (\<Prod>i\<in>{..<DIM('a)}-{k}. b$$i - a$$i) * (b$$k - a$$k)" 
 | 
| 35172 | 1472  | 
apply(subst *(1)) defer apply(subst *(1)) unfolding setprod_insert[OF *(2-)] by auto  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1473  | 
assume as:"a\<le>b" moreover have "\<And>x. min (b $$ k) c = max (a $$ k) c  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1474  | 
\<Longrightarrow> x* (b$$k - a$$k) = x*(max (a $$ k) c - a $$ k) + x*(b $$ k - max (a $$ k) c)"  | 
| 35172 | 1475  | 
by (auto simp add:field_simps)  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1476  | 
  moreover have **:"(\<Prod>i<DIM('a). ((\<chi>\<chi> i. if i = k then min (b $$ k) c else b $$ i)::'a) $$ i - a $$ i) = 
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1477  | 
    (\<Prod>i<DIM('a). (if i = k then min (b $$ k) c else b $$ i) - a $$ i)"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1478  | 
    "(\<Prod>i<DIM('a). b $$ i - ((\<chi>\<chi> i. if i = k then max (a $$ k) c else a $$ i)::'a) $$ i) =
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1479  | 
    (\<Prod>i<DIM('a). b $$ i - (if i = k then max (a $$ k) c else a $$ i))"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1480  | 
apply(rule_tac[!] setprod.cong) by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1481  | 
have "\<not> a $$ k \<le> c \<Longrightarrow> \<not> c \<le> b $$ k \<Longrightarrow> False"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1482  | 
unfolding not_le using as[unfolded eucl_le[where 'a='a],rule_format,of k] assms by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1483  | 
ultimately show ?thesis using assms unfolding simps **  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1484  | 
unfolding *(1)[of "\<lambda>i x. b$$i - x"] *(1)[of "\<lambda>i x. x - a$$i"] unfolding *(2)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1485  | 
apply(subst(2) euclidean_lambda_beta''[where 'a='a])  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1486  | 
apply(subst(3) euclidean_lambda_beta''[where 'a='a]) by auto  | 
| 35172 | 1487  | 
qed  | 
1488  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1489  | 
lemma division_split_left_inj: fixes type::"'a::ordered_euclidean_space"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1490  | 
assumes "d division_of i" "k1 \<in> d" "k2 \<in> d" "k1 \<noteq> k2"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1491  | 
  "k1 \<inter> {x::'a. x$$k \<le> c} = k2 \<inter> {x. x$$k \<le> c}"and k:"k<DIM('a)"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1492  | 
  shows "content(k1 \<inter> {x. x$$k \<le> c}) = 0"
 | 
| 35172 | 1493  | 
proof- note d=division_ofD[OF assms(1)]  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1494  | 
  have *:"\<And>a b::'a. \<And> c. (content({a..b} \<inter> {x. x$$k \<le> c}) = 0 \<longleftrightarrow> interior({a..b} \<inter> {x. x$$k \<le> c}) = {})"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1495  | 
unfolding interval_split[OF k] content_eq_0_interior by auto  | 
| 35172 | 1496  | 
guess u1 v1 using d(4)[OF assms(2)] apply-by(erule exE)+ note uv1=this  | 
1497  | 
guess u2 v2 using d(4)[OF assms(3)] apply-by(erule exE)+ note uv2=this  | 
|
1498  | 
  have **:"\<And>s t u. s \<inter> t = {} \<Longrightarrow> u \<subseteq> s \<Longrightarrow> u \<subseteq> t \<Longrightarrow> u = {}" by auto
 | 
|
1499  | 
show ?thesis unfolding uv1 uv2 * apply(rule **[OF d(5)[OF assms(2-4)]])  | 
|
1500  | 
defer apply(subst assms(5)[unfolded uv1 uv2]) unfolding uv1 uv2 by auto qed  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1501  | 
|
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1502  | 
lemma division_split_right_inj: fixes type::"'a::ordered_euclidean_space"  | 
| 35172 | 1503  | 
assumes "d division_of i" "k1 \<in> d" "k2 \<in> d" "k1 \<noteq> k2"  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1504  | 
  "k1 \<inter> {x::'a. x$$k \<ge> c} = k2 \<inter> {x. x$$k \<ge> c}" and k:"k<DIM('a)"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1505  | 
  shows "content(k1 \<inter> {x. x$$k \<ge> c}) = 0"
 | 
| 35172 | 1506  | 
proof- note d=division_ofD[OF assms(1)]  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1507  | 
  have *:"\<And>a b::'a. \<And> c. (content({a..b} \<inter> {x. x$$k >= c}) = 0 \<longleftrightarrow> interior({a..b} \<inter> {x. x$$k >= c}) = {})"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1508  | 
unfolding interval_split[OF k] content_eq_0_interior by auto  | 
| 35172 | 1509  | 
guess u1 v1 using d(4)[OF assms(2)] apply-by(erule exE)+ note uv1=this  | 
1510  | 
guess u2 v2 using d(4)[OF assms(3)] apply-by(erule exE)+ note uv2=this  | 
|
1511  | 
  have **:"\<And>s t u. s \<inter> t = {} \<Longrightarrow> u \<subseteq> s \<Longrightarrow> u \<subseteq> t \<Longrightarrow> u = {}" by auto
 | 
|
1512  | 
show ?thesis unfolding uv1 uv2 * apply(rule **[OF d(5)[OF assms(2-4)]])  | 
|
1513  | 
defer apply(subst assms(5)[unfolded uv1 uv2]) unfolding uv1 uv2 by auto qed  | 
|
1514  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1515  | 
lemma tagged_division_split_left_inj: fixes x1::"'a::ordered_euclidean_space"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1516  | 
  assumes "d tagged_division_of i" "(x1,k1) \<in> d" "(x2,k2) \<in> d" "k1 \<noteq> k2"  "k1 \<inter> {x. x$$k \<le> c} = k2 \<inter> {x. x$$k \<le> c}" 
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1517  | 
  and k:"k<DIM('a)"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1518  | 
  shows "content(k1 \<inter> {x. x$$k \<le> c}) = 0"
 | 
| 35172 | 1519  | 
proof- have *:"\<And>a b c. (a,b) \<in> c \<Longrightarrow> b \<in> snd ` c" unfolding image_iff apply(rule_tac x="(a,b)" in bexI) by auto  | 
1520  | 
show ?thesis apply(rule division_split_left_inj[OF division_of_tagged_division[OF assms(1)]])  | 
|
1521  | 
apply(rule_tac[1-2] *) using assms(2-) by auto qed  | 
|
1522  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1523  | 
lemma tagged_division_split_right_inj: fixes x1::"'a::ordered_euclidean_space"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1524  | 
  assumes "d tagged_division_of i" "(x1,k1) \<in> d" "(x2,k2) \<in> d" "k1 \<noteq> k2"  "k1 \<inter> {x. x$$k \<ge> c} = k2 \<inter> {x. x$$k \<ge> c}" 
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1525  | 
  and k:"k<DIM('a)"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1526  | 
  shows "content(k1 \<inter> {x. x$$k \<ge> c}) = 0"
 | 
| 35172 | 1527  | 
proof- have *:"\<And>a b c. (a,b) \<in> c \<Longrightarrow> b \<in> snd ` c" unfolding image_iff apply(rule_tac x="(a,b)" in bexI) by auto  | 
1528  | 
show ?thesis apply(rule division_split_right_inj[OF division_of_tagged_division[OF assms(1)]])  | 
|
1529  | 
apply(rule_tac[1-2] *) using assms(2-) by auto qed  | 
|
1530  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1531  | 
lemma division_split: fixes a::"'a::ordered_euclidean_space"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1532  | 
  assumes "p division_of {a..b}" and k:"k<DIM('a)"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1533  | 
  shows "{l \<inter> {x. x$$k \<le> c} | l. l \<in> p \<and> ~(l \<inter> {x. x$$k \<le> c} = {})} division_of({a..b} \<inter> {x. x$$k \<le> c})" (is "?p1 division_of ?I1") and 
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1534  | 
        "{l \<inter> {x. x$$k \<ge> c} | l. l \<in> p \<and> ~(l \<inter> {x. x$$k \<ge> c} = {})} division_of ({a..b} \<inter> {x. x$$k \<ge> c})" (is "?p2 division_of ?I2")
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1535  | 
proof(rule_tac[!] division_ofI) note p=division_ofD[OF assms(1)]  | 
| 35172 | 1536  | 
show "finite ?p1" "finite ?p2" using p(1) by auto show "\<Union>?p1 = ?I1" "\<Union>?p2 = ?I2" unfolding p(6)[THEN sym] by auto  | 
1537  | 
  { fix k assume "k\<in>?p1" then guess l unfolding mem_Collect_eq apply-by(erule exE,(erule conjE)+) note l=this
 | 
|
1538  | 
guess u v using p(4)[OF l(2)] apply-by(erule exE)+ note uv=this  | 
|
1539  | 
    show "k\<subseteq>?I1" "k \<noteq> {}" "\<exists>a b. k = {a..b}" unfolding l
 | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1540  | 
using p(2-3)[OF l(2)] l(3) unfolding uv apply- prefer 3 apply(subst interval_split[OF k]) by auto  | 
| 35172 | 1541  | 
fix k' assume "k'\<in>?p1" then guess l' unfolding mem_Collect_eq apply-by(erule exE,(erule conjE)+) note l'=this  | 
1542  | 
    assume "k\<noteq>k'" thus "interior k \<inter> interior k' = {}" unfolding l l' using p(5)[OF l(2) l'(2)] by auto }
 | 
|
1543  | 
  { fix k assume "k\<in>?p2" then guess l unfolding mem_Collect_eq apply-by(erule exE,(erule conjE)+) note l=this
 | 
|
1544  | 
guess u v using p(4)[OF l(2)] apply-by(erule exE)+ note uv=this  | 
|
1545  | 
    show "k\<subseteq>?I2" "k \<noteq> {}" "\<exists>a b. k = {a..b}" unfolding l
 | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1546  | 
using p(2-3)[OF l(2)] l(3) unfolding uv apply- prefer 3 apply(subst interval_split[OF k]) by auto  | 
| 35172 | 1547  | 
fix k' assume "k'\<in>?p2" then guess l' unfolding mem_Collect_eq apply-by(erule exE,(erule conjE)+) note l'=this  | 
1548  | 
    assume "k\<noteq>k'" thus "interior k \<inter> interior k' = {}" unfolding l l' using p(5)[OF l(2) l'(2)] by auto }
 | 
|
1549  | 
qed  | 
|
1550  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1551  | 
lemma has_integral_split: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::real_normed_vector"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1552  | 
  assumes "(f has_integral i) ({a..b} \<inter> {x. x$$k \<le> c})"  "(f has_integral j) ({a..b} \<inter> {x. x$$k \<ge> c})" and k:"k<DIM('a)"
 | 
| 35172 | 1553  | 
  shows "(f has_integral (i + j)) ({a..b})"
 | 
1554  | 
proof(unfold has_integral,rule,rule) case goal1 hence e:"e/2>0" by auto  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1555  | 
guess d1 using has_integralD[OF assms(1)[unfolded interval_split[OF k]] e] . note d1=this[unfolded interval_split[THEN sym,OF k]]  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1556  | 
guess d2 using has_integralD[OF assms(2)[unfolded interval_split[OF k]] e] . note d2=this[unfolded interval_split[THEN sym,OF k]]  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1557  | 
let ?d = "\<lambda>x. if x$$k = c then (d1 x \<inter> d2 x) else ball x (abs(x$$k - c)) \<inter> d1 x \<inter> d2 x"  | 
| 35172 | 1558  | 
show ?case apply(rule_tac x="?d" in exI,rule) defer apply(rule,rule,(erule conjE)+)  | 
1559  | 
proof- show "gauge ?d" using d1(1) d2(1) unfolding gauge_def by auto  | 
|
1560  | 
    fix p assume "p tagged_division_of {a..b}" "?d fine p" note p = this tagged_division_ofD[OF this(1)]
 | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1561  | 
    have lem0:"\<And>x kk. (x,kk) \<in> p \<Longrightarrow> ~(kk \<inter> {x. x$$k \<le> c} = {}) \<Longrightarrow> x$$k \<le> c"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1562  | 
         "\<And>x kk. (x,kk) \<in> p \<Longrightarrow> ~(kk \<inter> {x. x$$k \<ge> c} = {}) \<Longrightarrow> x$$k \<ge> c"
 | 
| 35172 | 1563  | 
proof- fix x kk assume as:"(x,kk)\<in>p"  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1564  | 
      show "~(kk \<inter> {x. x$$k \<le> c} = {}) \<Longrightarrow> x$$k \<le> c"
 | 
| 35172 | 1565  | 
proof(rule ccontr) case goal1  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1566  | 
from this(2)[unfolded not_le] have "kk \<subseteq> ball x \<bar>x $$ k - c\<bar>"  | 
| 35172 | 1567  | 
using p(2)[unfolded fine_def,rule_format,OF as,unfolded split_conv] by auto  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1568  | 
        hence "\<exists>y. y \<in> ball x \<bar>x $$ k - c\<bar> \<inter> {x. x $$ k \<le> c}" using goal1(1) by blast 
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1569  | 
then guess y .. hence "\<bar>x $$ k - y $$ k\<bar> < \<bar>x $$ k - c\<bar>" "y$$k \<le> c" apply-apply(rule le_less_trans)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1570  | 
using component_le_norm[of "x - y" k] by(auto simp add:dist_norm)  | 
| 35172 | 1571  | 
thus False using goal1(2)[unfolded not_le] by(auto simp add:field_simps)  | 
1572  | 
qed  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1573  | 
      show "~(kk \<inter> {x. x$$k \<ge> c} = {}) \<Longrightarrow> x$$k \<ge> c"
 | 
| 35172 | 1574  | 
proof(rule ccontr) case goal1  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1575  | 
from this(2)[unfolded not_le] have "kk \<subseteq> ball x \<bar>x $$ k - c\<bar>"  | 
| 35172 | 1576  | 
using p(2)[unfolded fine_def,rule_format,OF as,unfolded split_conv] by auto  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1577  | 
        hence "\<exists>y. y \<in> ball x \<bar>x $$ k - c\<bar> \<inter> {x. x $$ k \<ge> c}" using goal1(1) by blast 
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1578  | 
then guess y .. hence "\<bar>x $$ k - y $$ k\<bar> < \<bar>x $$ k - c\<bar>" "y$$k \<ge> c" apply-apply(rule le_less_trans)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1579  | 
using component_le_norm[of "x - y" k] by(auto simp add:dist_norm)  | 
| 35172 | 1580  | 
thus False using goal1(2)[unfolded not_le] by(auto simp add:field_simps)  | 
1581  | 
qed  | 
|
1582  | 
qed  | 
|
1583  | 
||
1584  | 
    have lem1: "\<And>f P Q. (\<forall>x k. (x,k) \<in> {(x,f k) | x k. P x k} \<longrightarrow> Q x k) \<longleftrightarrow> (\<forall>x k. P x k \<longrightarrow> Q x (f k))" by auto
 | 
|
1585  | 
    have lem2: "\<And>f s P f. finite s \<Longrightarrow> finite {(x,f k) | x k. (x,k) \<in> s \<and> P x k}"
 | 
|
1586  | 
proof- case goal1 thus ?case apply-apply(rule finite_subset[of _ "(\<lambda>(x,k). (x,f k)) ` s"]) by auto qed  | 
|
| 
44170
 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 
huffman 
parents: 
44167 
diff
changeset
 | 
1587  | 
have lem3: "\<And>g::'a set \<Rightarrow> 'a set. finite p \<Longrightarrow>  | 
| 35172 | 1588  | 
      setsum (\<lambda>(x,k). content k *\<^sub>R f x) {(x,g k) |x k. (x,k) \<in> p \<and> ~(g k = {})}
 | 
1589  | 
= setsum (\<lambda>(x,k). content k *\<^sub>R f x) ((\<lambda>(x,k). (x,g k)) ` p)"  | 
|
1590  | 
apply(rule setsum_mono_zero_left) prefer 3  | 
|
| 
44170
 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 
huffman 
parents: 
44167 
diff
changeset
 | 
1591  | 
    proof fix g::"'a set \<Rightarrow> 'a set" and i::"('a) \<times> (('a) set)"
 | 
| 35172 | 1592  | 
      assume "i \<in> (\<lambda>(x, k). (x, g k)) ` p - {(x, g k) |x k. (x, k) \<in> p \<and> g k \<noteq> {}}"
 | 
1593  | 
      then obtain x k where xk:"i=(x,g k)" "(x,k)\<in>p" "(x,g k) \<notin> {(x, g k) |x k. (x, k) \<in> p \<and> g k \<noteq> {}}" by auto
 | 
|
1594  | 
have "content (g k) = 0" using xk using content_empty by auto  | 
|
1595  | 
thus "(\<lambda>(x, k). content k *\<^sub>R f x) i = 0" unfolding xk split_conv by auto  | 
|
1596  | 
qed auto  | 
|
1597  | 
have lem4:"\<And>g. (\<lambda>(x,l). content (g l) *\<^sub>R f x) = (\<lambda>(x,l). content l *\<^sub>R f x) o (\<lambda>(x,l). (x,g l))" apply(rule ext) by auto  | 
|
1598  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1599  | 
    let ?M1 = "{(x,kk \<inter> {x. x$$k \<le> c}) |x kk. (x,kk) \<in> p \<and> kk \<inter> {x. x$$k \<le> c} \<noteq> {}}"
 | 
| 35172 | 1600  | 
have "norm ((\<Sum>(x, k)\<in>?M1. content k *\<^sub>R f x) - i) < e/2" apply(rule d1(2),rule tagged_division_ofI)  | 
1601  | 
apply(rule lem2 p(3))+ prefer 6 apply(rule fineI)  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1602  | 
    proof- show "\<Union>{k. \<exists>x. (x, k) \<in> ?M1} = {a..b} \<inter> {x. x$$k \<le> c}" unfolding p(8)[THEN sym] by auto
 | 
| 35172 | 1603  | 
fix x l assume xl:"(x,l)\<in>?M1"  | 
1604  | 
then guess x' l' unfolding mem_Collect_eq apply- unfolding Pair_eq apply((erule exE)+,(erule conjE)+) . note xl'=this  | 
|
1605  | 
have "l' \<subseteq> d1 x'" apply(rule order_trans[OF fineD[OF p(2) xl'(3)]]) by auto  | 
|
1606  | 
thus "l \<subseteq> d1 x" unfolding xl' by auto  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1607  | 
      show "x\<in>l" "l \<subseteq> {a..b} \<inter> {x. x $$ k \<le> c}" unfolding xl' using p(4-6)[OF xl'(3)] using xl'(4)
 | 
| 35172 | 1608  | 
using lem0(1)[OF xl'(3-4)] by auto  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1609  | 
      show  "\<exists>a b. l = {a..b}" unfolding xl' using p(6)[OF xl'(3)] by(fastsimp simp add: interval_split[OF k,where c=c])
 | 
| 35172 | 1610  | 
      fix y r let ?goal = "interior l \<inter> interior r = {}" assume yr:"(y,r)\<in>?M1"
 | 
1611  | 
then guess y' r' unfolding mem_Collect_eq apply- unfolding Pair_eq apply((erule exE)+,(erule conjE)+) . note yr'=this  | 
|
1612  | 
      assume as:"(x,l) \<noteq> (y,r)" show "interior l \<inter> interior r = {}"
 | 
|
1613  | 
proof(cases "l' = r' \<longrightarrow> x' = y'")  | 
|
1614  | 
case False thus ?thesis using p(7)[OF xl'(3) yr'(3)] using as unfolding xl' yr' by auto  | 
|
1615  | 
next case True hence "l' \<noteq> r'" using as unfolding xl' yr' by auto  | 
|
1616  | 
thus ?thesis using p(7)[OF xl'(3) yr'(3)] using as unfolding xl' yr' by auto  | 
|
1617  | 
qed qed moreover  | 
|
1618  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1619  | 
    let ?M2 = "{(x,kk \<inter> {x. x$$k \<ge> c}) |x kk. (x,kk) \<in> p \<and> kk \<inter> {x. x$$k \<ge> c} \<noteq> {}}" 
 | 
| 35172 | 1620  | 
have "norm ((\<Sum>(x, k)\<in>?M2. content k *\<^sub>R f x) - j) < e/2" apply(rule d2(2),rule tagged_division_ofI)  | 
1621  | 
apply(rule lem2 p(3))+ prefer 6 apply(rule fineI)  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1622  | 
    proof- show "\<Union>{k. \<exists>x. (x, k) \<in> ?M2} = {a..b} \<inter> {x. x$$k \<ge> c}" unfolding p(8)[THEN sym] by auto
 | 
| 35172 | 1623  | 
fix x l assume xl:"(x,l)\<in>?M2"  | 
1624  | 
then guess x' l' unfolding mem_Collect_eq apply- unfolding Pair_eq apply((erule exE)+,(erule conjE)+) . note xl'=this  | 
|
1625  | 
have "l' \<subseteq> d2 x'" apply(rule order_trans[OF fineD[OF p(2) xl'(3)]]) by auto  | 
|
1626  | 
thus "l \<subseteq> d2 x" unfolding xl' by auto  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1627  | 
      show "x\<in>l" "l \<subseteq> {a..b} \<inter> {x. x $$ k \<ge> c}" unfolding xl' using p(4-6)[OF xl'(3)] using xl'(4)
 | 
| 35172 | 1628  | 
using lem0(2)[OF xl'(3-4)] by auto  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1629  | 
      show  "\<exists>a b. l = {a..b}" unfolding xl' using p(6)[OF xl'(3)] by(fastsimp simp add: interval_split[OF k, where c=c])
 | 
| 35172 | 1630  | 
      fix y r let ?goal = "interior l \<inter> interior r = {}" assume yr:"(y,r)\<in>?M2"
 | 
1631  | 
then guess y' r' unfolding mem_Collect_eq apply- unfolding Pair_eq apply((erule exE)+,(erule conjE)+) . note yr'=this  | 
|
1632  | 
      assume as:"(x,l) \<noteq> (y,r)" show "interior l \<inter> interior r = {}"
 | 
|
1633  | 
proof(cases "l' = r' \<longrightarrow> x' = y'")  | 
|
1634  | 
case False thus ?thesis using p(7)[OF xl'(3) yr'(3)] using as unfolding xl' yr' by auto  | 
|
1635  | 
next case True hence "l' \<noteq> r'" using as unfolding xl' yr' by auto  | 
|
1636  | 
thus ?thesis using p(7)[OF xl'(3) yr'(3)] using as unfolding xl' yr' by auto  | 
|
1637  | 
qed qed ultimately  | 
|
1638  | 
||
1639  | 
have "norm (((\<Sum>(x, k)\<in>?M1. content k *\<^sub>R f x) - i) + ((\<Sum>(x, k)\<in>?M2. content k *\<^sub>R f x) - j)) < e/2 + e/2"  | 
|
1640  | 
apply- apply(rule norm_triangle_lt) by auto  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1641  | 
    also { have *:"\<And>x y. x = (0::real) \<Longrightarrow> x *\<^sub>R (y::'b) = 0" using scaleR_zero_left by auto
 | 
| 35172 | 1642  | 
have "((\<Sum>(x, k)\<in>?M1. content k *\<^sub>R f x) - i) + ((\<Sum>(x, k)\<in>?M2. content k *\<^sub>R f x) - j)  | 
1643  | 
= (\<Sum>(x, k)\<in>?M1. content k *\<^sub>R f x) + (\<Sum>(x, k)\<in>?M2. content k *\<^sub>R f x) - (i + j)" by auto  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1644  | 
      also have "\<dots> = (\<Sum>(x, ka)\<in>p. content (ka \<inter> {x. x $$ k \<le> c}) *\<^sub>R f x) +
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1645  | 
        (\<Sum>(x, ka)\<in>p. content (ka \<inter> {x. c \<le> x $$ k}) *\<^sub>R f x) - (i + j)"
 | 
| 35172 | 1646  | 
unfolding lem3[OF p(3)] apply(subst setsum_reindex_nonzero[OF p(3)]) defer apply(subst setsum_reindex_nonzero[OF p(3)])  | 
1647  | 
defer unfolding lem4[THEN sym] apply(rule refl) unfolding split_paired_all split_conv apply(rule_tac[!] *)  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1648  | 
proof- case goal1 thus ?case apply- apply(rule tagged_division_split_left_inj [OF p(1), of a b aa ba]) using k by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1649  | 
next case goal2 thus ?case apply- apply(rule tagged_division_split_right_inj[OF p(1), of a b aa ba]) using k by auto  | 
| 35172 | 1650  | 
qed also note setsum_addf[THEN sym]  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1651  | 
      also have *:"\<And>x. x\<in>p \<Longrightarrow> (\<lambda>(x, ka). content (ka \<inter> {x. x $$ k \<le> c}) *\<^sub>R f x) x + (\<lambda>(x, ka). content (ka \<inter> {x. c \<le> x $$ k}) *\<^sub>R f x) x
 | 
| 35172 | 1652  | 
= (\<lambda>(x,ka). content ka *\<^sub>R f x) x" unfolding split_paired_all split_conv  | 
1653  | 
proof- fix a b assume "(a,b) \<in> p" from p(6)[OF this] guess u v apply-by(erule exE)+ note uv=this  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1654  | 
        thus "content (b \<inter> {x. x $$ k \<le> c}) *\<^sub>R f a + content (b \<inter> {x. c \<le> x $$ k}) *\<^sub>R f a = content b *\<^sub>R f a"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1655  | 
unfolding scaleR_left_distrib[THEN sym] unfolding uv content_split[OF k,of u v c] by auto  | 
| 35172 | 1656  | 
qed note setsum_cong2[OF this]  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1657  | 
      finally have "(\<Sum>(x, k)\<in>{(x, kk \<inter> {x. x $$ k \<le> c}) |x kk. (x, kk) \<in> p \<and> kk \<inter> {x. x $$ k \<le> c} \<noteq> {}}. content k *\<^sub>R f x) - i +
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1658  | 
        ((\<Sum>(x, k)\<in>{(x, kk \<inter> {x. c \<le> x $$ k}) |x kk. (x, kk) \<in> p \<and> kk \<inter> {x. c \<le> x $$ k} \<noteq> {}}. content k *\<^sub>R f x) - j) =
 | 
| 35172 | 1659  | 
(\<Sum>(x, ka)\<in>p. content ka *\<^sub>R f x) - (i + j)" by auto }  | 
1660  | 
finally show "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - (i + j)) < e" by auto qed qed  | 
|
1661  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1662  | 
(*lemma has_integral_split_cart: fixes f::"real^'n \<Rightarrow> 'a::real_normed_vector"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1663  | 
  assumes "(f has_integral i) ({a..b} \<inter> {x. x$k \<le> c})"  "(f has_integral j) ({a..b} \<inter> {x. x$k \<ge> c})"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1664  | 
  shows "(f has_integral (i + j)) ({a..b})" *)
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1665  | 
|
| 35172 | 1666  | 
subsection {* A sort of converse, integrability on subintervals. *}
 | 
1667  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1668  | 
lemma tagged_division_union_interval: fixes a::"'a::ordered_euclidean_space"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1669  | 
  assumes "p1 tagged_division_of ({a..b} \<inter> {x. x$$k \<le> (c::real)})"  "p2 tagged_division_of ({a..b} \<inter> {x. x$$k \<ge> c})"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1670  | 
  and k:"k<DIM('a)"
 | 
| 35172 | 1671  | 
  shows "(p1 \<union> p2) tagged_division_of ({a..b})"
 | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1672  | 
proof- have *:"{a..b} = ({a..b} \<inter> {x. x$$k \<le> c}) \<union> ({a..b} \<inter> {x. x$$k \<ge> c})" by auto
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1673  | 
show ?thesis apply(subst *) apply(rule tagged_division_union[OF assms(1-2)])  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1674  | 
unfolding interval_split[OF k] interior_closed_interval using k  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1675  | 
by(auto simp add: eucl_less[where 'a='a] elim!:allE[where x=k]) qed  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1676  | 
|
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1677  | 
lemma has_integral_separate_sides: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::real_normed_vector"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1678  | 
  assumes "(f has_integral i) ({a..b})" "e>0" and k:"k<DIM('a)"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1679  | 
  obtains d where "gauge d" "(\<forall>p1 p2. p1 tagged_division_of ({a..b} \<inter> {x. x$$k \<le> c}) \<and> d fine p1 \<and>
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1680  | 
                                p2 tagged_division_of ({a..b} \<inter> {x. x$$k \<ge> c}) \<and> d fine p2
 | 
| 35172 | 1681  | 
\<longrightarrow> norm((setsum (\<lambda>(x,k). content k *\<^sub>R f x) p1 +  | 
1682  | 
setsum (\<lambda>(x,k). content k *\<^sub>R f x) p2) - i) < e)"  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1683  | 
proof- guess d using has_integralD[OF assms(1-2)] . note d=this  | 
| 35172 | 1684  | 
show ?thesis apply(rule that[of d]) apply(rule d) apply(rule,rule,rule,(erule conjE)+)  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1685  | 
  proof- fix p1 p2 assume "p1 tagged_division_of {a..b} \<inter> {x. x $$ k \<le> c}" "d fine p1" note p1=tagged_division_ofD[OF this(1)] this
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1686  | 
                   assume "p2 tagged_division_of {a..b} \<inter> {x. c \<le> x $$ k}" "d fine p2" note p2=tagged_division_ofD[OF this(1)] this
 | 
| 35172 | 1687  | 
note tagged_division_union_interval[OF p1(7) p2(7)] note p12 = tagged_division_ofD[OF this] this  | 
1688  | 
have "norm ((\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x) + (\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x) - i) = norm ((\<Sum>(x, k)\<in>p1 \<union> p2. content k *\<^sub>R f x) - i)"  | 
|
1689  | 
apply(subst setsum_Un_zero) apply(rule p1 p2)+ apply(rule) unfolding split_paired_all split_conv  | 
|
1690  | 
proof- fix a b assume ab:"(a,b) \<in> p1 \<inter> p2"  | 
|
1691  | 
have "(a,b) \<in> p1" using ab by auto from p1(4)[OF this] guess u v apply-by(erule exE)+ note uv =this  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1692  | 
      have "b \<subseteq> {x. x$$k = c}" using ab p1(3)[of a b] p2(3)[of a b] by fastsimp
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1693  | 
      moreover have "interior {x::'a. x $$ k = c} = {}" 
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1694  | 
      proof(rule ccontr) case goal1 then obtain x where x:"x\<in>interior {x::'a. x$$k = c}" by auto
 | 
| 35172 | 1695  | 
then guess e unfolding mem_interior .. note e=this  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1696  | 
have x:"x$$k = c" using x interior_subset by fastsimp  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1697  | 
        have *:"\<And>i. i<DIM('a) \<Longrightarrow> \<bar>(x - (x + (\<chi>\<chi> i. if i = k then e / 2 else 0))) $$ i\<bar>
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1698  | 
= (if i = k then e/2 else 0)" using e by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1699  | 
        have "(\<Sum>i<DIM('a). \<bar>(x - (x + (\<chi>\<chi> i. if i = k then e / 2 else 0))) $$ i\<bar>) =
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1700  | 
          (\<Sum>i<DIM('a). (if i = k then e / 2 else 0))" apply(rule setsum_cong2) apply(subst *) by auto
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1701  | 
also have "... < e" apply(subst setsum_delta) using e by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1702  | 
finally have "x + (\<chi>\<chi> i. if i = k then e/2 else 0) \<in> ball x e" unfolding mem_ball dist_norm  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1703  | 
by(rule le_less_trans[OF norm_le_l1])  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1704  | 
        hence "x + (\<chi>\<chi> i. if i = k then e/2 else 0) \<in> {x. x$$k = c}" using e by auto
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1705  | 
thus False unfolding mem_Collect_eq using e x k by auto  | 
| 
44522
 
2f7e9d890efe
rename subset_{interior,closure} to {interior,closure}_mono;
 
huffman 
parents: 
44514 
diff
changeset
 | 
1706  | 
qed ultimately have "content b = 0" unfolding uv content_eq_0_interior apply-apply(drule interior_mono) by auto  | 
| 35172 | 1707  | 
thus "content b *\<^sub>R f a = 0" by auto  | 
1708  | 
qed auto  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1709  | 
also have "\<dots> < e" by(rule k d(2) p12 fine_union p1 p2)+  | 
| 35172 | 1710  | 
finally show "norm ((\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x) + (\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x) - i) < e" . qed qed  | 
1711  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1712  | 
lemma integrable_split[intro]: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::{real_normed_vector,complete_space}"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1713  | 
  assumes "f integrable_on {a..b}" and k:"k<DIM('a)"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1714  | 
  shows "f integrable_on ({a..b} \<inter> {x. x$$k \<le> c})" (is ?t1) and "f integrable_on ({a..b} \<inter> {x. x$$k \<ge> c})" (is ?t2) 
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1715  | 
proof- guess y using assms(1) unfolding integrable_on_def .. note y=this  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1716  | 
def b' \<equiv> "(\<chi>\<chi> i. if i = k then min (b$$k) c else b$$i)::'a"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1717  | 
and a' \<equiv> "(\<chi>\<chi> i. if i = k then max (a$$k) c else a$$i)::'a"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1718  | 
show ?t1 ?t2 unfolding interval_split[OF k] integrable_cauchy unfolding interval_split[THEN sym,OF k]  | 
| 35172 | 1719  | 
proof(rule_tac[!] allI impI)+ fix e::real assume "e>0" hence "e/2>0" by auto  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1720  | 
from has_integral_separate_sides[OF y this k,of c] guess d . note d=this[rule_format]  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1721  | 
    let ?P = "\<lambda>A. \<exists>d. gauge d \<and> (\<forall>p1 p2. p1 tagged_division_of {a..b} \<inter> A \<and> d fine p1
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1722  | 
      \<and> p2 tagged_division_of {a..b} \<inter> A \<and> d fine p2 \<longrightarrow>
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1723  | 
norm ((\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x) - (\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x)) < e)"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1724  | 
    show "?P {x. x $$ k \<le> c}" apply(rule_tac x=d in exI) apply(rule,rule d) apply(rule,rule,rule)
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1725  | 
    proof- fix p1 p2 assume as:"p1 tagged_division_of {a..b} \<inter> {x. x $$ k \<le> c} \<and> d fine p1
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1726  | 
        \<and> p2 tagged_division_of {a..b} \<inter> {x. x $$ k \<le> c} \<and> d fine p2"
 | 
| 35172 | 1727  | 
show "norm ((\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x) - (\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x)) < e"  | 
1728  | 
proof- guess p using fine_division_exists[OF d(1), of a' b] . note p=this  | 
|
1729  | 
show ?thesis using norm_triangle_half_l[OF d(2)[of p1 p] d(2)[of p2 p]]  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1730  | 
using as unfolding interval_split[OF k] b'_def[symmetric] a'_def[symmetric]  | 
| 36350 | 1731  | 
using p using assms by(auto simp add:algebra_simps)  | 
| 35172 | 1732  | 
qed qed  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1733  | 
    show "?P {x. x $$ k \<ge> c}" apply(rule_tac x=d in exI) apply(rule,rule d) apply(rule,rule,rule)
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1734  | 
    proof- fix p1 p2 assume as:"p1 tagged_division_of {a..b} \<inter> {x. x $$ k \<ge> c} \<and> d fine p1
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1735  | 
        \<and> p2 tagged_division_of {a..b} \<inter> {x. x $$ k \<ge> c} \<and> d fine p2"
 | 
| 35172 | 1736  | 
show "norm ((\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x) - (\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x)) < e"  | 
1737  | 
proof- guess p using fine_division_exists[OF d(1), of a b'] . note p=this  | 
|
1738  | 
show ?thesis using norm_triangle_half_l[OF d(2)[of p p1] d(2)[of p p2]]  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1739  | 
using as unfolding interval_split[OF k] b'_def[symmetric] a'_def[symmetric]  | 
| 36350 | 1740  | 
using p using assms by(auto simp add:algebra_simps) qed qed qed qed  | 
| 35172 | 1741  | 
|
1742  | 
subsection {* Generalized notion of additivity. *}
 | 
|
1743  | 
||
1744  | 
definition "neutral opp = (SOME x. \<forall>y. opp x y = y \<and> opp y x = y)"  | 
|
1745  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1746  | 
definition operative :: "('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> (('b::ordered_euclidean_space) set \<Rightarrow> 'a) \<Rightarrow> bool" where
 | 
| 35172 | 1747  | 
"operative opp f \<equiv>  | 
1748  | 
    (\<forall>a b. content {a..b} = 0 \<longrightarrow> f {a..b} = neutral(opp)) \<and>
 | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1749  | 
    (\<forall>a b c. \<forall>k<DIM('b). f({a..b}) =
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1750  | 
                   opp (f({a..b} \<inter> {x. x$$k \<le> c}))
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1751  | 
                       (f({a..b} \<inter> {x. x$$k \<ge> c})))"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1752  | 
|
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1753  | 
lemma operativeD[dest]: fixes type::"'a::ordered_euclidean_space" assumes "operative opp f"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1754  | 
  shows "\<And>a b. content {a..b} = 0 \<Longrightarrow> f {a..b::'a} = neutral(opp)"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1755  | 
  "\<And>a b c k. k<DIM('a) \<Longrightarrow> f({a..b}) = opp (f({a..b} \<inter> {x. x$$k \<le> c})) (f({a..b} \<inter> {x. x$$k \<ge> c}))"
 | 
| 35172 | 1756  | 
using assms unfolding operative_def by auto  | 
1757  | 
||
1758  | 
lemma operative_trivial:  | 
|
1759  | 
 "operative opp f \<Longrightarrow> content({a..b}) = 0 \<Longrightarrow> f({a..b}) = neutral opp"
 | 
|
1760  | 
unfolding operative_def by auto  | 
|
1761  | 
||
1762  | 
lemma property_empty_interval:  | 
|
1763  | 
 "(\<forall>a b. content({a..b}) = 0 \<longrightarrow> P({a..b})) \<Longrightarrow> P {}" 
 | 
|
1764  | 
using content_empty unfolding empty_as_interval by auto  | 
|
1765  | 
||
1766  | 
lemma operative_empty: "operative opp f \<Longrightarrow> f {} = neutral opp"
 | 
|
1767  | 
unfolding operative_def apply(rule property_empty_interval) by auto  | 
|
1768  | 
||
1769  | 
subsection {* Using additivity of lifted function to encode definedness. *}
 | 
|
1770  | 
||
1771  | 
lemma forall_option: "(\<forall>x. P x) \<longleftrightarrow> P None \<and> (\<forall>x. P(Some x))"  | 
|
| 
36362
 
06475a1547cb
fix lots of looping simp calls and other warnings
 
huffman 
parents: 
36359 
diff
changeset
 | 
1772  | 
by (metis option.nchotomy)  | 
| 35172 | 1773  | 
|
1774  | 
lemma exists_option:  | 
|
1775  | 
"(\<exists>x. P x) \<longleftrightarrow> P None \<or> (\<exists>x. P(Some x))"  | 
|
| 
36362
 
06475a1547cb
fix lots of looping simp calls and other warnings
 
huffman 
parents: 
36359 
diff
changeset
 | 
1776  | 
by (metis option.nchotomy)  | 
| 35172 | 1777  | 
|
1778  | 
fun lifted where  | 
|
1779  | 
"lifted (opp::'a\<Rightarrow>'a\<Rightarrow>'b) (Some x) (Some y) = Some(opp x y)" |  | 
|
1780  | 
"lifted opp None _ = (None::'b option)" |  | 
|
1781  | 
"lifted opp _ None = None"  | 
|
1782  | 
||
1783  | 
lemma lifted_simp_1[simp]: "lifted opp v None = None"  | 
|
1784  | 
apply(induct v) by auto  | 
|
1785  | 
||
1786  | 
definition "monoidal opp \<equiv> (\<forall>x y. opp x y = opp y x) \<and>  | 
|
1787  | 
(\<forall>x y z. opp x (opp y z) = opp (opp x y) z) \<and>  | 
|
1788  | 
(\<forall>x. opp (neutral opp) x = x)"  | 
|
1789  | 
||
1790  | 
lemma monoidalI: assumes "\<And>x y. opp x y = opp y x"  | 
|
1791  | 
"\<And>x y z. opp x (opp y z) = opp (opp x y) z"  | 
|
1792  | 
"\<And>x. opp (neutral opp) x = x" shows "monoidal opp"  | 
|
1793  | 
unfolding monoidal_def using assms by fastsimp  | 
|
1794  | 
||
1795  | 
lemma monoidal_ac: assumes "monoidal opp"  | 
|
1796  | 
shows "opp (neutral opp) a = a" "opp a (neutral opp) = a" "opp a b = opp b a"  | 
|
1797  | 
"opp (opp a b) c = opp a (opp b c)" "opp a (opp b c) = opp b (opp a c)"  | 
|
1798  | 
using assms unfolding monoidal_def apply- by metis+  | 
|
1799  | 
||
1800  | 
lemma monoidal_simps[simp]: assumes "monoidal opp"  | 
|
1801  | 
shows "opp (neutral opp) a = a" "opp a (neutral opp) = a"  | 
|
1802  | 
using monoidal_ac[OF assms] by auto  | 
|
1803  | 
||
1804  | 
lemma neutral_lifted[cong]: assumes "monoidal opp"  | 
|
1805  | 
shows "neutral (lifted opp) = Some(neutral opp)"  | 
|
1806  | 
apply(subst neutral_def) apply(rule some_equality) apply(rule,induct_tac y) prefer 3  | 
|
1807  | 
proof- fix x assume "\<forall>y. lifted opp x y = y \<and> lifted opp y x = y"  | 
|
1808  | 
thus "x = Some (neutral opp)" apply(induct x) defer  | 
|
1809  | 
apply rule apply(subst neutral_def) apply(subst eq_commute,rule some_equality)  | 
|
1810  | 
apply(rule,erule_tac x="Some y" in allE) defer apply(erule_tac x="Some x" in allE) by auto  | 
|
1811  | 
qed(auto simp add:monoidal_ac[OF assms])  | 
|
1812  | 
||
1813  | 
lemma monoidal_lifted[intro]: assumes "monoidal opp" shows "monoidal(lifted opp)"  | 
|
1814  | 
unfolding monoidal_def forall_option neutral_lifted[OF assms] using monoidal_ac[OF assms] by auto  | 
|
1815  | 
||
1816  | 
definition "support opp f s = {x. x\<in>s \<and> f x \<noteq> neutral opp}"
 | 
|
1817  | 
definition "fold' opp e s \<equiv> (if finite s then fold opp e s else e)"  | 
|
1818  | 
definition "iterate opp s f \<equiv> fold' (\<lambda>x a. opp (f x) a) (neutral opp) (support opp f s)"  | 
|
1819  | 
||
1820  | 
lemma support_subset[intro]:"support opp f s \<subseteq> s" unfolding support_def by auto  | 
|
1821  | 
lemma support_empty[simp]:"support opp f {} = {}" using support_subset[of opp f "{}"] by auto
 | 
|
1822  | 
||
| 
42871
 
1c0b99f950d9
names of fold_set locales resemble name of characteristic property more closely
 
haftmann 
parents: 
42869 
diff
changeset
 | 
1823  | 
lemma comp_fun_commute_monoidal[intro]: assumes "monoidal opp" shows "comp_fun_commute opp"  | 
| 
 
1c0b99f950d9
names of fold_set locales resemble name of characteristic property more closely
 
haftmann 
parents: 
42869 
diff
changeset
 | 
1824  | 
unfolding comp_fun_commute_def using monoidal_ac[OF assms] by auto  | 
| 35172 | 1825  | 
|
1826  | 
lemma support_clauses:  | 
|
1827  | 
  "\<And>f g s. support opp f {} = {}"
 | 
|
1828  | 
"\<And>f g s. support opp f (insert x s) = (if f(x) = neutral opp then support opp f s else insert x (support opp f s))"  | 
|
1829  | 
  "\<And>f g s. support opp f (s - {x}) = (support opp f s) - {x}"
 | 
|
1830  | 
"\<And>f g s. support opp f (s \<union> t) = (support opp f s) \<union> (support opp f t)"  | 
|
1831  | 
"\<And>f g s. support opp f (s \<inter> t) = (support opp f s) \<inter> (support opp f t)"  | 
|
1832  | 
"\<And>f g s. support opp f (s - t) = (support opp f s) - (support opp f t)"  | 
|
1833  | 
"\<And>f g s. support opp g (f ` s) = f ` (support opp (g o f) s)"  | 
|
1834  | 
unfolding support_def by auto  | 
|
1835  | 
||
1836  | 
lemma finite_support[intro]:"finite s \<Longrightarrow> finite (support opp f s)"  | 
|
1837  | 
unfolding support_def by auto  | 
|
1838  | 
||
1839  | 
lemma iterate_empty[simp]:"iterate opp {} f = neutral opp"
 | 
|
1840  | 
unfolding iterate_def fold'_def by auto  | 
|
1841  | 
||
1842  | 
lemma iterate_insert[simp]: assumes "monoidal opp" "finite s"  | 
|
1843  | 
shows "iterate opp (insert x s) f = (if x \<in> s then iterate opp s f else opp (f x) (iterate opp s f))"  | 
|
1844  | 
proof(cases "x\<in>s") case True hence *:"insert x s = s" by auto  | 
|
1845  | 
show ?thesis unfolding iterate_def if_P[OF True] * by auto  | 
|
1846  | 
next case False note x=this  | 
|
| 
42871
 
1c0b99f950d9
names of fold_set locales resemble name of characteristic property more closely
 
haftmann 
parents: 
42869 
diff
changeset
 | 
1847  | 
note * = comp_fun_commute.comp_comp_fun_commute [OF comp_fun_commute_monoidal[OF assms(1)]]  | 
| 35172 | 1848  | 
show ?thesis proof(cases "f x = neutral opp")  | 
1849  | 
case True show ?thesis unfolding iterate_def if_not_P[OF x] support_clauses if_P[OF True]  | 
|
1850  | 
unfolding True monoidal_simps[OF assms(1)] by auto  | 
|
1851  | 
next case False show ?thesis unfolding iterate_def fold'_def if_not_P[OF x] support_clauses if_not_P[OF False]  | 
|
| 
42871
 
1c0b99f950d9
names of fold_set locales resemble name of characteristic property more closely
 
haftmann 
parents: 
42869 
diff
changeset
 | 
1852  | 
apply(subst comp_fun_commute.fold_insert[OF * finite_support, simplified comp_def])  | 
| 35172 | 1853  | 
using `finite s` unfolding support_def using False x by auto qed qed  | 
1854  | 
||
1855  | 
lemma iterate_some:  | 
|
1856  | 
assumes "monoidal opp" "finite s"  | 
|
1857  | 
shows "iterate (lifted opp) s (\<lambda>x. Some(f x)) = Some (iterate opp s f)" using assms(2)  | 
|
1858  | 
proof(induct s) case empty thus ?case using assms by auto  | 
|
1859  | 
next case (insert x F) show ?case apply(subst iterate_insert) prefer 3 apply(subst if_not_P)  | 
|
1860  | 
defer unfolding insert(3) lifted.simps apply rule using assms insert by auto qed  | 
|
1861  | 
subsection {* Two key instances of additivity. *}
 | 
|
1862  | 
||
1863  | 
lemma neutral_add[simp]:  | 
|
1864  | 
"neutral op + = (0::_::comm_monoid_add)" unfolding neutral_def  | 
|
1865  | 
apply(rule some_equality) defer apply(erule_tac x=0 in allE) by auto  | 
|
1866  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1867  | 
lemma operative_content[intro]: "operative (op +) content"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1868  | 
unfolding operative_def neutral_add apply safe  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1869  | 
unfolding content_split[THEN sym] ..  | 
| 35172 | 1870  | 
|
| 
36362
 
06475a1547cb
fix lots of looping simp calls and other warnings
 
huffman 
parents: 
36359 
diff
changeset
 | 
1871  | 
lemma neutral_monoid: "neutral ((op +)::('a::comm_monoid_add) \<Rightarrow> 'a \<Rightarrow> 'a) = 0"
 | 
| 
 
06475a1547cb
fix lots of looping simp calls and other warnings
 
huffman 
parents: 
36359 
diff
changeset
 | 
1872  | 
by (rule neutral_add) (* FIXME: duplicate *)  | 
| 35172 | 1873  | 
|
1874  | 
lemma monoidal_monoid[intro]:  | 
|
1875  | 
  shows "monoidal ((op +)::('a::comm_monoid_add) \<Rightarrow> 'a \<Rightarrow> 'a)"
 | 
|
| 36350 | 1876  | 
unfolding monoidal_def neutral_monoid by(auto simp add: algebra_simps)  | 
| 35172 | 1877  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1878  | 
lemma operative_integral: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::banach"  | 
| 35172 | 1879  | 
shows "operative (lifted(op +)) (\<lambda>i. if f integrable_on i then Some(integral i f) else None)"  | 
1880  | 
unfolding operative_def unfolding neutral_lifted[OF monoidal_monoid] neutral_add  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1881  | 
apply(rule,rule,rule,rule) defer apply(rule allI impI)+  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1882  | 
proof- fix a b c k assume k:"k<DIM('a)" show "(if f integrable_on {a..b} then Some (integral {a..b} f) else None) =
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1883  | 
    lifted op + (if f integrable_on {a..b} \<inter> {x. x $$ k \<le> c} then Some (integral ({a..b} \<inter> {x. x $$ k \<le> c}) f) else None)
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1884  | 
    (if f integrable_on {a..b} \<inter> {x. c \<le> x $$ k} then Some (integral ({a..b} \<inter> {x. c \<le> x $$ k}) f) else None)"
 | 
| 35172 | 1885  | 
  proof(cases "f integrable_on {a..b}") 
 | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1886  | 
case True show ?thesis unfolding if_P[OF True] using k apply-  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1887  | 
unfolding if_P[OF integrable_split(1)[OF True]] unfolding if_P[OF integrable_split(2)[OF True]]  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1888  | 
unfolding lifted.simps option.inject apply(rule integral_unique) apply(rule has_integral_split[OF _ _ k])  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1889  | 
apply(rule_tac[!] integrable_integral integrable_split)+ using True k by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1890  | 
  next case False have "(\<not> (f integrable_on {a..b} \<inter> {x. x $$ k \<le> c})) \<or> (\<not> ( f integrable_on {a..b} \<inter> {x. c \<le> x $$ k}))"
 | 
| 35172 | 1891  | 
    proof(rule ccontr) case goal1 hence "f integrable_on {a..b}" apply- unfolding integrable_on_def
 | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1892  | 
        apply(rule_tac x="integral ({a..b} \<inter> {x. x $$ k \<le> c}) f + integral ({a..b} \<inter> {x. x $$ k \<ge> c}) f" in exI)
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1893  | 
apply(rule has_integral_split[OF _ _ k]) apply(rule_tac[!] integrable_integral) by auto  | 
| 35172 | 1894  | 
thus False using False by auto  | 
1895  | 
qed thus ?thesis using False by auto  | 
|
1896  | 
qed next  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1897  | 
  fix a b assume as:"content {a..b::'a} = 0"
 | 
| 35172 | 1898  | 
  thus "(if f integrable_on {a..b} then Some (integral {a..b} f) else None) = Some 0"
 | 
1899  | 
unfolding if_P[OF integrable_on_null[OF as]] using has_integral_null_eq[OF as] by auto qed  | 
|
1900  | 
||
1901  | 
subsection {* Points of division of a partition. *}
 | 
|
1902  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1903  | 
definition "division_points (k::('a::ordered_euclidean_space) set) d = 
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1904  | 
    {(j,x). j<DIM('a) \<and> (interval_lowerbound k)$$j < x \<and> x < (interval_upperbound k)$$j \<and>
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1905  | 
(\<exists>i\<in>d. (interval_lowerbound i)$$j = x \<or> (interval_upperbound i)$$j = x)}"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1906  | 
|
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1907  | 
lemma division_points_finite: fixes i::"('a::ordered_euclidean_space) set"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1908  | 
assumes "d division_of i" shows "finite (division_points i d)"  | 
| 35172 | 1909  | 
proof- note assm = division_ofD[OF assms]  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1910  | 
  let ?M = "\<lambda>j. {(j,x)|x. (interval_lowerbound i)$$j < x \<and> x < (interval_upperbound i)$$j \<and>
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1911  | 
(\<exists>i\<in>d. (interval_lowerbound i)$$j = x \<or> (interval_upperbound i)$$j = x)}"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1912  | 
  have *:"division_points i d = \<Union>(?M ` {..<DIM('a)})"
 | 
| 35172 | 1913  | 
unfolding division_points_def by auto  | 
1914  | 
show ?thesis unfolding * using assm by auto qed  | 
|
1915  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1916  | 
lemma division_points_subset: fixes a::"'a::ordered_euclidean_space"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1917  | 
  assumes "d division_of {a..b}" "\<forall>i<DIM('a). a$$i < b$$i"  "a$$k < c" "c < b$$k" and k:"k<DIM('a)"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1918  | 
  shows "division_points ({a..b} \<inter> {x. x$$k \<le> c}) {l \<inter> {x. x$$k \<le> c} | l . l \<in> d \<and> ~(l \<inter> {x. x$$k \<le> c} = {})}
 | 
| 35172 | 1919  | 
                  \<subseteq> division_points ({a..b}) d" (is ?t1) and
 | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1920  | 
        "division_points ({a..b} \<inter> {x. x$$k \<ge> c}) {l \<inter> {x. x$$k \<ge> c} | l . l \<in> d \<and> ~(l \<inter> {x. x$$k \<ge> c} = {})}
 | 
| 35172 | 1921  | 
                  \<subseteq> division_points ({a..b}) d" (is ?t2)
 | 
1922  | 
proof- note assm = division_ofD[OF assms(1)]  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1923  | 
  have *:"\<forall>i<DIM('a). a$$i \<le> b$$i"   "\<forall>i<DIM('a). a$$i \<le> ((\<chi>\<chi> i. if i = k then min (b $$ k) c else b $$ i)::'a) $$ i"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1924  | 
    "\<forall>i<DIM('a). ((\<chi>\<chi> i. if i = k then max (a $$ k) c else a $$ i)::'a) $$ i \<le> b$$i"  "min (b $$ k) c = c" "max (a $$ k) c = c"
 | 
| 35172 | 1925  | 
using assms using less_imp_le by auto  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1926  | 
show ?t1 unfolding division_points_def interval_split[OF k, of a b]  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1927  | 
unfolding interval_bounds[OF *(1)] interval_bounds[OF *(2)] interval_bounds[OF *(3)] unfolding *  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1928  | 
unfolding subset_eq apply(rule) unfolding mem_Collect_eq split_beta apply(erule bexE conjE)+  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1929  | 
unfolding mem_Collect_eq apply(erule exE conjE)+ unfolding euclidean_lambda_beta'  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1930  | 
proof- fix i l x assume as:"a $$ fst x < snd x" "snd x < (if fst x = k then c else b $$ fst x)"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1931  | 
"interval_lowerbound i $$ fst x = snd x \<or> interval_upperbound i $$ fst x = snd x"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1932  | 
      "i = l \<inter> {x. x $$ k \<le> c}" "l \<in> d" "l \<inter> {x. x $$ k \<le> c} \<noteq> {}" and fstx:"fst x <DIM('a)"
 | 
| 35172 | 1933  | 
from assm(4)[OF this(5)] guess u v apply-by(erule exE)+ note l=this  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1934  | 
    have *:"\<forall>i<DIM('a). u $$ i \<le> ((\<chi>\<chi> i. if i = k then min (v $$ k) c else v $$ i)::'a) $$ i"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1935  | 
using as(6) unfolding l interval_split[OF k] interval_ne_empty as .  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1936  | 
    have **:"\<forall>i<DIM('a). u$$i \<le> v$$i" using l using as(6) unfolding interval_ne_empty[THEN sym] by auto
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1937  | 
    show "fst x <DIM('a) \<and> a $$ fst x < snd x \<and> snd x < b $$ fst x \<and> (\<exists>i\<in>d. interval_lowerbound i $$ fst x = snd x
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1938  | 
\<or> interval_upperbound i $$ fst x = snd x)" apply(rule,rule fstx)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1939  | 
using as(1-3,5) unfolding l interval_split[OF k] interval_ne_empty as interval_bounds[OF *] apply-  | 
| 35172 | 1940  | 
      apply(rule,assumption,rule) defer apply(rule_tac x="{u..v}" in bexI) unfolding interval_bounds[OF **]
 | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1941  | 
apply(case_tac[!] "fst x = k") using assms fstx apply- unfolding euclidean_lambda_beta by auto  | 
| 35172 | 1942  | 
qed  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1943  | 
show ?t2 unfolding division_points_def interval_split[OF k, of a b]  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1944  | 
unfolding interval_bounds[OF *(1)] interval_bounds[OF *(2)] interval_bounds[OF *(3)] unfolding *  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1945  | 
unfolding subset_eq apply(rule) unfolding mem_Collect_eq split_beta apply(erule bexE conjE)+  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1946  | 
unfolding mem_Collect_eq apply(erule exE conjE)+ unfolding euclidean_lambda_beta' apply(rule,assumption)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1947  | 
proof- fix i l x assume as:"(if fst x = k then c else a $$ fst x) < snd x" "snd x < b $$ fst x"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1948  | 
"interval_lowerbound i $$ fst x = snd x \<or> interval_upperbound i $$ fst x = snd x"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1949  | 
      "i = l \<inter> {x. c \<le> x $$ k}" "l \<in> d" "l \<inter> {x. c \<le> x $$ k} \<noteq> {}" and fstx:"fst x < DIM('a)"
 | 
| 35172 | 1950  | 
from assm(4)[OF this(5)] guess u v apply-by(erule exE)+ note l=this  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1951  | 
    have *:"\<forall>i<DIM('a). ((\<chi>\<chi> i. if i = k then max (u $$ k) c else u $$ i)::'a) $$ i \<le> v $$ i"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1952  | 
using as(6) unfolding l interval_split[OF k] interval_ne_empty as .  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1953  | 
    have **:"\<forall>i<DIM('a). u$$i \<le> v$$i" using l using as(6) unfolding interval_ne_empty[THEN sym] by auto
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1954  | 
show "a $$ fst x < snd x \<and> snd x < b $$ fst x \<and> (\<exists>i\<in>d. interval_lowerbound i $$ fst x = snd x \<or>  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1955  | 
interval_upperbound i $$ fst x = snd x)"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1956  | 
using as(1-3,5) unfolding l interval_split[OF k] interval_ne_empty as interval_bounds[OF *] apply-  | 
| 35172 | 1957  | 
      apply rule defer apply(rule,assumption) apply(rule_tac x="{u..v}" in bexI) unfolding interval_bounds[OF **]
 | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1958  | 
apply(case_tac[!] "fst x = k") using assms fstx apply- by(auto simp add:euclidean_lambda_beta'[OF k]) qed qed  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1959  | 
|
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1960  | 
lemma division_points_psubset: fixes a::"'a::ordered_euclidean_space"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1961  | 
  assumes "d division_of {a..b}"  "\<forall>i<DIM('a). a$$i < b$$i"  "a$$k < c" "c < b$$k"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1962  | 
  "l \<in> d" "interval_lowerbound l$$k = c \<or> interval_upperbound l$$k = c" and k:"k<DIM('a)"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1963  | 
  shows "division_points ({a..b} \<inter> {x. x$$k \<le> c}) {l \<inter> {x. x$$k \<le> c} | l. l\<in>d \<and> l \<inter> {x. x$$k \<le> c} \<noteq> {}}
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1964  | 
              \<subset> division_points ({a..b}) d" (is "?D1 \<subset> ?D") 
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1965  | 
        "division_points ({a..b} \<inter> {x. x$$k \<ge> c}) {l \<inter> {x. x$$k \<ge> c} | l. l\<in>d \<and> l \<inter> {x. x$$k \<ge> c} \<noteq> {}}
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1966  | 
              \<subset> division_points ({a..b}) d" (is "?D2 \<subset> ?D") 
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1967  | 
proof- have ab:"\<forall>i<DIM('a). a$$i \<le> b$$i" using assms(2) by(auto intro!:less_imp_le)
 | 
| 35172 | 1968  | 
guess u v using division_ofD(4)[OF assms(1,5)] apply-by(erule exE)+ note l=this  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1969  | 
  have uv:"\<forall>i<DIM('a). u$$i \<le> v$$i" "\<forall>i<DIM('a). a$$i \<le> u$$i \<and> v$$i \<le> b$$i"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1970  | 
using division_ofD(2,2,3)[OF assms(1,5)] unfolding l interval_ne_empty  | 
| 35172 | 1971  | 
unfolding subset_eq apply- defer apply(erule_tac x=u in ballE, erule_tac x=v in ballE) unfolding mem_interval by auto  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1972  | 
  have *:"interval_upperbound ({a..b} \<inter> {x. x $$ k \<le> interval_upperbound l $$ k}) $$ k = interval_upperbound l $$ k"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1973  | 
         "interval_upperbound ({a..b} \<inter> {x. x $$ k \<le> interval_lowerbound l $$ k}) $$ k = interval_lowerbound l $$ k"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1974  | 
unfolding interval_split[OF k] apply(subst interval_bounds) prefer 3 apply(subst interval_bounds)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1975  | 
unfolding l interval_bounds[OF uv(1)] using uv[rule_format,of k] ab k by auto  | 
| 35172 | 1976  | 
have "\<exists>x. x \<in> ?D - ?D1" using assms(2-) apply-apply(erule disjE)  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1977  | 
apply(rule_tac x="(k,(interval_lowerbound l)$$k)" in exI) defer  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1978  | 
apply(rule_tac x="(k,(interval_upperbound l)$$k)" in exI)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1979  | 
unfolding division_points_def unfolding interval_bounds[OF ab] by(auto simp add:*)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1980  | 
thus "?D1 \<subset> ?D" apply-apply(rule,rule division_points_subset[OF assms(1-4)]) using k by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1981  | 
|
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1982  | 
  have *:"interval_lowerbound ({a..b} \<inter> {x. x $$ k \<ge> interval_lowerbound l $$ k}) $$ k = interval_lowerbound l $$ k"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1983  | 
         "interval_lowerbound ({a..b} \<inter> {x. x $$ k \<ge> interval_upperbound l $$ k}) $$ k = interval_upperbound l $$ k"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1984  | 
unfolding interval_split[OF k] apply(subst interval_bounds) prefer 3 apply(subst interval_bounds)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1985  | 
unfolding l interval_bounds[OF uv(1)] using uv[rule_format,of k] ab k by auto  | 
| 35172 | 1986  | 
have "\<exists>x. x \<in> ?D - ?D2" using assms(2-) apply-apply(erule disjE)  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1987  | 
apply(rule_tac x="(k,(interval_lowerbound l)$$k)" in exI) defer  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1988  | 
apply(rule_tac x="(k,(interval_upperbound l)$$k)" in exI)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1989  | 
unfolding division_points_def unfolding interval_bounds[OF ab] by(auto simp add:*)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
1990  | 
thus "?D2 \<subset> ?D" apply-apply(rule,rule division_points_subset[OF assms(1-4) k]) by auto qed  | 
| 35172 | 1991  | 
|
1992  | 
subsection {* Preservation by divisions and tagged divisions. *}
 | 
|
1993  | 
||
1994  | 
lemma support_support[simp]:"support opp f (support opp f s) = support opp f s"  | 
|
1995  | 
unfolding support_def by auto  | 
|
1996  | 
||
1997  | 
lemma iterate_support[simp]: "iterate opp (support opp f s) f = iterate opp s f"  | 
|
1998  | 
unfolding iterate_def support_support by auto  | 
|
1999  | 
||
2000  | 
lemma iterate_expand_cases:  | 
|
2001  | 
"iterate opp s f = (if finite(support opp f s) then iterate opp (support opp f s) f else neutral opp)"  | 
|
2002  | 
apply(cases) apply(subst if_P,assumption) unfolding iterate_def support_support fold'_def by auto  | 
|
2003  | 
||
2004  | 
lemma iterate_image: assumes "monoidal opp" "inj_on f s"  | 
|
2005  | 
shows "iterate opp (f ` s) g = iterate opp s (g \<circ> f)"  | 
|
2006  | 
proof- have *:"\<And>s. finite s \<Longrightarrow> \<forall>x\<in>s. \<forall>y\<in>s. f x = f y \<longrightarrow> x = y \<Longrightarrow>  | 
|
2007  | 
iterate opp (f ` s) g = iterate opp s (g \<circ> f)"  | 
|
2008  | 
proof- case goal1 show ?case using goal1  | 
|
2009  | 
proof(induct s) case empty thus ?case using assms(1) by auto  | 
|
2010  | 
next case (insert x s) show ?case unfolding iterate_insert[OF assms(1) insert(1)]  | 
|
2011  | 
unfolding if_not_P[OF insert(2)] apply(subst insert(3)[THEN sym])  | 
|
2012  | 
unfolding image_insert defer apply(subst iterate_insert[OF assms(1)])  | 
|
2013  | 
apply(rule finite_imageI insert)+ apply(subst if_not_P)  | 
|
2014  | 
unfolding image_iff o_def using insert(2,4) by auto  | 
|
2015  | 
qed qed  | 
|
2016  | 
show ?thesis  | 
|
2017  | 
apply(cases "finite (support opp g (f ` s))")  | 
|
2018  | 
apply(subst (1) iterate_support[THEN sym],subst (2) iterate_support[THEN sym])  | 
|
2019  | 
unfolding support_clauses apply(rule *)apply(rule finite_imageD,assumption) unfolding inj_on_def[symmetric]  | 
|
2020  | 
apply(rule subset_inj_on[OF assms(2) support_subset])+  | 
|
2021  | 
apply(subst iterate_expand_cases) unfolding support_clauses apply(simp only: if_False)  | 
|
2022  | 
apply(subst iterate_expand_cases) apply(subst if_not_P) by auto qed  | 
|
2023  | 
||
2024  | 
||
2025  | 
(* This lemma about iterations comes up in a few places. *)  | 
|
2026  | 
lemma iterate_nonzero_image_lemma:  | 
|
2027  | 
assumes "monoidal opp" "finite s" "g(a) = neutral opp"  | 
|
2028  | 
"\<forall>x\<in>s. \<forall>y\<in>s. f x = f y \<and> x \<noteq> y \<longrightarrow> g(f x) = neutral opp"  | 
|
2029  | 
  shows "iterate opp {f x | x. x \<in> s \<and> f x \<noteq> a} g = iterate opp s (g \<circ> f)"
 | 
|
2030  | 
proof- have *:"{f x |x. x \<in> s \<and> ~(f x = a)} = f ` {x. x \<in> s \<and> ~(f x = a)}" by auto
 | 
|
2031  | 
  have **:"support opp (g \<circ> f) {x \<in> s. f x \<noteq> a} = support opp (g \<circ> f) s"
 | 
|
2032  | 
unfolding support_def using assms(3) by auto  | 
|
2033  | 
show ?thesis unfolding *  | 
|
2034  | 
apply(subst iterate_support[THEN sym]) unfolding support_clauses  | 
|
2035  | 
apply(subst iterate_image[OF assms(1)]) defer  | 
|
2036  | 
apply(subst(2) iterate_support[THEN sym]) apply(subst **)  | 
|
2037  | 
unfolding inj_on_def using assms(3,4) unfolding support_def by auto qed  | 
|
2038  | 
||
2039  | 
lemma iterate_eq_neutral:  | 
|
2040  | 
assumes "monoidal opp" "\<forall>x \<in> s. (f(x) = neutral opp)"  | 
|
2041  | 
shows "(iterate opp s f = neutral opp)"  | 
|
2042  | 
proof- have *:"support opp f s = {}" unfolding support_def using assms(2) by auto
 | 
|
2043  | 
show ?thesis apply(subst iterate_support[THEN sym])  | 
|
2044  | 
unfolding * using assms(1) by auto qed  | 
|
2045  | 
||
2046  | 
lemma iterate_op: assumes "monoidal opp" "finite s"  | 
|
2047  | 
shows "iterate opp s (\<lambda>x. opp (f x) (g x)) = opp (iterate opp s f) (iterate opp s g)" using assms(2)  | 
|
2048  | 
proof(induct s) case empty thus ?case unfolding iterate_insert[OF assms(1)] using assms(1) by auto  | 
|
2049  | 
next case (insert x F) show ?case unfolding iterate_insert[OF assms(1) insert(1)] if_not_P[OF insert(2)] insert(3)  | 
|
2050  | 
unfolding monoidal_ac[OF assms(1)] by(rule refl) qed  | 
|
2051  | 
||
2052  | 
lemma iterate_eq: assumes "monoidal opp" "\<And>x. x \<in> s \<Longrightarrow> f x = g x"  | 
|
2053  | 
shows "iterate opp s f = iterate opp s g"  | 
|
2054  | 
proof- have *:"support opp g s = support opp f s"  | 
|
2055  | 
unfolding support_def using assms(2) by auto  | 
|
2056  | 
show ?thesis  | 
|
2057  | 
proof(cases "finite (support opp f s)")  | 
|
2058  | 
case False thus ?thesis apply(subst iterate_expand_cases,subst(2) iterate_expand_cases)  | 
|
2059  | 
unfolding * by auto  | 
|
2060  | 
next def su \<equiv> "support opp f s"  | 
|
2061  | 
case True note support_subset[of opp f s]  | 
|
2062  | 
thus ?thesis apply- apply(subst iterate_support[THEN sym],subst(2) iterate_support[THEN sym]) unfolding * using True  | 
|
2063  | 
unfolding su_def[symmetric]  | 
|
2064  | 
proof(induct su) case empty show ?case by auto  | 
|
2065  | 
next case (insert x s) show ?case unfolding iterate_insert[OF assms(1) insert(1)]  | 
|
2066  | 
unfolding if_not_P[OF insert(2)] apply(subst insert(3))  | 
|
2067  | 
defer apply(subst assms(2)[of x]) using insert by auto qed qed qed  | 
|
2068  | 
||
2069  | 
lemma nonempty_witness: assumes "s \<noteq> {}" obtains x where "x \<in> s" using assms by auto
 | 
|
2070  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2071  | 
lemma operative_division: fixes f::"('a::ordered_euclidean_space) set \<Rightarrow> 'b"
 | 
| 35172 | 2072  | 
  assumes "monoidal opp" "operative opp f" "d division_of {a..b}"
 | 
2073  | 
  shows "iterate opp d f = f {a..b}"
 | 
|
2074  | 
proof- def C \<equiv> "card (division_points {a..b} d)" thus ?thesis using assms
 | 
|
2075  | 
proof(induct C arbitrary:a b d rule:full_nat_induct)  | 
|
2076  | 
case goal1  | 
|
2077  | 
    { presume *:"content {a..b} \<noteq> 0 \<Longrightarrow> ?case"
 | 
|
2078  | 
thus ?case apply-apply(cases) defer apply assumption  | 
|
2079  | 
      proof- assume as:"content {a..b} = 0"
 | 
|
2080  | 
show ?case unfolding operativeD(1)[OF assms(2) as] apply(rule iterate_eq_neutral[OF goal1(2)])  | 
|
2081  | 
proof fix x assume x:"x\<in>d"  | 
|
2082  | 
then guess u v apply(drule_tac division_ofD(4)[OF goal1(4)]) by(erule exE)+  | 
|
2083  | 
thus "f x = neutral opp" using division_of_content_0[OF as goal1(4)]  | 
|
2084  | 
using operativeD(1)[OF assms(2)] x by auto  | 
|
2085  | 
qed qed }  | 
|
2086  | 
    assume "content {a..b} \<noteq> 0" note ab = this[unfolded content_lt_nz[THEN sym] content_pos_lt_eq]
 | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2087  | 
    hence ab':"\<forall>i<DIM('a). a$$i \<le> b$$i" by (auto intro!: less_imp_le) show ?case 
 | 
| 35172 | 2088  | 
    proof(cases "division_points {a..b} d = {}")
 | 
2089  | 
      case True have d':"\<forall>i\<in>d. \<exists>u v. i = {u..v} \<and>
 | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2090  | 
        (\<forall>j<DIM('a). u$$j = a$$j \<and> v$$j = a$$j \<or> u$$j = b$$j \<and> v$$j = b$$j \<or> u$$j = a$$j \<and> v$$j = b$$j)"
 | 
| 35172 | 2091  | 
unfolding forall_in_division[OF goal1(4)] apply(rule,rule,rule)  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2092  | 
apply(rule_tac x=a in exI,rule_tac x=b in exI) apply(rule,rule refl) apply(rule,rule)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2093  | 
      proof- fix u v j assume j:"j<DIM('a)" assume as:"{u..v} \<in> d" note division_ofD(3)[OF goal1(4) this]
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2094  | 
        hence uv:"\<forall>i<DIM('a). u$$i \<le> v$$i" "u$$j \<le> v$$j" using j unfolding interval_ne_empty by auto
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2095  | 
        have *:"\<And>p r Q. \<not> j<DIM('a) \<or> p \<or> r \<or> (\<forall>x\<in>d. Q x) \<Longrightarrow> p \<or> r \<or> (Q {u..v})" using as j by auto
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2096  | 
        have "(j, u$$j) \<notin> division_points {a..b} d"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2097  | 
          "(j, v$$j) \<notin> division_points {a..b} d" using True by auto
 | 
| 35172 | 2098  | 
note this[unfolded de_Morgan_conj division_points_def mem_Collect_eq split_conv interval_bounds[OF ab'] bex_simps]  | 
2099  | 
note *[OF this(1)] *[OF this(2)] note this[unfolded interval_bounds[OF uv(1)]]  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2100  | 
moreover have "a$$j \<le> u$$j" "v$$j \<le> b$$j" using division_ofD(2,2,3)[OF goal1(4) as]  | 
| 35172 | 2101  | 
unfolding subset_eq apply- apply(erule_tac x=u in ballE,erule_tac[3] x=v in ballE)  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2102  | 
unfolding interval_ne_empty mem_interval using j by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2103  | 
ultimately show "u$$j = a$$j \<and> v$$j = a$$j \<or> u$$j = b$$j \<and> v$$j = b$$j \<or> u$$j = a$$j \<and> v$$j = b$$j"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2104  | 
unfolding not_less de_Morgan_disj using ab[rule_format,of j] uv(2) j by auto  | 
| 35172 | 2105  | 
      qed have "(1/2) *\<^sub>R (a+b) \<in> {a..b}" unfolding mem_interval using ab by(auto intro!:less_imp_le)
 | 
2106  | 
note this[unfolded division_ofD(6)[OF goal1(4),THEN sym] Union_iff]  | 
|
2107  | 
then guess i .. note i=this guess u v using d'[rule_format,OF i(1)] apply-by(erule exE conjE)+ note uv=this  | 
|
2108  | 
      have "{a..b} \<in> d"
 | 
|
2109  | 
      proof- { presume "i = {a..b}" thus ?thesis using i by auto }
 | 
|
2110  | 
        { presume "u = a" "v = b" thus "i = {a..b}" using uv by auto }
 | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2111  | 
show "u = a" "v = b" unfolding euclidean_eq[where 'a='a]  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2112  | 
        proof(safe) fix j assume j:"j<DIM('a)" note i(2)[unfolded uv mem_interval,rule_format,of j]
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2113  | 
thus "u $$ j = a $$ j" "v $$ j = b $$ j" using uv(2)[rule_format,of j] j by auto  | 
| 35172 | 2114  | 
qed qed  | 
2115  | 
      hence *:"d = insert {a..b} (d - {{a..b}})" by auto
 | 
|
2116  | 
      have "iterate opp (d - {{a..b}}) f = neutral opp" apply(rule iterate_eq_neutral[OF goal1(2)])
 | 
|
2117  | 
      proof fix x assume x:"x \<in> d - {{a..b}}" hence "x\<in>d" by auto note d'[rule_format,OF this]
 | 
|
2118  | 
then guess u v apply-by(erule exE conjE)+ note uv=this  | 
|
2119  | 
have "u\<noteq>a \<or> v\<noteq>b" using x[unfolded uv] by auto  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2120  | 
        then obtain j where "u$$j \<noteq> a$$j \<or> v$$j \<noteq> b$$j" and j:"j<DIM('a)" unfolding euclidean_eq[where 'a='a] by auto
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2121  | 
hence "u$$j = v$$j" using uv(2)[rule_format,OF j] by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2122  | 
        hence "content {u..v} = 0"  unfolding content_eq_0 apply(rule_tac x=j in exI) using j by auto
 | 
| 35172 | 2123  | 
thus "f x = neutral opp" unfolding uv(1) by(rule operativeD(1)[OF goal1(3)])  | 
2124  | 
      qed thus "iterate opp d f = f {a..b}" apply-apply(subst *) 
 | 
|
2125  | 
apply(subst iterate_insert[OF goal1(2)]) using goal1(2,4) by auto  | 
|
2126  | 
    next case False hence "\<exists>x. x\<in>division_points {a..b} d" by auto
 | 
|
2127  | 
then guess k c unfolding split_paired_Ex apply- unfolding division_points_def mem_Collect_eq split_conv  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2128  | 
by(erule exE conjE)+ note this(2-4,1) note kc=this[unfolded interval_bounds[OF ab']]  | 
| 35172 | 2129  | 
from this(3) guess j .. note j=this  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2130  | 
      def d1 \<equiv> "{l \<inter> {x. x$$k \<le> c} | l. l \<in> d \<and> l \<inter> {x. x$$k \<le> c} \<noteq> {}}"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2131  | 
      def d2 \<equiv> "{l \<inter> {x. x$$k \<ge> c} | l. l \<in> d \<and> l \<inter> {x. x$$k \<ge> c} \<noteq> {}}"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2132  | 
def cb \<equiv> "(\<chi>\<chi> i. if i = k then c else b$$i)::'a" and ca \<equiv> "(\<chi>\<chi> i. if i = k then c else a$$i)::'a"  | 
| 35172 | 2133  | 
note division_points_psubset[OF goal1(4) ab kc(1-2) j]  | 
2134  | 
note psubset_card_mono[OF _ this(1)] psubset_card_mono[OF _ this(2)]  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2135  | 
      hence *:"(iterate opp d1 f) = f ({a..b} \<inter> {x. x$$k \<le> c})" "(iterate opp d2 f) = f ({a..b} \<inter> {x. x$$k \<ge> c})"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2136  | 
apply- unfolding interval_split[OF kc(4)] apply(rule_tac[!] goal1(1)[rule_format])  | 
| 35172 | 2137  | 
using division_split[OF goal1(4), where k=k and c=c]  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2138  | 
unfolding interval_split[OF kc(4)] d1_def[symmetric] d2_def[symmetric] unfolding goal1(2) Suc_le_mono  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2139  | 
using goal1(2-3) using division_points_finite[OF goal1(4)] using kc(4) by auto  | 
| 35172 | 2140  | 
      have "f {a..b} = opp (iterate opp d1 f) (iterate opp d2 f)" (is "_ = ?prev")
 | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2141  | 
unfolding * apply(rule operativeD(2)) using goal1(3) using kc(4) by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2142  | 
      also have "iterate opp d1 f = iterate opp d (\<lambda>l. f(l \<inter> {x. x$$k \<le> c}))"
 | 
| 35172 | 2143  | 
unfolding d1_def apply(rule iterate_nonzero_image_lemma[unfolded o_def])  | 
2144  | 
unfolding empty_as_interval apply(rule goal1 division_of_finite operativeD[OF goal1(3)])+  | 
|
2145  | 
unfolding empty_as_interval[THEN sym] apply(rule content_empty)  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2146  | 
      proof(rule,rule,rule,erule conjE) fix l y assume as:"l \<in> d" "y \<in> d" "l \<inter> {x. x $$ k \<le> c} = y \<inter> {x. x $$ k \<le> c}" "l \<noteq> y" 
 | 
| 35172 | 2147  | 
from division_ofD(4)[OF goal1(4) this(1)] guess u v apply-by(erule exE)+ note l=this  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2148  | 
        show "f (l \<inter> {x. x $$ k \<le> c}) = neutral opp" unfolding l interval_split[OF kc(4)] 
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2149  | 
apply(rule operativeD(1) goal1)+ unfolding interval_split[THEN sym,OF kc(4)] apply(rule division_split_left_inj)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2150  | 
apply(rule goal1) unfolding l[THEN sym] apply(rule as(1),rule as(2)) by(rule kc(4) as)+  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2151  | 
      qed also have "iterate opp d2 f = iterate opp d (\<lambda>l. f(l \<inter> {x. x$$k \<ge> c}))"
 | 
| 35172 | 2152  | 
unfolding d2_def apply(rule iterate_nonzero_image_lemma[unfolded o_def])  | 
2153  | 
unfolding empty_as_interval apply(rule goal1 division_of_finite operativeD[OF goal1(3)])+  | 
|
2154  | 
unfolding empty_as_interval[THEN sym] apply(rule content_empty)  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2155  | 
      proof(rule,rule,rule,erule conjE) fix l y assume as:"l \<in> d" "y \<in> d" "l \<inter> {x. c \<le> x $$ k} = y \<inter> {x. c \<le> x $$ k}" "l \<noteq> y" 
 | 
| 35172 | 2156  | 
from division_ofD(4)[OF goal1(4) this(1)] guess u v apply-by(erule exE)+ note l=this  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2157  | 
        show "f (l \<inter> {x. x $$ k \<ge> c}) = neutral opp" unfolding l interval_split[OF kc(4)] 
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2158  | 
apply(rule operativeD(1) goal1)+ unfolding interval_split[THEN sym,OF kc(4)] apply(rule division_split_right_inj)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2159  | 
apply(rule goal1) unfolding l[THEN sym] apply(rule as(1),rule as(2)) by(rule as kc(4))+  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2160  | 
      qed also have *:"\<forall>x\<in>d. f x = opp (f (x \<inter> {x. x $$ k \<le> c})) (f (x \<inter> {x. c \<le> x $$ k}))"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2161  | 
unfolding forall_in_division[OF goal1(4)] apply(rule,rule,rule,rule operativeD(2)) using goal1(3) kc by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2162  | 
      have "opp (iterate opp d (\<lambda>l. f (l \<inter> {x. x $$ k \<le> c}))) (iterate opp d (\<lambda>l. f (l \<inter> {x. c \<le> x $$ k})))
 | 
| 35172 | 2163  | 
= iterate opp d f" apply(subst(3) iterate_eq[OF _ *[rule_format]]) prefer 3  | 
2164  | 
apply(rule iterate_op[THEN sym]) using goal1 by auto  | 
|
2165  | 
finally show ?thesis by auto  | 
|
2166  | 
qed qed qed  | 
|
2167  | 
||
2168  | 
lemma iterate_image_nonzero: assumes "monoidal opp"  | 
|
2169  | 
"finite s" "\<forall>x\<in>s. \<forall>y\<in>s. ~(x = y) \<and> f x = f y \<longrightarrow> g(f x) = neutral opp"  | 
|
2170  | 
shows "iterate opp (f ` s) g = iterate opp s (g \<circ> f)" using assms  | 
|
2171  | 
proof(induct rule:finite_subset_induct[OF assms(2) subset_refl])  | 
|
2172  | 
case goal1 show ?case using assms(1) by auto  | 
|
2173  | 
next case goal2 have *:"\<And>x y. y = neutral opp \<Longrightarrow> x = opp y x" using assms(1) by auto  | 
|
2174  | 
show ?case unfolding image_insert apply(subst iterate_insert[OF assms(1)])  | 
|
2175  | 
apply(rule finite_imageI goal2)+  | 
|
2176  | 
apply(cases "f a \<in> f ` F") unfolding if_P if_not_P apply(subst goal2(4)[OF assms(1) goal2(1)]) defer  | 
|
2177  | 
apply(subst iterate_insert[OF assms(1) goal2(1)]) defer  | 
|
2178  | 
apply(subst iterate_insert[OF assms(1) goal2(1)])  | 
|
2179  | 
unfolding if_not_P[OF goal2(3)] defer unfolding image_iff defer apply(erule bexE)  | 
|
2180  | 
apply(rule *) unfolding o_def apply(rule_tac y=x in goal2(7)[rule_format])  | 
|
2181  | 
using goal2 unfolding o_def by auto qed  | 
|
2182  | 
||
2183  | 
lemma operative_tagged_division: assumes "monoidal opp" "operative opp f" "d tagged_division_of {a..b}"
 | 
|
2184  | 
  shows "iterate(opp) d (\<lambda>(x,l). f l) = f {a..b}"
 | 
|
2185  | 
proof- have *:"(\<lambda>(x,l). f l) = (f o snd)" unfolding o_def by(rule,auto) note assm = tagged_division_ofD[OF assms(3)]  | 
|
2186  | 
have "iterate(opp) d (\<lambda>(x,l). f l) = iterate opp (snd ` d) f" unfolding *  | 
|
2187  | 
apply(rule iterate_image_nonzero[THEN sym,OF assms(1)]) apply(rule tagged_division_of_finite assms)+  | 
|
2188  | 
unfolding Ball_def split_paired_All snd_conv apply(rule,rule,rule,rule,rule,rule,rule,erule conjE)  | 
|
2189  | 
proof- fix a b aa ba assume as:"(a, b) \<in> d" "(aa, ba) \<in> d" "(a, b) \<noteq> (aa, ba)" "b = ba"  | 
|
2190  | 
guess u v using assm(4)[OF as(1)] apply-by(erule exE)+ note uv=this  | 
|
2191  | 
show "f b = neutral opp" unfolding uv apply(rule operativeD(1)[OF assms(2)])  | 
|
2192  | 
unfolding content_eq_0_interior using tagged_division_ofD(5)[OF assms(3) as(1-3)]  | 
|
2193  | 
unfolding as(4)[THEN sym] uv by auto  | 
|
2194  | 
  qed also have "\<dots> = f {a..b}" 
 | 
|
2195  | 
using operative_division[OF assms(1-2) division_of_tagged_division[OF assms(3)]] .  | 
|
2196  | 
finally show ?thesis . qed  | 
|
2197  | 
||
2198  | 
subsection {* Additivity of content. *}
 | 
|
2199  | 
||
2200  | 
lemma setsum_iterate:assumes "finite s" shows "setsum f s = iterate op + s f"  | 
|
2201  | 
proof- have *:"setsum f s = setsum f (support op + f s)"  | 
|
2202  | 
apply(rule setsum_mono_zero_right)  | 
|
2203  | 
unfolding support_def neutral_monoid using assms by auto  | 
|
2204  | 
thus ?thesis unfolding * setsum_def iterate_def fold_image_def fold'_def  | 
|
2205  | 
unfolding neutral_monoid . qed  | 
|
2206  | 
||
2207  | 
lemma additive_content_division: assumes "d division_of {a..b}"
 | 
|
2208  | 
  shows "setsum content d = content({a..b})"
 | 
|
2209  | 
unfolding operative_division[OF monoidal_monoid operative_content assms,THEN sym]  | 
|
2210  | 
apply(subst setsum_iterate) using assms by auto  | 
|
2211  | 
||
2212  | 
lemma additive_content_tagged_division:  | 
|
2213  | 
  assumes "d tagged_division_of {a..b}"
 | 
|
2214  | 
  shows "setsum (\<lambda>(x,l). content l) d = content({a..b})"
 | 
|
2215  | 
unfolding operative_tagged_division[OF monoidal_monoid operative_content assms,THEN sym]  | 
|
2216  | 
apply(subst setsum_iterate) using assms by auto  | 
|
2217  | 
||
| 36334 | 2218  | 
subsection {* Finally, the integral of a constant *}
 | 
| 35172 | 2219  | 
|
2220  | 
lemma has_integral_const[intro]:  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2221  | 
  "((\<lambda>x. c) has_integral (content({a..b::'a::ordered_euclidean_space}) *\<^sub>R c)) ({a..b})"
 | 
| 35172 | 2222  | 
unfolding has_integral apply(rule,rule,rule_tac x="\<lambda>x. ball x 1" in exI)  | 
2223  | 
apply(rule,rule gauge_trivial)apply(rule,rule,erule conjE)  | 
|
2224  | 
unfolding split_def apply(subst scaleR_left.setsum[THEN sym, unfolded o_def])  | 
|
2225  | 
defer apply(subst additive_content_tagged_division[unfolded split_def]) apply assumption by auto  | 
|
2226  | 
||
2227  | 
subsection {* Bounds on the norm of Riemann sums and the integral itself. *}
 | 
|
2228  | 
||
2229  | 
lemma dsum_bound: assumes "p division_of {a..b}" "norm(c) \<le> e"
 | 
|
2230  | 
  shows "norm(setsum (\<lambda>l. content l *\<^sub>R c) p) \<le> e * content({a..b})" (is "?l \<le> ?r")
 | 
|
| 
44176
 
eda112e9cdee
remove redundant lemma setsum_norm in favor of norm_setsum;
 
huffman 
parents: 
44170 
diff
changeset
 | 
2231  | 
apply(rule order_trans,rule norm_setsum) unfolding norm_scaleR setsum_left_distrib[THEN sym]  | 
| 35172 | 2232  | 
apply(rule order_trans[OF mult_left_mono],rule assms,rule setsum_abs_ge_zero)  | 
| 
36778
 
739a9379e29b
avoid using real-specific versions of generic lemmas
 
huffman 
parents: 
36725 
diff
changeset
 | 
2233  | 
apply(subst mult_commute) apply(rule mult_left_mono)  | 
| 35172 | 2234  | 
apply(rule order_trans[of _ "setsum content p"]) apply(rule eq_refl,rule setsum_cong2)  | 
2235  | 
apply(subst abs_of_nonneg) unfolding additive_content_division[OF assms(1)]  | 
|
2236  | 
proof- from order_trans[OF norm_ge_zero[of c] assms(2)] show "0 \<le> e" .  | 
|
2237  | 
fix x assume "x\<in>p" from division_ofD(4)[OF assms(1) this] guess u v apply-by(erule exE)+  | 
|
2238  | 
thus "0 \<le> content x" using content_pos_le by auto  | 
|
2239  | 
qed(insert assms,auto)  | 
|
2240  | 
||
2241  | 
lemma rsum_bound: assumes "p tagged_division_of {a..b}" "\<forall>x\<in>{a..b}. norm(f x) \<le> e"
 | 
|
2242  | 
  shows "norm(setsum (\<lambda>(x,k). content k *\<^sub>R f x) p) \<le> e * content({a..b})"
 | 
|
2243  | 
proof(cases "{a..b} = {}") case True
 | 
|
2244  | 
show ?thesis using assms(1) unfolding True tagged_division_of_trivial by auto  | 
|
2245  | 
next case False show ?thesis  | 
|
| 
44176
 
eda112e9cdee
remove redundant lemma setsum_norm in favor of norm_setsum;
 
huffman 
parents: 
44170 
diff
changeset
 | 
2246  | 
apply(rule order_trans,rule norm_setsum) unfolding split_def norm_scaleR  | 
| 35172 | 2247  | 
apply(rule order_trans[OF setsum_mono]) apply(rule mult_left_mono[OF _ abs_ge_zero, of _ e]) defer  | 
| 
36778
 
739a9379e29b
avoid using real-specific versions of generic lemmas
 
huffman 
parents: 
36725 
diff
changeset
 | 
2248  | 
unfolding setsum_left_distrib[THEN sym] apply(subst mult_commute) apply(rule mult_left_mono)  | 
| 35172 | 2249  | 
apply(rule order_trans[of _ "setsum (content \<circ> snd) p"]) apply(rule eq_refl,rule setsum_cong2)  | 
2250  | 
apply(subst o_def, rule abs_of_nonneg)  | 
|
2251  | 
  proof- show "setsum (content \<circ> snd) p \<le> content {a..b}" apply(rule eq_refl)
 | 
|
2252  | 
unfolding additive_content_tagged_division[OF assms(1),THEN sym] split_def by auto  | 
|
2253  | 
guess w using nonempty_witness[OF False] .  | 
|
2254  | 
thus "e\<ge>0" apply-apply(rule order_trans) defer apply(rule assms(2)[rule_format],assumption) by auto  | 
|
2255  | 
fix xk assume *:"xk\<in>p" guess x k using surj_pair[of xk] apply-by(erule exE)+ note xk = this *[unfolded this]  | 
|
2256  | 
from tagged_division_ofD(4)[OF assms(1) xk(2)] guess u v apply-by(erule exE)+ note uv=this  | 
|
2257  | 
show "0\<le> content (snd xk)" unfolding xk snd_conv uv by(rule content_pos_le)  | 
|
2258  | 
show "norm (f (fst xk)) \<le> e" unfolding xk fst_conv using tagged_division_ofD(2,3)[OF assms(1) xk(2)] assms(2) by auto  | 
|
| 
44176
 
eda112e9cdee
remove redundant lemma setsum_norm in favor of norm_setsum;
 
huffman 
parents: 
44170 
diff
changeset
 | 
2259  | 
qed qed  | 
| 35172 | 2260  | 
|
2261  | 
lemma rsum_diff_bound:  | 
|
2262  | 
  assumes "p tagged_division_of {a..b}"  "\<forall>x\<in>{a..b}. norm(f x - g x) \<le> e"
 | 
|
2263  | 
  shows "norm(setsum (\<lambda>(x,k). content k *\<^sub>R f x) p - setsum (\<lambda>(x,k). content k *\<^sub>R g x) p) \<le> e * content({a..b})"
 | 
|
2264  | 
apply(rule order_trans[OF _ rsum_bound[OF assms]]) apply(rule eq_refl) apply(rule arg_cong[where f=norm])  | 
|
| 
44282
 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 
huffman 
parents: 
44176 
diff
changeset
 | 
2265  | 
unfolding setsum_subtractf[THEN sym] apply(rule setsum_cong2) unfolding scaleR_diff_right by auto  | 
| 35172 | 2266  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2267  | 
lemma has_integral_bound: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::real_normed_vector"  | 
| 35172 | 2268  | 
  assumes "0 \<le> B" "(f has_integral i) ({a..b})" "\<forall>x\<in>{a..b}. norm(f x) \<le> B"
 | 
2269  | 
  shows "norm i \<le> B * content {a..b}"
 | 
|
2270  | 
proof- let ?P = "content {a..b} > 0" { presume "?P \<Longrightarrow> ?thesis"
 | 
|
2271  | 
thus ?thesis proof(cases ?P) case False  | 
|
2272  | 
      hence *:"content {a..b} = 0" using content_lt_nz by auto
 | 
|
2273  | 
hence **:"i = 0" using assms(2) apply(subst has_integral_null_eq[THEN sym]) by auto  | 
|
2274  | 
show ?thesis unfolding * ** using assms(1) by auto  | 
|
2275  | 
qed auto } assume ab:?P  | 
|
2276  | 
  { presume "\<not> ?thesis \<Longrightarrow> False" thus ?thesis by auto }
 | 
|
2277  | 
  assume "\<not> ?thesis" hence *:"norm i - B * content {a..b} > 0" by auto
 | 
|
2278  | 
from assms(2)[unfolded has_integral,rule_format,OF *] guess d apply-by(erule exE conjE)+ note d=this[rule_format]  | 
|
2279  | 
from fine_division_exists[OF this(1), of a b] guess p . note p=this  | 
|
2280  | 
have *:"\<And>s B. norm s \<le> B \<Longrightarrow> \<not> (norm (s - i) < norm i - B)"  | 
|
2281  | 
proof- case goal1 thus ?case unfolding not_less  | 
|
2282  | 
using norm_triangle_sub[of i s] unfolding norm_minus_commute by auto  | 
|
2283  | 
qed show False using d(2)[OF conjI[OF p]] *[OF rsum_bound[OF p(1) assms(3)]] by auto qed  | 
|
2284  | 
||
2285  | 
subsection {* Similar theorems about relationship among components. *}
 | 
|
2286  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2287  | 
lemma rsum_component_le: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::euclidean_space"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2288  | 
  assumes "p tagged_division_of {a..b}"  "\<forall>x\<in>{a..b}. (f x)$$i \<le> (g x)$$i"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2289  | 
shows "(setsum (\<lambda>(x,k). content k *\<^sub>R f x) p)$$i \<le> (setsum (\<lambda>(x,k). content k *\<^sub>R g x) p)$$i"  | 
| 
44282
 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 
huffman 
parents: 
44176 
diff
changeset
 | 
2290  | 
unfolding euclidean_component_setsum apply(rule setsum_mono) apply safe  | 
| 35172 | 2291  | 
proof- fix a b assume ab:"(a,b) \<in> p" note assm = tagged_division_ofD(2-4)[OF assms(1) ab]  | 
2292  | 
from this(3) guess u v apply-by(erule exE)+ note b=this  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2293  | 
show "(content b *\<^sub>R f a) $$ i \<le> (content b *\<^sub>R g a) $$ i" unfolding b  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2294  | 
unfolding euclidean_simps real_scaleR_def apply(rule mult_left_mono)  | 
| 35172 | 2295  | 
defer apply(rule content_pos_le,rule assms(2)[rule_format]) using assm by auto qed  | 
2296  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2297  | 
lemma has_integral_component_le: fixes f g::"'a::ordered_euclidean_space \<Rightarrow> 'b::euclidean_space"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2298  | 
assumes "(f has_integral i) s" "(g has_integral j) s" "\<forall>x\<in>s. (f x)$$k \<le> (g x)$$k"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2299  | 
shows "i$$k \<le> j$$k"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2300  | 
proof- have lem:"\<And>a b i (j::'b). \<And>g f::'a \<Rightarrow> 'b. (f has_integral i) ({a..b}) \<Longrightarrow> 
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2301  | 
    (g has_integral j) ({a..b}) \<Longrightarrow> \<forall>x\<in>{a..b}. (f x)$$k \<le> (g x)$$k \<Longrightarrow> i$$k \<le> j$$k"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2302  | 
proof(rule ccontr) case goal1 hence *:"0 < (i$$k - j$$k) / 3" by auto  | 
| 35172 | 2303  | 
guess d1 using goal1(1)[unfolded has_integral,rule_format,OF *] apply-by(erule exE conjE)+ note d1=this[rule_format]  | 
2304  | 
guess d2 using goal1(2)[unfolded has_integral,rule_format,OF *] apply-by(erule exE conjE)+ note d2=this[rule_format]  | 
|
2305  | 
guess p using fine_division_exists[OF gauge_inter[OF d1(1) d2(1)], of a b] unfolding fine_inter .  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2306  | 
note p = this(1) conjunctD2[OF this(2)] note le_less_trans[OF component_le_norm, of _ _ k] term g  | 
| 35172 | 2307  | 
note this[OF d1(2)[OF conjI[OF p(1,2)]]] this[OF d2(2)[OF conjI[OF p(1,3)]]]  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2308  | 
thus False unfolding euclidean_simps using rsum_component_le[OF p(1) goal1(3)] apply simp by smt  | 
| 35172 | 2309  | 
  qed let ?P = "\<exists>a b. s = {a..b}"
 | 
2310  | 
  { presume "\<not> ?P \<Longrightarrow> ?thesis" thus ?thesis proof(cases ?P)
 | 
|
2311  | 
case True then guess a b apply-by(erule exE)+ note s=this  | 
|
2312  | 
show ?thesis apply(rule lem) using assms[unfolded s] by auto  | 
|
2313  | 
qed auto } assume as:"\<not> ?P"  | 
|
2314  | 
  { presume "\<not> ?thesis \<Longrightarrow> False" thus ?thesis by auto }
 | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2315  | 
assume "\<not> i$$k \<le> j$$k" hence ij:"(i$$k - j$$k) / 3 > 0" by auto  | 
| 35172 | 2316  | 
note has_integral_altD[OF _ as this] from this[OF assms(1)] this[OF assms(2)] guess B1 B2 . note B=this[rule_format]  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2317  | 
have "bounded (ball 0 B1 \<union> ball (0::'a) B2)" unfolding bounded_Un by(rule conjI bounded_ball)+  | 
| 35172 | 2318  | 
from bounded_subset_closed_interval[OF this] guess a b apply- by(erule exE)+  | 
2319  | 
note ab = conjunctD2[OF this[unfolded Un_subset_iff]]  | 
|
2320  | 
guess w1 using B(2)[OF ab(1)] .. note w1=conjunctD2[OF this]  | 
|
2321  | 
guess w2 using B(4)[OF ab(2)] .. note w2=conjunctD2[OF this]  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2322  | 
have *:"\<And>w1 w2 j i::real .\<bar>w1 - i\<bar> < (i - j) / 3 \<Longrightarrow> \<bar>w2 - j\<bar> < (i - j) / 3 \<Longrightarrow> w1 \<le> w2 \<Longrightarrow> False" by smt  | 
| 35172 | 2323  | 
note le_less_trans[OF component_le_norm[of _ k]] note this[OF w1(2)] this[OF w2(2)] moreover  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2324  | 
have "w1$$k \<le> w2$$k" apply(rule lem[OF w1(1) w2(1)]) using assms by auto ultimately  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2325  | 
show False unfolding euclidean_simps by(rule *) qed  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2326  | 
|
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2327  | 
lemma integral_component_le: fixes g f::"'a::ordered_euclidean_space \<Rightarrow> 'b::euclidean_space"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2328  | 
assumes "f integrable_on s" "g integrable_on s" "\<forall>x\<in>s. (f x)$$k \<le> (g x)$$k"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2329  | 
shows "(integral s f)$$k \<le> (integral s g)$$k"  | 
| 35172 | 2330  | 
apply(rule has_integral_component_le) using integrable_integral assms by auto  | 
2331  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2332  | 
(*lemma has_integral_dest_vec1_le: fixes f::"'a::ordered_euclidean_space \<Rightarrow> real^1"  | 
| 35172 | 2333  | 
assumes "(f has_integral i) s" "(g has_integral j) s" "\<forall>x\<in>s. f x \<le> g x"  | 
2334  | 
shows "dest_vec1 i \<le> dest_vec1 j" apply(rule has_integral_component_le[OF assms(1-2)])  | 
|
2335  | 
using assms(3) unfolding vector_le_def by auto  | 
|
2336  | 
||
2337  | 
lemma integral_dest_vec1_le: fixes f::"real^'n \<Rightarrow> real^1"  | 
|
2338  | 
assumes "f integrable_on s" "g integrable_on s" "\<forall>x\<in>s. f x \<le> g x"  | 
|
2339  | 
shows "dest_vec1(integral s f) \<le> dest_vec1(integral s g)"  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2340  | 
apply(rule has_integral_dest_vec1_le) apply(rule_tac[1-2] integrable_integral) using assms by auto*)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2341  | 
|
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2342  | 
lemma has_integral_component_nonneg: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::euclidean_space"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2343  | 
assumes "(f has_integral i) s" "\<forall>x\<in>s. 0 \<le> (f x)$$k" shows "0 \<le> i$$k"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2344  | 
using has_integral_component_le[OF has_integral_0 assms(1)] using assms(2-) by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2345  | 
|
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2346  | 
lemma integral_component_nonneg: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::euclidean_space"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2347  | 
assumes "f integrable_on s" "\<forall>x\<in>s. 0 \<le> (f x)$$k" shows "0 \<le> (integral s f)$$k"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
2348  | 
apply(rule has_integral_component_nonneg) using assms by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
2349  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2350  | 
(*lemma has_integral_dest_vec1_nonneg: fixes f::"real^'n \<Rightarrow> real^1"  | 
| 35172 | 2351  | 
assumes "(f has_integral i) s" "\<forall>x\<in>s. 0 \<le> f x" shows "0 \<le> i"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
2352  | 
using has_integral_component_nonneg[OF assms(1), of 1]  | 
| 35172 | 2353  | 
using assms(2) unfolding vector_le_def by auto  | 
2354  | 
||
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
2355  | 
lemma integral_dest_vec1_nonneg: fixes f::"real^'n \<Rightarrow> real^1"  | 
| 35172 | 2356  | 
assumes "f integrable_on s" "\<forall>x\<in>s. 0 \<le> f x" shows "0 \<le> integral s f"  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2357  | 
apply(rule has_integral_dest_vec1_nonneg) using assms by auto*)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2358  | 
|
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2359  | 
lemma has_integral_component_neg: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::ordered_euclidean_space"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2360  | 
assumes "(f has_integral i) s" "\<forall>x\<in>s. (f x)$$k \<le> 0"shows "i$$k \<le> 0"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2361  | 
using has_integral_component_le[OF assms(1) has_integral_0] assms(2-) by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2362  | 
|
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2363  | 
(*lemma has_integral_dest_vec1_neg: fixes f::"real^'n \<Rightarrow> real^1"  | 
| 35172 | 2364  | 
assumes "(f has_integral i) s" "\<forall>x\<in>s. f x \<le> 0" shows "i \<le> 0"  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2365  | 
using has_integral_component_neg[OF assms(1),of 1] using assms(2) by auto*)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2366  | 
|
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2367  | 
lemma has_integral_component_lbound: fixes f::"'a::ordered_euclidean_space => 'b::ordered_euclidean_space"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2368  | 
  assumes "(f has_integral i) {a..b}"  "\<forall>x\<in>{a..b}. B \<le> f(x)$$k" "k<DIM('b)" shows "B * content {a..b} \<le> i$$k"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2369  | 
using has_integral_component_le[OF has_integral_const assms(1),of "(\<chi>\<chi> i. B)::'b" k] assms(2-)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2370  | 
unfolding euclidean_simps euclidean_lambda_beta'[OF assms(3)] by(auto simp add:field_simps)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2371  | 
|
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2372  | 
lemma has_integral_component_ubound: fixes f::"'a::ordered_euclidean_space => 'b::ordered_euclidean_space"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2373  | 
  assumes "(f has_integral i) {a..b}" "\<forall>x\<in>{a..b}. f x$$k \<le> B" "k<DIM('b)"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2374  | 
  shows "i$$k \<le> B * content({a..b})"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2375  | 
using has_integral_component_le[OF assms(1) has_integral_const, of k "\<chi>\<chi> i. B"]  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2376  | 
unfolding euclidean_simps euclidean_lambda_beta'[OF assms(3)] using assms(2) by(auto simp add:field_simps)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2377  | 
|
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2378  | 
lemma integral_component_lbound: fixes f::"'a::ordered_euclidean_space => 'b::ordered_euclidean_space"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2379  | 
  assumes "f integrable_on {a..b}" "\<forall>x\<in>{a..b}. B \<le> f(x)$$k" "k<DIM('b)"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2380  | 
  shows "B * content({a..b}) \<le> (integral({a..b}) f)$$k"
 | 
| 35172 | 2381  | 
apply(rule has_integral_component_lbound) using assms unfolding has_integral_integral by auto  | 
2382  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2383  | 
lemma integral_component_ubound: fixes f::"'a::ordered_euclidean_space => 'b::ordered_euclidean_space"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2384  | 
  assumes "f integrable_on {a..b}" "\<forall>x\<in>{a..b}. f(x)$$k \<le> B" "k<DIM('b)" 
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2385  | 
  shows "(integral({a..b}) f)$$k \<le> B * content({a..b})"
 | 
| 35172 | 2386  | 
apply(rule has_integral_component_ubound) using assms unfolding has_integral_integral by auto  | 
2387  | 
||
2388  | 
subsection {* Uniform limit of integrable functions is integrable. *}
 | 
|
2389  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2390  | 
lemma integrable_uniform_limit: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::banach"  | 
| 35172 | 2391  | 
  assumes "\<forall>e>0. \<exists>g. (\<forall>x\<in>{a..b}. norm(f x - g x) \<le> e) \<and> g integrable_on {a..b}"
 | 
2392  | 
  shows "f integrable_on {a..b}"
 | 
|
2393  | 
proof- { presume *:"content {a..b} > 0 \<Longrightarrow> ?thesis"
 | 
|
2394  | 
show ?thesis apply cases apply(rule *,assumption)  | 
|
2395  | 
unfolding content_lt_nz integrable_on_def using has_integral_null by auto }  | 
|
2396  | 
  assume as:"content {a..b} > 0"
 | 
|
2397  | 
have *:"\<And>P. \<forall>e>(0::real). P e \<Longrightarrow> \<forall>n::nat. P (inverse (real n+1))" by auto  | 
|
2398  | 
from choice[OF *[OF assms]] guess g .. note g=conjunctD2[OF this[rule_format],rule_format]  | 
|
2399  | 
from choice[OF allI[OF g(2)[unfolded integrable_on_def], of "\<lambda>x. x"]] guess i .. note i=this[rule_format]  | 
|
2400  | 
||
2401  | 
have "Cauchy i" unfolding Cauchy_def  | 
|
2402  | 
proof(rule,rule) fix e::real assume "e>0"  | 
|
2403  | 
    hence "e / 4 / content {a..b} > 0" using as by(auto simp add:field_simps)
 | 
|
2404  | 
then guess M apply-apply(subst(asm) real_arch_inv) by(erule exE conjE)+ note M=this  | 
|
2405  | 
show "\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (i m) (i n) < e" apply(rule_tac x=M in exI,rule,rule,rule,rule)  | 
|
2406  | 
proof- case goal1 have "e/4>0" using `e>0` by auto note * = i[unfolded has_integral,rule_format,OF this]  | 
|
2407  | 
from *[of m] guess gm apply-by(erule conjE exE)+ note gm=this[rule_format]  | 
|
2408  | 
from *[of n] guess gn apply-by(erule conjE exE)+ note gn=this[rule_format]  | 
|
2409  | 
from fine_division_exists[OF gauge_inter[OF gm(1) gn(1)], of a b] guess p . note p=this  | 
|
2410  | 
have lem2:"\<And>s1 s2 i1 i2. norm(s2 - s1) \<le> e/2 \<Longrightarrow> norm(s1 - i1) < e / 4 \<Longrightarrow> norm(s2 - i2) < e / 4 \<Longrightarrow>norm(i1 - i2) < e"  | 
|
2411  | 
proof- case goal1 have "norm (i1 - i2) \<le> norm (i1 - s1) + norm (s1 - s2) + norm (s2 - i2)"  | 
|
2412  | 
using norm_triangle_ineq[of "i1 - s1" "s1 - i2"]  | 
|
| 36350 | 2413  | 
using norm_triangle_ineq[of "s1 - s2" "s2 - i2"] by(auto simp add:algebra_simps)  | 
2414  | 
also have "\<dots> < e" using goal1 unfolding norm_minus_commute by(auto simp add:algebra_simps)  | 
|
| 35172 | 2415  | 
finally show ?case .  | 
2416  | 
qed  | 
|
| 36587 | 2417  | 
show ?case unfolding dist_norm apply(rule lem2) defer  | 
| 35172 | 2418  | 
apply(rule gm(2)[OF conjI[OF p(1)]],rule_tac[2] gn(2)[OF conjI[OF p(1)]])  | 
2419  | 
using conjunctD2[OF p(2)[unfolded fine_inter]] apply- apply assumption+ apply(rule order_trans)  | 
|
2420  | 
apply(rule rsum_diff_bound[OF p(1), where e="2 / real M"])  | 
|
2421  | 
      proof show "2 / real M * content {a..b} \<le> e / 2" unfolding divide_inverse 
 | 
|
2422  | 
using M as by(auto simp add:field_simps)  | 
|
2423  | 
        fix x assume x:"x \<in> {a..b}"
 | 
|
2424  | 
have "norm (f x - g n x) + norm (f x - g m x) \<le> inverse (real n + 1) + inverse (real m + 1)"  | 
|
2425  | 
using g(1)[OF x, of n] g(1)[OF x, of m] by auto  | 
|
2426  | 
also have "\<dots> \<le> inverse (real M) + inverse (real M)" apply(rule add_mono)  | 
|
2427  | 
apply(rule_tac[!] le_imp_inverse_le) using goal1 M by auto  | 
|
| 
36778
 
739a9379e29b
avoid using real-specific versions of generic lemmas
 
huffman 
parents: 
36725 
diff
changeset
 | 
2428  | 
also have "\<dots> = 2 / real M" unfolding divide_inverse by auto  | 
| 35172 | 2429  | 
finally show "norm (g n x - g m x) \<le> 2 / real M"  | 
2430  | 
using norm_triangle_le[of "g n x - f x" "f x - g m x" "2 / real M"]  | 
|
| 36350 | 2431  | 
by(auto simp add:algebra_simps simp add:norm_minus_commute)  | 
| 35172 | 2432  | 
qed qed qed  | 
2433  | 
from this[unfolded convergent_eq_cauchy[THEN sym]] guess s .. note s=this  | 
|
2434  | 
||
2435  | 
show ?thesis unfolding integrable_on_def apply(rule_tac x=s in exI) unfolding has_integral  | 
|
2436  | 
proof(rule,rule)  | 
|
2437  | 
case goal1 hence *:"e/3 > 0" by auto  | 
|
2438  | 
from s[unfolded Lim_sequentially,rule_format,OF this] guess N1 .. note N1=this  | 
|
2439  | 
    from goal1 as have "e / 3 / content {a..b} > 0" by(auto simp add:field_simps)
 | 
|
2440  | 
from real_arch_invD[OF this] guess N2 apply-by(erule exE conjE)+ note N2=this  | 
|
2441  | 
from i[of "N1 + N2",unfolded has_integral,rule_format,OF *] guess g' .. note g'=conjunctD2[OF this,rule_format]  | 
|
2442  | 
have lem:"\<And>sf sg i. norm(sf - sg) \<le> e / 3 \<Longrightarrow> norm(i - s) < e / 3 \<Longrightarrow> norm(sg - i) < e / 3 \<Longrightarrow> norm(sf - s) < e"  | 
|
2443  | 
proof- case goal1 have "norm (sf - s) \<le> norm (sf - sg) + norm (sg - i) + norm (i - s)"  | 
|
2444  | 
using norm_triangle_ineq[of "sf - sg" "sg - s"]  | 
|
| 36350 | 2445  | 
using norm_triangle_ineq[of "sg - i" " i - s"] by(auto simp add:algebra_simps)  | 
2446  | 
also have "\<dots> < e" using goal1 unfolding norm_minus_commute by(auto simp add:algebra_simps)  | 
|
| 35172 | 2447  | 
finally show ?case .  | 
2448  | 
qed  | 
|
2449  | 
show ?case apply(rule_tac x=g' in exI) apply(rule,rule g')  | 
|
2450  | 
    proof(rule,rule) fix p assume p:"p tagged_division_of {a..b} \<and> g' fine p" note * = g'(2)[OF this]
 | 
|
2451  | 
show "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - s) < e" apply-apply(rule lem[OF _ _ *])  | 
|
2452  | 
apply(rule order_trans,rule rsum_diff_bound[OF p[THEN conjunct1]]) apply(rule,rule g,assumption)  | 
|
2453  | 
      proof- have "content {a..b} < e / 3 * (real N2)"
 | 
|
2454  | 
using N2 unfolding inverse_eq_divide using as by(auto simp add:field_simps)  | 
|
2455  | 
        hence "content {a..b} < e / 3 * (real (N1 + N2) + 1)"
 | 
|
2456  | 
apply-apply(rule less_le_trans,assumption) using `e>0` by auto  | 
|
2457  | 
        thus "inverse (real (N1 + N2) + 1) * content {a..b} \<le> e / 3"
 | 
|
2458  | 
unfolding inverse_eq_divide by(auto simp add:field_simps)  | 
|
| 36587 | 2459  | 
show "norm (i (N1 + N2) - s) < e / 3" by(rule N1[rule_format,unfolded dist_norm],auto)  | 
| 35172 | 2460  | 
qed qed qed qed  | 
2461  | 
||
2462  | 
subsection {* Negligible sets. *}
 | 
|
2463  | 
||
| 37665 | 2464  | 
definition "negligible (s::('a::ordered_euclidean_space) set) \<equiv> (\<forall>a b. ((indicator s :: 'a\<Rightarrow>real) has_integral 0) {a..b})"
 | 
| 35172 | 2465  | 
|
2466  | 
subsection {* Negligibility of hyperplane. *}
 | 
|
2467  | 
||
2468  | 
lemma vsum_nonzero_image_lemma:  | 
|
2469  | 
assumes "finite s" "g(a) = 0"  | 
|
2470  | 
"\<forall>x\<in>s. \<forall>y\<in>s. f x = f y \<and> x \<noteq> y \<longrightarrow> g(f x) = 0"  | 
|
2471  | 
  shows "setsum g {f x |x. x \<in> s \<and> f x \<noteq> a} = setsum (g o f) s"
 | 
|
2472  | 
unfolding setsum_iterate[OF assms(1)] apply(subst setsum_iterate) defer  | 
|
2473  | 
apply(rule iterate_nonzero_image_lemma) apply(rule assms monoidal_monoid)+  | 
|
2474  | 
unfolding assms using neutral_add unfolding neutral_add using assms by auto  | 
|
2475  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2476  | 
lemma interval_doublesplit:  fixes a::"'a::ordered_euclidean_space" assumes "k<DIM('a)"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2477  | 
  shows "{a..b} \<inter> {x . abs(x$$k - c) \<le> (e::real)} = 
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2478  | 
  {(\<chi>\<chi> i. if i = k then max (a$$k) (c - e) else a$$i) .. (\<chi>\<chi> i. if i = k then min (b$$k) (c + e) else b$$i)}"
 | 
| 35172 | 2479  | 
proof- have *:"\<And>x c e::real. abs(x - c) \<le> e \<longleftrightarrow> x \<ge> c - e \<and> x \<le> c + e" by auto  | 
2480  | 
  have **:"\<And>s P Q. s \<inter> {x. P x \<and> Q x} = (s \<inter> {x. Q x}) \<inter> {x. P x}" by blast
 | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2481  | 
show ?thesis unfolding * ** interval_split[OF assms] by(rule refl) qed  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2482  | 
|
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2483  | 
lemma division_doublesplit: fixes a::"'a::ordered_euclidean_space" assumes "p division_of {a..b}" and k:"k<DIM('a)"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2484  | 
  shows "{l \<inter> {x. abs(x$$k - c) \<le> e} |l. l \<in> p \<and> l \<inter> {x. abs(x$$k - c) \<le> e} \<noteq> {}} division_of ({a..b} \<inter> {x. abs(x$$k - c) \<le> e})"
 | 
| 35172 | 2485  | 
proof- have *:"\<And>x c. abs(x - c) \<le> e \<longleftrightarrow> x \<ge> c - e \<and> x \<le> c + e" by auto  | 
2486  | 
have **:"\<And>p q p' q'. p division_of q \<Longrightarrow> p = p' \<Longrightarrow> q = q' \<Longrightarrow> p' division_of q'" by auto  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2487  | 
note division_split(1)[OF assms, where c="c+e",unfolded interval_split[OF k]]  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2488  | 
note division_split(2)[OF this, where c="c-e" and k=k,OF k]  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2489  | 
thus ?thesis apply(rule **) using k apply- unfolding interval_doublesplit unfolding * unfolding interval_split interval_doublesplit  | 
| 
39302
 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 
nipkow 
parents: 
38656 
diff
changeset
 | 
2490  | 
apply(rule set_eqI) unfolding mem_Collect_eq apply rule apply(erule conjE exE)+ apply(rule_tac x=la in exI) defer  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2491  | 
    apply(erule conjE exE)+ apply(rule_tac x="l \<inter> {x. c + e \<ge> x $$ k}" in exI) apply rule defer apply rule
 | 
| 35172 | 2492  | 
apply(rule_tac x=l in exI) by blast+ qed  | 
2493  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2494  | 
lemma content_doublesplit: fixes a::"'a::ordered_euclidean_space" assumes "0 < e" and k:"k<DIM('a)"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2495  | 
  obtains d where "0 < d" "content({a..b} \<inter> {x. abs(x$$k - c) \<le> d}) < e"
 | 
| 35172 | 2496  | 
proof(cases "content {a..b} = 0")
 | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2497  | 
case True show ?thesis apply(rule that[of 1]) defer unfolding interval_doublesplit[OF k]  | 
| 35172 | 2498  | 
apply(rule le_less_trans[OF content_subset]) defer apply(subst True)  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2499  | 
unfolding interval_doublesplit[THEN sym,OF k] using assms by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2500  | 
next case False def d \<equiv> "e / 3 / setprod (\<lambda>i. b$$i - a$$i) ({..<DIM('a)} - {k})"
 | 
| 35172 | 2501  | 
note False[unfolded content_eq_0 not_ex not_le, rule_format]  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2502  | 
  hence "\<And>x. x<DIM('a) \<Longrightarrow> b$$x > a$$x" by(auto simp add:not_le)
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2503  | 
  hence prod0:"0 < setprod (\<lambda>i. b$$i - a$$i) ({..<DIM('a)} - {k})" apply-apply(rule setprod_pos) by(auto simp add:field_simps)
 | 
| 35172 | 2504  | 
hence "d > 0" unfolding d_def using assms by(auto simp add:field_simps) thus ?thesis  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2505  | 
  proof(rule that[of d]) have *:"{..<DIM('a)} = insert k ({..<DIM('a)} - {k})" using k by auto
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2506  | 
    have **:"{a..b} \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d} \<noteq> {} \<Longrightarrow> 
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2507  | 
      (\<Prod>i\<in>{..<DIM('a)} - {k}. interval_upperbound ({a..b} \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d}) $$ i
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2508  | 
      - interval_lowerbound ({a..b} \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d}) $$ i)
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2509  | 
      = (\<Prod>i\<in>{..<DIM('a)} - {k}. b$$i - a$$i)" apply(rule setprod_cong,rule refl) 
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2510  | 
unfolding interval_doublesplit[OF k] apply(subst interval_bounds) defer apply(subst interval_bounds)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2511  | 
unfolding interval_eq_empty not_ex not_less by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2512  | 
    show "content ({a..b} \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d}) < e" apply(cases) unfolding content_def apply(subst if_P,assumption,rule assms)
 | 
| 35172 | 2513  | 
unfolding if_not_P apply(subst *) apply(subst setprod_insert) unfolding **  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2514  | 
unfolding interval_doublesplit[OF k] interval_eq_empty not_ex not_less prefer 3  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2515  | 
apply(subst interval_bounds) defer apply(subst interval_bounds) unfolding euclidean_lambda_beta'[OF k] if_P[OF refl]  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2516  | 
proof- have "(min (b $$ k) (c + d) - max (a $$ k) (c - d)) \<le> 2 * d" by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2517  | 
      also have "... < e / (\<Prod>i\<in>{..<DIM('a)} - {k}. b $$ i - a $$ i)" unfolding d_def using assms prod0 by(auto simp add:field_simps)
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2518  | 
      finally show "(min (b $$ k) (c + d) - max (a $$ k) (c - d)) * (\<Prod>i\<in>{..<DIM('a)} - {k}. b $$ i - a $$ i) < e"
 | 
| 35172 | 2519  | 
unfolding pos_less_divide_eq[OF prod0] . qed auto qed qed  | 
2520  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2521  | 
lemma negligible_standard_hyperplane[intro]: fixes type::"'a::ordered_euclidean_space" assumes k:"k<DIM('a)"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2522  | 
  shows "negligible {x::'a. x$$k = (c::real)}" 
 | 
| 35172 | 2523  | 
unfolding negligible_def has_integral apply(rule,rule,rule,rule)  | 
| 37665 | 2524  | 
proof-  | 
2525  | 
case goal1 from content_doublesplit[OF this k,of a b c] guess d . note d=this  | 
|
2526  | 
  let ?i = "indicator {x::'a. x$$k = c} :: 'a\<Rightarrow>real"
 | 
|
| 35172 | 2527  | 
show ?case apply(rule_tac x="\<lambda>x. ball x d" in exI) apply(rule,rule gauge_ball,rule d)  | 
2528  | 
  proof(rule,rule) fix p assume p:"p tagged_division_of {a..b} \<and> (\<lambda>x. ball x d) fine p"
 | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2529  | 
    have *:"(\<Sum>(x, ka)\<in>p. content ka *\<^sub>R ?i x) = (\<Sum>(x, ka)\<in>p. content (ka \<inter> {x. abs(x$$k - c) \<le> d}) *\<^sub>R ?i x)"
 | 
| 35172 | 2530  | 
apply(rule setsum_cong2) unfolding split_paired_all real_scaleR_def mult_cancel_right split_conv  | 
2531  | 
apply(cases,rule disjI1,assumption,rule disjI2)  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2532  | 
proof- fix x l assume as:"(x,l)\<in>p" "?i x \<noteq> 0" hence xk:"x$$k = c" unfolding indicator_def apply-by(rule ccontr,auto)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2533  | 
      show "content l = content (l \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d})" apply(rule arg_cong[where f=content])
 | 
| 
39302
 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 
nipkow 
parents: 
38656 
diff
changeset
 | 
2534  | 
apply(rule set_eqI,rule,rule) unfolding mem_Collect_eq  | 
| 35172 | 2535  | 
proof- fix y assume y:"y\<in>l" note p[THEN conjunct2,unfolded fine_def,rule_format,OF as(1),unfolded split_conv]  | 
| 36587 | 2536  | 
note this[unfolded subset_eq mem_ball dist_norm,rule_format,OF y] note le_less_trans[OF component_le_norm[of _ k] this]  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2537  | 
thus "\<bar>y $$ k - c\<bar> \<le> d" unfolding euclidean_simps xk by auto  | 
| 35172 | 2538  | 
qed auto qed  | 
2539  | 
note p'= tagged_division_ofD[OF p[THEN conjunct1]] and p''=division_of_tagged_division[OF p[THEN conjunct1]]  | 
|
2540  | 
show "norm ((\<Sum>(x, ka)\<in>p. content ka *\<^sub>R ?i x) - 0) < e" unfolding diff_0_right * unfolding real_scaleR_def real_norm_def  | 
|
2541  | 
apply(subst abs_of_nonneg) apply(rule setsum_nonneg,rule) unfolding split_paired_all split_conv  | 
|
2542  | 
apply(rule mult_nonneg_nonneg) apply(drule p'(4)) apply(erule exE)+ apply(rule_tac b=b in back_subst)  | 
|
2543  | 
prefer 2 apply(subst(asm) eq_commute) apply assumption  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2544  | 
apply(subst interval_doublesplit[OF k]) apply(rule content_pos_le) apply(rule indicator_pos_le)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2545  | 
    proof- have "(\<Sum>(x, ka)\<in>p. content (ka \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d}) * ?i x) \<le> (\<Sum>(x, ka)\<in>p. content (ka \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d}))"
 | 
| 35172 | 2546  | 
apply(rule setsum_mono) unfolding split_paired_all split_conv  | 
| 
44457
 
d366fa5551ef
declare euclidean_simps [simp] at the point they are proved;
 
huffman 
parents: 
44282 
diff
changeset
 | 
2547  | 
apply(rule mult_right_le_one_le) apply(drule p'(4)) by(auto simp add:interval_doublesplit[OF k])  | 
| 35172 | 2548  | 
also have "... < e" apply(subst setsum_over_tagged_division_lemma[OF p[THEN conjunct1]])  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2549  | 
      proof- case goal1 have "content ({u..v} \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d}) \<le> content {u..v}"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2550  | 
unfolding interval_doublesplit[OF k] apply(rule content_subset) unfolding interval_doublesplit[THEN sym,OF k] by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2551  | 
thus ?case unfolding goal1 unfolding interval_doublesplit[OF k] using content_pos_le by smt  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2552  | 
      next have *:"setsum content {l \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d} |l. l \<in> snd ` p \<and> l \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d} \<noteq> {}} \<ge> 0"
 | 
| 35172 | 2553  | 
apply(rule setsum_nonneg,rule) unfolding mem_Collect_eq image_iff apply(erule exE bexE conjE)+ unfolding split_paired_all  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2554  | 
        proof- fix x l a b assume as:"x = l \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d}" "(a, b) \<in> p" "l = snd (a, b)"
 | 
| 35172 | 2555  | 
guess u v using p'(4)[OF as(2)] apply-by(erule exE)+ note * = this  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2556  | 
show "content x \<ge> 0" unfolding as snd_conv * interval_doublesplit[OF k] by(rule content_pos_le)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2557  | 
qed have **:"norm (1::real) \<le> 1" by auto note division_doublesplit[OF p'' k,unfolded interval_doublesplit[OF k]]  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2558  | 
note dsum_bound[OF this **,unfolded interval_doublesplit[THEN sym,OF k]]  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2559  | 
note this[unfolded real_scaleR_def real_norm_def mult_1_right mult_1, of c d] note le_less_trans[OF this d(2)]  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2560  | 
        from this[unfolded abs_of_nonneg[OF *]] show "(\<Sum>ka\<in>snd ` p. content (ka \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d})) < e"
 | 
| 35172 | 2561  | 
          apply(subst vsum_nonzero_image_lemma[of "snd ` p" content "{}", unfolded o_def,THEN sym])
 | 
2562  | 
apply(rule finite_imageI p' content_empty)+ unfolding forall_in_division[OF p'']  | 
|
2563  | 
proof(rule,rule,rule,rule,rule,rule,rule,erule conjE) fix m n u v  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2564  | 
          assume as:"{m..n} \<in> snd ` p" "{u..v} \<in> snd ` p" "{m..n} \<noteq> {u..v}"  "{m..n} \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d} = {u..v} \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d}"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2565  | 
          have "({m..n} \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d}) \<inter> ({u..v} \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d}) \<subseteq> {m..n} \<inter> {u..v}" by blast
 | 
| 
44522
 
2f7e9d890efe
rename subset_{interior,closure} to {interior,closure}_mono;
 
huffman 
parents: 
44514 
diff
changeset
 | 
2566  | 
          note interior_mono[OF this, unfolded division_ofD(5)[OF p'' as(1-3)] interior_inter[of "{m..n}"]]
 | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2567  | 
          hence "interior ({m..n} \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d}) = {}" unfolding as Int_absorb by auto
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2568  | 
          thus "content ({m..n} \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d}) = 0" unfolding interval_doublesplit[OF k] content_eq_0_interior[THEN sym] .
 | 
| 35172 | 2569  | 
qed qed  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2570  | 
      finally show "(\<Sum>(x, ka)\<in>p. content (ka \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d}) * ?i x) < e" .
 | 
| 35172 | 2571  | 
qed qed qed  | 
2572  | 
||
2573  | 
subsection {* A technical lemma about "refinement" of division. *}
 | 
|
2574  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2575  | 
lemma tagged_division_finer: fixes p::"(('a::ordered_euclidean_space) \<times> (('a::ordered_euclidean_space) set)) set"
 | 
| 35172 | 2576  | 
  assumes "p tagged_division_of {a..b}" "gauge d"
 | 
2577  | 
  obtains q where "q tagged_division_of {a..b}" "d fine q" "\<forall>(x,k) \<in> p. k \<subseteq> d(x) \<longrightarrow> (x,k) \<in> q"
 | 
|
2578  | 
proof-  | 
|
2579  | 
  let ?P = "\<lambda>p. p tagged_partial_division_of {a..b} \<longrightarrow> gauge d \<longrightarrow>
 | 
|
2580  | 
    (\<exists>q. q tagged_division_of (\<Union>{k. \<exists>x. (x,k) \<in> p}) \<and> d fine q \<and>
 | 
|
2581  | 
(\<forall>(x,k) \<in> p. k \<subseteq> d(x) \<longrightarrow> (x,k) \<in> q))"  | 
|
2582  | 
  { have *:"finite p" "p tagged_partial_division_of {a..b}" using assms(1) unfolding tagged_division_of_def by auto
 | 
|
2583  | 
presume "\<And>p. finite p \<Longrightarrow> ?P p" from this[rule_format,OF * assms(2)] guess q .. note q=this  | 
|
2584  | 
thus ?thesis apply-apply(rule that[of q]) unfolding tagged_division_ofD[OF assms(1)] by auto  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2585  | 
  } fix p::"(('a::ordered_euclidean_space) \<times> (('a::ordered_euclidean_space) set)) set" assume as:"finite p"
 | 
| 35172 | 2586  | 
show "?P p" apply(rule,rule) using as proof(induct p)  | 
2587  | 
    case empty show ?case apply(rule_tac x="{}" in exI) unfolding fine_def by auto
 | 
|
2588  | 
next case (insert xk p) guess x k using surj_pair[of xk] apply- by(erule exE)+ note xk=this  | 
|
2589  | 
note tagged_partial_division_subset[OF insert(4) subset_insertI]  | 
|
2590  | 
from insert(3)[OF this insert(5)] guess q1 .. note q1 = conjunctD3[OF this]  | 
|
2591  | 
    have *:"\<Union>{l. \<exists>y. (y,l) \<in> insert xk p} = k \<union> \<Union>{l. \<exists>y. (y,l) \<in> p}" unfolding xk by auto
 | 
|
2592  | 
note p = tagged_partial_division_ofD[OF insert(4)]  | 
|
2593  | 
from p(4)[unfolded xk, OF insertI1] guess u v apply-by(erule exE)+ note uv=this  | 
|
2594  | 
||
2595  | 
    have "finite {k. \<exists>x. (x, k) \<in> p}" 
 | 
|
2596  | 
apply(rule finite_subset[of _ "snd ` p"],rule) unfolding subset_eq image_iff mem_Collect_eq  | 
|
2597  | 
apply(erule exE,rule_tac x="(xa,x)" in bexI) using p by auto  | 
|
2598  | 
    hence int:"interior {u..v} \<inter> interior (\<Union>{k. \<exists>x. (x, k) \<in> p}) = {}"
 | 
|
2599  | 
apply(rule inter_interior_unions_intervals) apply(rule open_interior) apply(rule_tac[!] ballI)  | 
|
2600  | 
unfolding mem_Collect_eq apply(erule_tac[!] exE) apply(drule p(4)[OF insertI2],assumption)  | 
|
2601  | 
apply(rule p(5)) unfolding uv xk apply(rule insertI1,rule insertI2) apply assumption  | 
|
2602  | 
using insert(2) unfolding uv xk by auto  | 
|
2603  | 
||
2604  | 
    show ?case proof(cases "{u..v} \<subseteq> d x")
 | 
|
2605  | 
      case True thus ?thesis apply(rule_tac x="{(x,{u..v})} \<union> q1" in exI) apply rule
 | 
|
2606  | 
unfolding * uv apply(rule tagged_division_union,rule tagged_division_of_self)  | 
|
2607  | 
apply(rule p[unfolded xk uv] insertI1)+ apply(rule q1,rule int)  | 
|
2608  | 
apply(rule,rule fine_union,subst fine_def) defer apply(rule q1)  | 
|
2609  | 
unfolding Ball_def split_paired_All split_conv apply(rule,rule,rule,rule)  | 
|
2610  | 
apply(erule insertE) defer apply(rule UnI2) apply(drule q1(3)[rule_format]) unfolding xk uv by auto  | 
|
2611  | 
next case False from fine_division_exists[OF assms(2), of u v] guess q2 . note q2=this  | 
|
2612  | 
show ?thesis apply(rule_tac x="q2 \<union> q1" in exI)  | 
|
2613  | 
apply rule unfolding * uv apply(rule tagged_division_union q2 q1 int fine_union)+  | 
|
2614  | 
unfolding Ball_def split_paired_All split_conv apply rule apply(rule fine_union)  | 
|
2615  | 
apply(rule q1 q2)+ apply(rule,rule,rule,rule) apply(erule insertE)  | 
|
2616  | 
apply(rule UnI2) defer apply(drule q1(3)[rule_format])using False unfolding xk uv by auto  | 
|
2617  | 
qed qed qed  | 
|
2618  | 
||
2619  | 
subsection {* Hence the main theorem about negligible sets. *}
 | 
|
2620  | 
||
2621  | 
lemma finite_product_dependent: assumes "finite s" "\<And>x. x\<in>s\<Longrightarrow> finite (t x)"  | 
|
2622  | 
  shows "finite {(i, j) |i j. i \<in> s \<and> j \<in> t i}" using assms
 | 
|
2623  | 
proof(induct) case (insert x s)  | 
|
2624  | 
  have *:"{(i, j) |i j. i \<in> insert x s \<and> j \<in> t i} = (\<lambda>y. (x,y)) ` (t x) \<union> {(i, j) |i j. i \<in> s \<and> j \<in> t i}" by auto
 | 
|
2625  | 
show ?case unfolding * apply(rule finite_UnI) using insert by auto qed auto  | 
|
2626  | 
||
2627  | 
lemma sum_sum_product: assumes "finite s" "\<forall>i\<in>s. finite (t i)"  | 
|
2628  | 
  shows "setsum (\<lambda>i. setsum (x i) (t i)::real) s = setsum (\<lambda>(i,j). x i j) {(i,j) | i j. i \<in> s \<and> j \<in> t i}" using assms
 | 
|
2629  | 
proof(induct) case (insert a s)  | 
|
2630  | 
  have *:"{(i, j) |i j. i \<in> insert a s \<and> j \<in> t i} = (\<lambda>y. (a,y)) ` (t a) \<union> {(i, j) |i j. i \<in> s \<and> j \<in> t i}" by auto
 | 
|
2631  | 
show ?case unfolding * apply(subst setsum_Un_disjoint) unfolding setsum_insert[OF insert(1-2)]  | 
|
2632  | 
prefer 4 apply(subst insert(3)) unfolding add_right_cancel  | 
|
2633  | 
proof- show "setsum (x a) (t a) = (\<Sum>(xa, y)\<in>Pair a ` t a. x xa y)" apply(subst setsum_reindex) unfolding inj_on_def by auto  | 
|
2634  | 
    show "finite {(i, j) |i j. i \<in> s \<and> j \<in> t i}" apply(rule finite_product_dependent) using insert by auto
 | 
|
2635  | 
qed(insert insert, auto) qed auto  | 
|
2636  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2637  | 
lemma has_integral_negligible: fixes f::"'b::ordered_euclidean_space \<Rightarrow> 'a::real_normed_vector"  | 
| 35172 | 2638  | 
assumes "negligible s" "\<forall>x\<in>(t - s). f x = 0"  | 
2639  | 
shows "(f has_integral 0) t"  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2640  | 
proof- presume P:"\<And>f::'b::ordered_euclidean_space \<Rightarrow> 'a. \<And>a b. (\<forall>x. ~(x \<in> s) \<longrightarrow> f x = 0) \<Longrightarrow> (f has_integral 0) ({a..b})"
 | 
| 35172 | 2641  | 
let ?f = "(\<lambda>x. if x \<in> t then f x else 0)"  | 
2642  | 
show ?thesis apply(rule_tac f="?f" in has_integral_eq) apply(rule) unfolding if_P apply(rule refl)  | 
|
2643  | 
apply(subst has_integral_alt) apply(cases,subst if_P,assumption) unfolding if_not_P  | 
|
2644  | 
  proof- assume "\<exists>a b. t = {a..b}" then guess a b apply-by(erule exE)+ note t = this
 | 
|
2645  | 
show "(?f has_integral 0) t" unfolding t apply(rule P) using assms(2) unfolding t by auto  | 
|
2646  | 
  next show "\<forall>e>0. \<exists>B>0. \<forall>a b. ball 0 B \<subseteq> {a..b} \<longrightarrow> (\<exists>z. ((\<lambda>x. if x \<in> t then ?f x else 0) has_integral z) {a..b} \<and> norm (z - 0) < e)"
 | 
|
2647  | 
apply(safe,rule_tac x=1 in exI,rule) apply(rule zero_less_one,safe) apply(rule_tac x=0 in exI)  | 
|
2648  | 
apply(rule,rule P) using assms(2) by auto  | 
|
2649  | 
qed  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2650  | 
next fix f::"'b \<Rightarrow> 'a" and a b::"'b" assume assm:"\<forall>x. x \<notin> s \<longrightarrow> f x = 0"  | 
| 35172 | 2651  | 
  show "(f has_integral 0) {a..b}" unfolding has_integral
 | 
2652  | 
proof(safe) case goal1  | 
|
2653  | 
hence "\<And>n. e / 2 / ((real n+1) * (2 ^ n)) > 0"  | 
|
2654  | 
apply-apply(rule divide_pos_pos) defer apply(rule mult_pos_pos) by(auto simp add:field_simps)  | 
|
2655  | 
note assms(1)[unfolded negligible_def has_integral,rule_format,OF this,of a b] note allI[OF this,of "\<lambda>x. x"]  | 
|
2656  | 
from choice[OF this] guess d .. note d=conjunctD2[OF this[rule_format]]  | 
|
2657  | 
show ?case apply(rule_tac x="\<lambda>x. d (nat \<lfloor>norm (f x)\<rfloor>) x" in exI)  | 
|
2658  | 
proof safe show "gauge (\<lambda>x. d (nat \<lfloor>norm (f x)\<rfloor>) x)" using d(1) unfolding gauge_def by auto  | 
|
2659  | 
      fix p assume as:"p tagged_division_of {a..b}" "(\<lambda>x. d (nat \<lfloor>norm (f x)\<rfloor>) x) fine p" 
 | 
|
2660  | 
let ?goal = "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - 0) < e"  | 
|
2661  | 
      { presume "p\<noteq>{} \<Longrightarrow> ?goal" thus ?goal apply(cases "p={}") using goal1 by auto  }
 | 
|
2662  | 
      assume as':"p \<noteq> {}" from real_arch_simple[of "Sup((\<lambda>(x,k). norm(f x)) ` p)"] guess N ..
 | 
|
2663  | 
hence N:"\<forall>x\<in>(\<lambda>(x, k). norm (f x)) ` p. x \<le> real N" apply(subst(asm) Sup_finite_le_iff) using as as' by auto  | 
|
2664  | 
      have "\<forall>i. \<exists>q. q tagged_division_of {a..b} \<and> (d i) fine q \<and> (\<forall>(x, k)\<in>p. k \<subseteq> (d i) x \<longrightarrow> (x, k) \<in> q)"
 | 
|
2665  | 
apply(rule,rule tagged_division_finer[OF as(1) d(1)]) by auto  | 
|
2666  | 
from choice[OF this] guess q .. note q=conjunctD3[OF this[rule_format]]  | 
|
| 37665 | 2667  | 
have *:"\<And>i. (\<Sum>(x, k)\<in>q i. content k *\<^sub>R indicator s x) \<ge> (0::real)" apply(rule setsum_nonneg,safe)  | 
| 35172 | 2668  | 
unfolding real_scaleR_def apply(rule mult_nonneg_nonneg) apply(drule tagged_division_ofD(4)[OF q(1)]) by auto  | 
2669  | 
have **:"\<And>f g s t. finite s \<Longrightarrow> finite t \<Longrightarrow> (\<forall>(x,y) \<in> t. (0::real) \<le> g(x,y)) \<Longrightarrow> (\<forall>y\<in>s. \<exists>x. (x,y) \<in> t \<and> f(y) \<le> g(x,y)) \<Longrightarrow> setsum f s \<le> setsum g t"  | 
|
2670  | 
proof- case goal1 thus ?case apply-apply(rule setsum_le_included[of s t g snd f]) prefer 4  | 
|
2671  | 
apply safe apply(erule_tac x=x in ballE) apply(erule exE) apply(rule_tac x="(xa,x)" in bexI) by auto qed  | 
|
2672  | 
have "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - 0) \<le> setsum (\<lambda>i. (real i + 1) *  | 
|
| 37665 | 2673  | 
                     norm(setsum (\<lambda>(x,k). content k *\<^sub>R indicator s x :: real) (q i))) {0..N+1}"
 | 
| 35172 | 2674  | 
unfolding real_norm_def setsum_right_distrib abs_of_nonneg[OF *] diff_0_right  | 
| 
44176
 
eda112e9cdee
remove redundant lemma setsum_norm in favor of norm_setsum;
 
huffman 
parents: 
44170 
diff
changeset
 | 
2675  | 
apply(rule order_trans,rule norm_setsum) apply(subst sum_sum_product) prefer 3  | 
| 35172 | 2676  | 
      proof(rule **,safe) show "finite {(i, j) |i j. i \<in> {0..N + 1} \<and> j \<in> q i}" apply(rule finite_product_dependent) using q by auto
 | 
2677  | 
fix i a b assume as'':"(a,b) \<in> q i" show "0 \<le> (real i + 1) * (content b *\<^sub>R indicator s a)"  | 
|
2678  | 
unfolding real_scaleR_def apply(rule mult_nonneg_nonneg) defer apply(rule mult_nonneg_nonneg)  | 
|
2679  | 
using tagged_division_ofD(4)[OF q(1) as''] by auto  | 
|
2680  | 
next fix i::nat show "finite (q i)" using q by auto  | 
|
2681  | 
next fix x k assume xk:"(x,k) \<in> p" def n \<equiv> "nat \<lfloor>norm (f x)\<rfloor>"  | 
|
2682  | 
have *:"norm (f x) \<in> (\<lambda>(x, k). norm (f x)) ` p" using xk by auto  | 
|
2683  | 
have nfx:"real n \<le> norm(f x)" "norm(f x) \<le> real n + 1" unfolding n_def by auto  | 
|
2684  | 
        hence "n \<in> {0..N + 1}" using N[rule_format,OF *] by auto
 | 
|
2685  | 
moreover note as(2)[unfolded fine_def,rule_format,OF xk,unfolded split_conv]  | 
|
2686  | 
note q(3)[rule_format,OF xk,unfolded split_conv,rule_format,OF this] note this[unfolded n_def[symmetric]]  | 
|
2687  | 
moreover have "norm (content k *\<^sub>R f x) \<le> (real n + 1) * (content k * indicator s x)"  | 
|
2688  | 
proof(cases "x\<in>s") case False thus ?thesis using assm by auto  | 
|
2689  | 
next case True have *:"content k \<ge> 0" using tagged_division_ofD(4)[OF as(1) xk] by auto  | 
|
2690  | 
moreover have "content k * norm (f x) \<le> content k * (real n + 1)" apply(rule mult_mono) using nfx * by auto  | 
|
2691  | 
ultimately show ?thesis unfolding abs_mult using nfx True by(auto simp add:field_simps)  | 
|
2692  | 
        qed ultimately show "\<exists>y. (y, x, k) \<in> {(i, j) |i j. i \<in> {0..N + 1} \<and> j \<in> q i} \<and> norm (content k *\<^sub>R f x) \<le> (real y + 1) * (content k *\<^sub>R indicator s x)"
 | 
|
2693  | 
apply(rule_tac x=n in exI,safe) apply(rule_tac x=n in exI,rule_tac x="(x,k)" in exI,safe) by auto  | 
|
2694  | 
qed(insert as, auto)  | 
|
2695  | 
      also have "... \<le> setsum (\<lambda>i. e / 2 / 2 ^ i) {0..N+1}" apply(rule setsum_mono) 
 | 
|
2696  | 
proof- case goal1 thus ?case apply(subst mult_commute, subst pos_le_divide_eq[THEN sym])  | 
|
2697  | 
using d(2)[rule_format,of "q i" i] using q[rule_format] by(auto simp add:field_simps)  | 
|
| 
36778
 
739a9379e29b
avoid using real-specific versions of generic lemmas
 
huffman 
parents: 
36725 
diff
changeset
 | 
2698  | 
qed also have "... < e * inverse 2 * 2" unfolding divide_inverse setsum_right_distrib[THEN sym]  | 
| 35172 | 2699  | 
apply(rule mult_strict_left_mono) unfolding power_inverse atLeastLessThanSuc_atLeastAtMost[THEN sym]  | 
2700  | 
apply(subst sumr_geometric) using goal1 by auto  | 
|
2701  | 
finally show "?goal" by auto qed qed qed  | 
|
2702  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2703  | 
lemma has_integral_spike: fixes f::"'b::ordered_euclidean_space \<Rightarrow> 'a::real_normed_vector"  | 
| 35172 | 2704  | 
assumes "negligible s" "(\<forall>x\<in>(t - s). g x = f x)" "(f has_integral y) t"  | 
2705  | 
shows "(g has_integral y) t"  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2706  | 
proof- { fix a b::"'b" and f g ::"'b \<Rightarrow> 'a" and y::'a
 | 
| 35172 | 2707  | 
    assume as:"\<forall>x \<in> {a..b} - s. g x = f x" "(f has_integral y) {a..b}"
 | 
2708  | 
    have "((\<lambda>x. f x + (g x - f x)) has_integral (y + 0)) {a..b}" apply(rule has_integral_add[OF as(2)])
 | 
|
2709  | 
apply(rule has_integral_negligible[OF assms(1)]) using as by auto  | 
|
2710  | 
    hence "(g has_integral y) {a..b}" by auto } note * = this
 | 
|
2711  | 
show ?thesis apply(subst has_integral_alt) using assms(2-) apply-apply(rule cond_cases,safe)  | 
|
2712  | 
apply(rule *, assumption+) apply(subst(asm) has_integral_alt) unfolding if_not_P  | 
|
2713  | 
apply(erule_tac x=e in allE,safe,rule_tac x=B in exI,safe) apply(erule_tac x=a in allE,erule_tac x=b in allE,safe)  | 
|
2714  | 
apply(rule_tac x=z in exI,safe) apply(rule *[where fa2="\<lambda>x. if x\<in>t then f x else 0"]) by auto qed  | 
|
2715  | 
||
2716  | 
lemma has_integral_spike_eq:  | 
|
2717  | 
assumes "negligible s" "\<forall>x\<in>(t - s). g x = f x"  | 
|
2718  | 
shows "((f has_integral y) t \<longleftrightarrow> (g has_integral y) t)"  | 
|
2719  | 
apply rule apply(rule_tac[!] has_integral_spike[OF assms(1)]) using assms(2) by auto  | 
|
2720  | 
||
2721  | 
lemma integrable_spike: assumes "negligible s" "\<forall>x\<in>(t - s). g x = f x" "f integrable_on t"  | 
|
2722  | 
shows "g integrable_on t"  | 
|
2723  | 
using assms unfolding integrable_on_def apply-apply(erule exE)  | 
|
2724  | 
apply(rule,rule has_integral_spike) by fastsimp+  | 
|
2725  | 
||
2726  | 
lemma integral_spike: assumes "negligible s" "\<forall>x\<in>(t - s). g x = f x"  | 
|
2727  | 
shows "integral t f = integral t g"  | 
|
2728  | 
unfolding integral_def using has_integral_spike_eq[OF assms] by auto  | 
|
2729  | 
||
2730  | 
subsection {* Some other trivialities about negligible sets. *}
 | 
|
2731  | 
||
2732  | 
lemma negligible_subset[intro]: assumes "negligible s" "t \<subseteq> s" shows "negligible t" unfolding negligible_def  | 
|
2733  | 
proof(safe) case goal1 show ?case using assms(1)[unfolded negligible_def,rule_format,of a b]  | 
|
2734  | 
apply-apply(rule has_integral_spike[OF assms(1)]) defer apply assumption  | 
|
2735  | 
using assms(2) unfolding indicator_def by auto qed  | 
|
2736  | 
||
2737  | 
lemma negligible_diff[intro?]: assumes "negligible s" shows "negligible(s - t)" using assms by auto  | 
|
2738  | 
||
2739  | 
lemma negligible_inter: assumes "negligible s \<or> negligible t" shows "negligible(s \<inter> t)" using assms by auto  | 
|
2740  | 
||
2741  | 
lemma negligible_union: assumes "negligible s" "negligible t" shows "negligible (s \<union> t)" unfolding negligible_def  | 
|
2742  | 
proof safe case goal1 note assm = assms[unfolded negligible_def,rule_format,of a b]  | 
|
2743  | 
thus ?case apply(subst has_integral_spike_eq[OF assms(2)])  | 
|
2744  | 
defer apply assumption unfolding indicator_def by auto qed  | 
|
2745  | 
||
2746  | 
lemma negligible_union_eq[simp]: "negligible (s \<union> t) \<longleftrightarrow> (negligible s \<and> negligible t)"  | 
|
2747  | 
using negligible_union by auto  | 
|
2748  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2749  | 
lemma negligible_sing[intro]: "negligible {a::_::ordered_euclidean_space}" 
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2750  | 
using negligible_standard_hyperplane[of 0 "a$$0"] by auto  | 
| 35172 | 2751  | 
|
2752  | 
lemma negligible_insert[simp]: "negligible(insert a s) \<longleftrightarrow> negligible s"  | 
|
2753  | 
apply(subst insert_is_Un) unfolding negligible_union_eq by auto  | 
|
2754  | 
||
2755  | 
lemma negligible_empty[intro]: "negligible {}" by auto
 | 
|
2756  | 
||
2757  | 
lemma negligible_finite[intro]: assumes "finite s" shows "negligible s"  | 
|
2758  | 
using assms apply(induct s) by auto  | 
|
2759  | 
||
2760  | 
lemma negligible_unions[intro]: assumes "finite s" "\<forall>t\<in>s. negligible t" shows "negligible(\<Union>s)"  | 
|
2761  | 
using assms by(induct,auto)  | 
|
2762  | 
||
| 37665 | 2763  | 
lemma negligible:  "negligible s \<longleftrightarrow> (\<forall>t::('a::ordered_euclidean_space) set. ((indicator s::'a\<Rightarrow>real) has_integral 0) t)"
 | 
| 35172 | 2764  | 
apply safe defer apply(subst negligible_def)  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2765  | 
proof- fix t::"'a set" assume as:"negligible s"  | 
| 35172 | 2766  | 
have *:"(\<lambda>x. if x \<in> s \<inter> t then 1 else 0) = (\<lambda>x. if x\<in>t then if x\<in>s then 1 else 0 else 0)" by(rule ext,auto)  | 
| 37665 | 2767  | 
show "((indicator s::'a\<Rightarrow>real) has_integral 0) t" apply(subst has_integral_alt)  | 
| 35172 | 2768  | 
apply(cases,subst if_P,assumption) unfolding if_not_P apply(safe,rule as[unfolded negligible_def,rule_format])  | 
2769  | 
apply(rule_tac x=1 in exI) apply(safe,rule zero_less_one) apply(rule_tac x=0 in exI)  | 
|
| 37665 | 2770  | 
using negligible_subset[OF as,of "s \<inter> t"] unfolding negligible_def indicator_def_raw unfolding * by auto qed auto  | 
| 35172 | 2771  | 
|
2772  | 
subsection {* Finite case of the spike theorem is quite commonly needed. *}
 | 
|
2773  | 
||
2774  | 
lemma has_integral_spike_finite: assumes "finite s" "\<forall>x\<in>t-s. g x = f x"  | 
|
2775  | 
"(f has_integral y) t" shows "(g has_integral y) t"  | 
|
2776  | 
apply(rule has_integral_spike) using assms by auto  | 
|
2777  | 
||
2778  | 
lemma has_integral_spike_finite_eq: assumes "finite s" "\<forall>x\<in>t-s. g x = f x"  | 
|
2779  | 
shows "((f has_integral y) t \<longleftrightarrow> (g has_integral y) t)"  | 
|
2780  | 
apply rule apply(rule_tac[!] has_integral_spike_finite) using assms by auto  | 
|
2781  | 
||
2782  | 
lemma integrable_spike_finite:  | 
|
2783  | 
assumes "finite s" "\<forall>x\<in>t-s. g x = f x" "f integrable_on t" shows "g integrable_on t"  | 
|
2784  | 
using assms unfolding integrable_on_def apply safe apply(rule_tac x=y in exI)  | 
|
2785  | 
apply(rule has_integral_spike_finite) by auto  | 
|
2786  | 
||
2787  | 
subsection {* In particular, the boundary of an interval is negligible. *}
 | 
|
2788  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2789  | 
lemma negligible_frontier_interval: "negligible({a::'a::ordered_euclidean_space..b} - {a<..<b})"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2790  | 
proof- let ?A = "\<Union>((\<lambda>k. {x. x$$k = a$$k} \<union> {x::'a. x$$k = b$$k}) ` {..<DIM('a)})"
 | 
| 35172 | 2791  | 
  have "{a..b} - {a<..<b} \<subseteq> ?A" apply rule unfolding Diff_iff mem_interval not_all
 | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2792  | 
    apply(erule conjE exE)+ apply(rule_tac X="{x. x $$ xa = a $$ xa} \<union> {x. x $$ xa = b $$ xa}" in UnionI)
 | 
| 35172 | 2793  | 
apply(erule_tac[!] x=xa in allE) by auto  | 
2794  | 
thus ?thesis apply-apply(rule negligible_subset[of ?A]) apply(rule negligible_unions[OF finite_imageI]) by auto qed  | 
|
2795  | 
||
2796  | 
lemma has_integral_spike_interior:  | 
|
2797  | 
  assumes "\<forall>x\<in>{a<..<b}. g x = f x" "(f has_integral y) ({a..b})" shows "(g has_integral y) ({a..b})"
 | 
|
2798  | 
apply(rule has_integral_spike[OF negligible_frontier_interval _ assms(2)]) using assms(1) by auto  | 
|
2799  | 
||
2800  | 
lemma has_integral_spike_interior_eq:  | 
|
2801  | 
  assumes "\<forall>x\<in>{a<..<b}. g x = f x" shows "((f has_integral y) ({a..b}) \<longleftrightarrow> (g has_integral y) ({a..b}))"
 | 
|
2802  | 
apply rule apply(rule_tac[!] has_integral_spike_interior) using assms by auto  | 
|
2803  | 
||
2804  | 
lemma integrable_spike_interior: assumes "\<forall>x\<in>{a<..<b}. g x = f x" "f integrable_on {a..b}" shows "g integrable_on {a..b}"
 | 
|
2805  | 
using assms unfolding integrable_on_def using has_integral_spike_interior[OF assms(1)] by auto  | 
|
2806  | 
||
2807  | 
subsection {* Integrability of continuous functions. *}
 | 
|
2808  | 
||
2809  | 
lemma neutral_and[simp]: "neutral op \<and> = True"  | 
|
2810  | 
unfolding neutral_def apply(rule some_equality) by auto  | 
|
2811  | 
||
2812  | 
lemma monoidal_and[intro]: "monoidal op \<and>" unfolding monoidal_def by auto  | 
|
2813  | 
||
2814  | 
lemma iterate_and[simp]: assumes "finite s" shows "(iterate op \<and>) s p \<longleftrightarrow> (\<forall>x\<in>s. p x)" using assms  | 
|
2815  | 
apply induct unfolding iterate_insert[OF monoidal_and] by auto  | 
|
2816  | 
||
2817  | 
lemma operative_division_and: assumes "operative op \<and> P" "d division_of {a..b}"
 | 
|
2818  | 
  shows "(\<forall>i\<in>d. P i) \<longleftrightarrow> P {a..b}"
 | 
|
2819  | 
using operative_division[OF monoidal_and assms] division_of_finite[OF assms(2)] by auto  | 
|
2820  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2821  | 
lemma operative_approximable: assumes "0 \<le> e" fixes f::"'b::ordered_euclidean_space \<Rightarrow> 'a::banach"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2822  | 
shows "operative op \<and> (\<lambda>i. \<exists>g. (\<forall>x\<in>i. norm (f x - g (x::'b)) \<le> e) \<and> g integrable_on i)" unfolding operative_def neutral_and  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2823  | 
proof safe fix a b::"'b" { assume "content {a..b} = 0"
 | 
| 35172 | 2824  | 
    thus "\<exists>g. (\<forall>x\<in>{a..b}. norm (f x - g x) \<le> e) \<and> g integrable_on {a..b}" 
 | 
2825  | 
apply(rule_tac x=f in exI) using assms by(auto intro!:integrable_on_null) }  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2826  | 
  { fix c k g assume as:"\<forall>x\<in>{a..b}. norm (f x - g x) \<le> e" "g integrable_on {a..b}" and k:"k<DIM('b)"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2827  | 
    show "\<exists>g. (\<forall>x\<in>{a..b} \<inter> {x. x $$ k \<le> c}. norm (f x - g x) \<le> e) \<and> g integrable_on {a..b} \<inter> {x. x $$ k \<le> c}"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2828  | 
      "\<exists>g. (\<forall>x\<in>{a..b} \<inter> {x. c \<le> x $$ k}. norm (f x - g x) \<le> e) \<and> g integrable_on {a..b} \<inter> {x. c \<le> x $$ k}"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2829  | 
apply(rule_tac[!] x=g in exI) using as(1) integrable_split[OF as(2) k] by auto }  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2830  | 
  fix c k g1 g2 assume as:"\<forall>x\<in>{a..b} \<inter> {x. x $$ k \<le> c}. norm (f x - g1 x) \<le> e" "g1 integrable_on {a..b} \<inter> {x. x $$ k \<le> c}"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2831  | 
                          "\<forall>x\<in>{a..b} \<inter> {x. c \<le> x $$ k}. norm (f x - g2 x) \<le> e" "g2 integrable_on {a..b} \<inter> {x. c \<le> x $$ k}"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2832  | 
  assume k:"k<DIM('b)"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2833  | 
let ?g = "\<lambda>x. if x$$k = c then f x else if x$$k \<le> c then g1 x else g2 x"  | 
| 35172 | 2834  | 
  show "\<exists>g. (\<forall>x\<in>{a..b}. norm (f x - g x) \<le> e) \<and> g integrable_on {a..b}" apply(rule_tac x="?g" in exI)
 | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2835  | 
proof safe case goal1 thus ?case apply- apply(cases "x$$k=c", case_tac "x$$k < c") using as assms by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2836  | 
  next case goal2 presume "?g integrable_on {a..b} \<inter> {x. x $$ k \<le> c}" "?g integrable_on {a..b} \<inter> {x. x $$ k \<ge> c}"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2837  | 
then guess h1 h2 unfolding integrable_on_def by auto from has_integral_split[OF this k]  | 
| 35172 | 2838  | 
show ?case unfolding integrable_on_def by auto  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2839  | 
  next show "?g integrable_on {a..b} \<inter> {x. x $$ k \<le> c}" "?g integrable_on {a..b} \<inter> {x. x $$ k \<ge> c}"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2840  | 
apply(rule_tac[!] integrable_spike[OF negligible_standard_hyperplane[of k c]]) using k as(2,4) by auto qed qed  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2841  | 
|
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2842  | 
lemma approximable_on_division: fixes f::"'b::ordered_euclidean_space \<Rightarrow> 'a::banach"  | 
| 35172 | 2843  | 
  assumes "0 \<le> e" "d division_of {a..b}" "\<forall>i\<in>d. \<exists>g. (\<forall>x\<in>i. norm (f x - g x) \<le> e) \<and> g integrable_on i"
 | 
2844  | 
  obtains g where "\<forall>x\<in>{a..b}. norm (f x - g x) \<le> e" "g integrable_on {a..b}"
 | 
|
2845  | 
proof- note * = operative_division[OF monoidal_and operative_approximable[OF assms(1)] assms(2)]  | 
|
2846  | 
note this[unfolded iterate_and[OF division_of_finite[OF assms(2)]]] from assms(3)[unfolded this[of f]]  | 
|
2847  | 
guess g .. thus thesis apply-apply(rule that[of g]) by auto qed  | 
|
2848  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2849  | 
lemma integrable_continuous: fixes f::"'b::ordered_euclidean_space \<Rightarrow> 'a::banach"  | 
| 35172 | 2850  | 
  assumes "continuous_on {a..b} f" shows "f integrable_on {a..b}"
 | 
2851  | 
proof(rule integrable_uniform_limit,safe) fix e::real assume e:"0 < e"  | 
|
2852  | 
from compact_uniformly_continuous[OF assms compact_interval,unfolded uniformly_continuous_on_def,rule_format,OF e] guess d ..  | 
|
2853  | 
note d=conjunctD2[OF this,rule_format]  | 
|
2854  | 
from fine_division_exists[OF gauge_ball[OF d(1)], of a b] guess p . note p=this  | 
|
2855  | 
note p' = tagged_division_ofD[OF p(1)]  | 
|
2856  | 
have *:"\<forall>i\<in>snd ` p. \<exists>g. (\<forall>x\<in>i. norm (f x - g x) \<le> e) \<and> g integrable_on i"  | 
|
2857  | 
proof(safe,unfold snd_conv) fix x l assume as:"(x,l) \<in> p"  | 
|
2858  | 
from p'(4)[OF this] guess a b apply-by(erule exE)+ note l=this  | 
|
2859  | 
show "\<exists>g. (\<forall>x\<in>l. norm (f x - g x) \<le> e) \<and> g integrable_on l" apply(rule_tac x="\<lambda>y. f x" in exI)  | 
|
2860  | 
proof safe show "(\<lambda>y. f x) integrable_on l" unfolding integrable_on_def l by(rule,rule has_integral_const)  | 
|
2861  | 
fix y assume y:"y\<in>l" note fineD[OF p(2) as,unfolded subset_eq,rule_format,OF this]  | 
|
2862  | 
note d(2)[OF _ _ this[unfolded mem_ball]]  | 
|
| 36587 | 2863  | 
thus "norm (f y - f x) \<le> e" using y p'(2-3)[OF as] unfolding dist_norm l norm_minus_commute by fastsimp qed qed  | 
| 35172 | 2864  | 
from e have "0 \<le> e" by auto from approximable_on_division[OF this division_of_tagged_division[OF p(1)] *] guess g .  | 
2865  | 
  thus "\<exists>g. (\<forall>x\<in>{a..b}. norm (f x - g x) \<le> e) \<and> g integrable_on {a..b}" by auto qed 
 | 
|
2866  | 
||
2867  | 
subsection {* Specialization of additivity to one dimension. *}
 | 
|
2868  | 
||
2869  | 
lemma operative_1_lt: assumes "monoidal opp"  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2870  | 
  shows "operative opp f \<longleftrightarrow> ((\<forall>a b. b \<le> a \<longrightarrow> f {a..b::real} = neutral opp) \<and>
 | 
| 35172 | 2871  | 
                (\<forall>a b c. a < c \<and> c < b \<longrightarrow> opp (f{a..c})(f{c..b}) = f {a..b}))"
 | 
| 41863 | 2872  | 
unfolding operative_def content_eq_0 DIM_real less_one simp_thms(39,41) Eucl_real_simps  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2873  | 
(* The dnf_simps simplify "\<exists> x. x= _ \<and> _" and "\<forall>k. k = _ \<longrightarrow> _" *)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2874  | 
proof safe fix a b c::"real" assume as:"\<forall>a b c. f {a..b} = opp (f ({a..b} \<inter> {x. x \<le> c}))
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2875  | 
    (f ({a..b} \<inter> {x. c \<le> x}))" "a < c" "c < b"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2876  | 
    from this(2-) have "{a..b} \<inter> {x. x \<le> c} = {a..c}" "{a..b} \<inter> {x. x \<ge> c} = {c..b}" by auto
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2877  | 
    thus "opp (f {a..c}) (f {c..b}) = f {a..b}" unfolding as(1)[rule_format,of a b "c"] by auto
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2878  | 
next fix a b c::real  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2879  | 
  assume as:"\<forall>a b. b \<le> a \<longrightarrow> f {a..b} = neutral opp" "\<forall>a b c. a < c \<and> c < b \<longrightarrow> opp (f {a..c}) (f {c..b}) = f {a..b}"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2880  | 
  show "f {a..b} = opp (f ({a..b} \<inter> {x. x \<le> c})) (f ({a..b} \<inter> {x. c \<le> x}))"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2881  | 
  proof(cases "c \<in> {a .. b}")
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2882  | 
case False hence "c<a \<or> c>b" by auto  | 
| 35172 | 2883  | 
thus ?thesis apply-apply(erule disjE)  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2884  | 
    proof- assume "c<a" hence *:"{a..b} \<inter> {x. x \<le> c} = {1..0}"  "{a..b} \<inter> {x. c \<le> x} = {a..b}" by auto
 | 
| 35172 | 2885  | 
show ?thesis unfolding * apply(subst as(1)[rule_format,of 0 1]) using assms by auto  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2886  | 
    next   assume "b<c" hence *:"{a..b} \<inter> {x. x \<le> c} = {a..b}"  "{a..b} \<inter> {x. c \<le> x} = {1..0}" by auto
 | 
| 35172 | 2887  | 
show ?thesis unfolding * apply(subst as(1)[rule_format,of 0 1]) using assms by auto  | 
2888  | 
qed  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2889  | 
next case True hence *:"min (b) c = c" "max a c = c" by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2890  | 
have **:"0 < DIM(real)" by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2891  | 
have ***:"\<And>P Q. (\<chi>\<chi> i. if i = 0 then P i else Q i) = (P 0::real)" apply(subst euclidean_eq)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2892  | 
apply safe unfolding euclidean_lambda_beta' by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2893  | 
show ?thesis unfolding interval_split[OF **,unfolded Eucl_real_simps(1,3)] unfolding *** *  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2894  | 
proof(cases "c = a \<or> c = b")  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2895  | 
      case False thus "f {a..b} = opp (f {a..c}) (f {c..b})"
 | 
| 35172 | 2896  | 
apply-apply(subst as(2)[rule_format]) using True by auto  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2897  | 
    next case True thus "f {a..b} = opp (f {a..c}) (f {c..b})" apply-
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2898  | 
proof(erule disjE) assume *:"c=a"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2899  | 
        hence "f {a..c} = neutral opp" apply-apply(rule as(1)[rule_format]) by auto
 | 
| 35172 | 2900  | 
thus ?thesis using assms unfolding * by auto  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2901  | 
      next assume *:"c=b" hence "f {c..b} = neutral opp" apply-apply(rule as(1)[rule_format]) by auto
 | 
| 35172 | 2902  | 
thus ?thesis using assms unfolding * by auto qed qed qed qed  | 
2903  | 
||
2904  | 
lemma operative_1_le: assumes "monoidal opp"  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2905  | 
  shows "operative opp f \<longleftrightarrow> ((\<forall>a b. b \<le> a \<longrightarrow> f {a..b::real} = neutral opp) \<and>
 | 
| 35172 | 2906  | 
                (\<forall>a b c. a \<le> c \<and> c \<le> b \<longrightarrow> opp (f{a..c})(f{c..b}) = f {a..b}))"
 | 
2907  | 
unfolding operative_1_lt[OF assms]  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2908  | 
proof safe fix a b c::"real" assume as:"\<forall>a b c. a \<le> c \<and> c \<le> b \<longrightarrow> opp (f {a..c}) (f {c..b}) = f {a..b}" "a < c" "c < b"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2909  | 
  show "opp (f {a..c}) (f {c..b}) = f {a..b}" apply(rule as(1)[rule_format]) using as(2-) by auto
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2910  | 
next fix a b c ::"real" assume "\<forall>a b. b \<le> a \<longrightarrow> f {a..b} = neutral opp"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2911  | 
    "\<forall>a b c. a < c \<and> c < b \<longrightarrow> opp (f {a..c}) (f {c..b}) = f {a..b}" "a \<le> c" "c \<le> b"
 | 
| 35172 | 2912  | 
note as = this[rule_format]  | 
2913  | 
  show "opp (f {a..c}) (f {c..b}) = f {a..b}"
 | 
|
2914  | 
proof(cases "c = a \<or> c = b")  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2915  | 
case False thus ?thesis apply-apply(subst as(2)) using as(3-) by(auto)  | 
| 35172 | 2916  | 
next case True thus ?thesis apply-  | 
2917  | 
      proof(erule disjE) assume *:"c=a" hence "f {a..c} = neutral opp" apply-apply(rule as(1)[rule_format]) by auto
 | 
|
2918  | 
thus ?thesis using assms unfolding * by auto  | 
|
2919  | 
      next               assume *:"c=b" hence "f {c..b} = neutral opp" apply-apply(rule as(1)[rule_format]) by auto
 | 
|
2920  | 
thus ?thesis using assms unfolding * by auto qed qed qed  | 
|
2921  | 
||
2922  | 
subsection {* Special case of additivity we need for the FCT. *}
 | 
|
2923  | 
||
| 35540 | 2924  | 
lemma interval_bound_sing[simp]: "interval_upperbound {a} = a"  "interval_lowerbound {a} = a"
 | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2925  | 
unfolding interval_upperbound_def interval_lowerbound_def by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2926  | 
|
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2927  | 
lemma additive_tagged_division_1: fixes f::"real \<Rightarrow> 'a::real_normed_vector"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2928  | 
  assumes "a \<le> b" "p tagged_division_of {a..b}"
 | 
| 35172 | 2929  | 
shows "setsum (\<lambda>(x,k). f(interval_upperbound k) - f(interval_lowerbound k)) p = f b - f a"  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2930  | 
proof- let ?f = "(\<lambda>k::(real) set. if k = {} then 0 else f(interval_upperbound k) - f(interval_lowerbound k))"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2931  | 
have ***:"\<forall>i<DIM(real). a $$ i \<le> b $$ i" using assms by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2932  | 
have *:"operative op + ?f" unfolding operative_1_lt[OF monoidal_monoid] interval_eq_empty by auto  | 
| 35172 | 2933  | 
  have **:"{a..b} \<noteq> {}" using assms(1) by auto note operative_tagged_division[OF monoidal_monoid * assms(2)]
 | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2934  | 
note * = this[unfolded if_not_P[OF **] interval_bounds[OF ***],THEN sym]  | 
| 35172 | 2935  | 
show ?thesis unfolding * apply(subst setsum_iterate[THEN sym]) defer  | 
2936  | 
apply(rule setsum_cong2) unfolding split_paired_all split_conv using assms(2) by auto qed  | 
|
2937  | 
||
2938  | 
subsection {* A useful lemma allowing us to factor out the content size. *}
 | 
|
2939  | 
||
2940  | 
lemma has_integral_factor_content:  | 
|
2941  | 
  "(f has_integral i) {a..b} \<longleftrightarrow> (\<forall>e>0. \<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {a..b} \<and> d fine p
 | 
|
2942  | 
    \<longrightarrow> norm (setsum (\<lambda>(x,k). content k *\<^sub>R f x) p - i) \<le> e * content {a..b}))"
 | 
|
2943  | 
proof(cases "content {a..b} = 0")
 | 
|
2944  | 
case True show ?thesis unfolding has_integral_null_eq[OF True] apply safe  | 
|
2945  | 
apply(rule,rule,rule gauge_trivial,safe) unfolding setsum_content_null[OF True] True defer  | 
|
2946  | 
apply(erule_tac x=1 in allE,safe) defer apply(rule fine_division_exists[of _ a b],assumption)  | 
|
2947  | 
apply(erule_tac x=p in allE) unfolding setsum_content_null[OF True] by auto  | 
|
2948  | 
next case False note F = this[unfolded content_lt_nz[THEN sym]]  | 
|
2949  | 
  let ?P = "\<lambda>e opp. \<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {a..b} \<and> d fine p \<longrightarrow> opp (norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - i)) e)"
 | 
|
2950  | 
show ?thesis apply(subst has_integral)  | 
|
2951  | 
proof safe fix e::real assume e:"e>0"  | 
|
2952  | 
    { assume "\<forall>e>0. ?P e op <" thus "?P (e * content {a..b}) op \<le>" apply(erule_tac x="e * content {a..b}" in allE)
 | 
|
2953  | 
apply(erule impE) defer apply(erule exE,rule_tac x=d in exI)  | 
|
2954  | 
using F e by(auto simp add:field_simps intro:mult_pos_pos) }  | 
|
2955  | 
    {  assume "\<forall>e>0. ?P (e * content {a..b}) op \<le>" thus "?P e op <" apply(erule_tac x="e / 2 / content {a..b}" in allE)
 | 
|
2956  | 
apply(erule impE) defer apply(erule exE,rule_tac x=d in exI)  | 
|
2957  | 
using F e by(auto simp add:field_simps intro:mult_pos_pos) } qed qed  | 
|
2958  | 
||
2959  | 
subsection {* Fundamental theorem of calculus. *}
 | 
|
2960  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2961  | 
lemma interval_bounds_real: assumes "a\<le>(b::real)"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2962  | 
  shows "interval_upperbound {a..b} = b" "interval_lowerbound {a..b} = a"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2963  | 
apply(rule_tac[!] interval_bounds) using assms by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2964  | 
|
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2965  | 
lemma fundamental_theorem_of_calculus: fixes f::"real \<Rightarrow> 'a::banach"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2966  | 
  assumes "a \<le> b"  "\<forall>x\<in>{a..b}. (f has_vector_derivative f' x) (at x within {a..b})"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2967  | 
  shows "(f' has_integral (f b - f a)) ({a..b})"
 | 
| 35172 | 2968  | 
unfolding has_integral_factor_content  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2969  | 
proof safe fix e::real assume e:"e>0"  | 
| 35172 | 2970  | 
note assm = assms(2)[unfolded has_vector_derivative_def has_derivative_within_alt]  | 
2971  | 
  have *:"\<And>P Q. \<forall>x\<in>{a..b}. P x \<and> (\<forall>e>0. \<exists>d>0. Q x e d) \<Longrightarrow> \<forall>x. \<exists>(d::real)>0. x\<in>{a..b} \<longrightarrow> Q x e d" using e by blast
 | 
|
2972  | 
note this[OF assm,unfolded gauge_existence_lemma] from choice[OF this,unfolded Ball_def[symmetric]]  | 
|
2973  | 
guess d .. note d=conjunctD2[OF this[rule_format],rule_format]  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2974  | 
  show "\<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {a..b} \<and> d fine p \<longrightarrow>
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2975  | 
                 norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f' x) - (f b - f a)) \<le> e * content {a..b})"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2976  | 
apply(rule_tac x="\<lambda>x. ball x (d x)" in exI,safe)  | 
| 35172 | 2977  | 
apply(rule gauge_ball_dependent,rule,rule d(1))  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2978  | 
  proof- fix p assume as:"p tagged_division_of {a..b}" "(\<lambda>x. ball x (d x)) fine p"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2979  | 
    show "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f' x) - (f b - f a)) \<le> e * content {a..b}" 
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2980  | 
unfolding content_real[OF assms(1)] additive_tagged_division_1[OF assms(1) as(1),of f,THEN sym]  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2981  | 
unfolding additive_tagged_division_1[OF assms(1) as(1),of "\<lambda>x. x",THEN sym]  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2982  | 
unfolding setsum_right_distrib defer unfolding setsum_subtractf[THEN sym]  | 
| 35172 | 2983  | 
proof(rule setsum_norm_le,safe) fix x k assume "(x,k)\<in>p"  | 
2984  | 
note xk = tagged_division_ofD(2-4)[OF as(1) this] from this(3) guess u v apply-by(erule exE)+ note k=this  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2985  | 
have *:"u \<le> v" using xk unfolding k by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2986  | 
have ball:"\<forall>xa\<in>k. xa \<in> ball x (d x)" using as(2)[unfolded fine_def,rule_format,OF `(x,k)\<in>p`,  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2987  | 
unfolded split_conv subset_eq] .  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2988  | 
have "norm ((v - u) *\<^sub>R f' x - (f v - f u)) \<le>  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2989  | 
norm (f u - f x - (u - x) *\<^sub>R f' x) + norm (f v - f x - (v - x) *\<^sub>R f' x)"  | 
| 35172 | 2990  | 
apply(rule order_trans[OF _ norm_triangle_ineq4]) apply(rule eq_refl) apply(rule arg_cong[where f=norm])  | 
| 
44282
 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 
huffman 
parents: 
44176 
diff
changeset
 | 
2991  | 
unfolding scaleR_diff_left by(auto simp add:algebra_simps)  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2992  | 
also have "... \<le> e * norm (u - x) + e * norm (v - x)"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2993  | 
apply(rule add_mono) apply(rule d(2)[of "x" "u",unfolded o_def]) prefer 4  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2994  | 
apply(rule d(2)[of "x" "v",unfolded o_def])  | 
| 35172 | 2995  | 
using ball[rule_format,of u] ball[rule_format,of v]  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2996  | 
using xk(1-2) unfolding k subset_eq by(auto simp add:dist_real_def)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2997  | 
also have "... \<le> e * (interval_upperbound k - interval_lowerbound k)"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
2998  | 
unfolding k interval_bounds_real[OF *] using xk(1) unfolding k by(auto simp add:dist_real_def field_simps)  | 
| 35172 | 2999  | 
finally show "norm (content k *\<^sub>R f' x - (f (interval_upperbound k) - f (interval_lowerbound k))) \<le>  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3000  | 
e * (interval_upperbound k - interval_lowerbound k)" unfolding k interval_bounds_real[OF *] content_real[OF *] .  | 
| 
44176
 
eda112e9cdee
remove redundant lemma setsum_norm in favor of norm_setsum;
 
huffman 
parents: 
44170 
diff
changeset
 | 
3001  | 
qed qed qed  | 
| 35172 | 3002  | 
|
3003  | 
subsection {* Attempt a systematic general set of "offset" results for components. *}
 | 
|
3004  | 
||
3005  | 
lemma gauge_modify:  | 
|
3006  | 
  assumes "(\<forall>s. open s \<longrightarrow> open {x. f(x) \<in> s})" "gauge d"
 | 
|
| 
44170
 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 
huffman 
parents: 
44167 
diff
changeset
 | 
3007  | 
  shows "gauge (\<lambda>x. {y. f y \<in> d (f x)})"
 | 
| 35172 | 3008  | 
using assms unfolding gauge_def apply safe defer apply(erule_tac x="f x" in allE)  | 
| 
44170
 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 
huffman 
parents: 
44167 
diff
changeset
 | 
3009  | 
apply(erule_tac x="d (f x)" in allE) by auto  | 
| 35172 | 3010  | 
|
3011  | 
subsection {* Only need trivial subintervals if the interval itself is trivial. *}
 | 
|
3012  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3013  | 
lemma division_of_nontrivial: fixes s::"('a::ordered_euclidean_space) set set"
 | 
| 35172 | 3014  | 
  assumes "s division_of {a..b}" "content({a..b}) \<noteq> 0"
 | 
3015  | 
  shows "{k. k \<in> s \<and> content k \<noteq> 0} division_of {a..b}" using assms(1) apply-
 | 
|
3016  | 
proof(induct "card s" arbitrary:s rule:nat_less_induct)  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3017  | 
  fix s::"'a set set" assume assm:"s division_of {a..b}"
 | 
| 35172 | 3018  | 
    "\<forall>m<card s. \<forall>x. m = card x \<longrightarrow> x division_of {a..b} \<longrightarrow> {k \<in> x. content k \<noteq> 0} division_of {a..b}" 
 | 
3019  | 
  note s = division_ofD[OF assm(1)] let ?thesis = "{k \<in> s. content k \<noteq> 0} division_of {a..b}"
 | 
|
3020  | 
  { presume *:"{k \<in> s. content k \<noteq> 0} \<noteq> s \<Longrightarrow> ?thesis"
 | 
|
3021  | 
show ?thesis apply cases defer apply(rule *,assumption) using assm(1) by auto }  | 
|
3022  | 
  assume noteq:"{k \<in> s. content k \<noteq> 0} \<noteq> s"
 | 
|
3023  | 
then obtain k where k:"k\<in>s" "content k = 0" by auto  | 
|
3024  | 
from s(4)[OF k(1)] guess c d apply-by(erule exE)+ note k=k this  | 
|
3025  | 
from k have "card s > 0" unfolding card_gt_0_iff using assm(1) by auto  | 
|
3026  | 
  hence card:"card (s - {k}) < card s" using assm(1) k(1) apply(subst card_Diff_singleton_if) by auto
 | 
|
3027  | 
  have *:"closed (\<Union>(s - {k}))" apply(rule closed_Union) defer apply rule apply(drule DiffD1,drule s(4))
 | 
|
3028  | 
apply safe apply(rule closed_interval) using assm(1) by auto  | 
|
3029  | 
  have "k \<subseteq> \<Union>(s - {k})" apply safe apply(rule *[unfolded closed_limpt,rule_format]) unfolding islimpt_approachable
 | 
|
3030  | 
proof safe fix x and e::real assume as:"x\<in>k" "e>0"  | 
|
3031  | 
from k(2)[unfolded k content_eq_0] guess i ..  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3032  | 
    hence i:"c$$i = d$$i" "i<DIM('a)" using s(3)[OF k(1),unfolded k] unfolding interval_ne_empty by auto
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3033  | 
hence xi:"x$$i = d$$i" using as unfolding k mem_interval by smt  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3034  | 
def y \<equiv> "(\<chi>\<chi> j. if j = i then if c$$i \<le> (a$$i + b$$i) / 2 then c$$i +  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3035  | 
min e (b$$i - c$$i) / 2 else c$$i - min e (c$$i - a$$i) / 2 else x$$j)::'a"  | 
| 35172 | 3036  | 
    show "\<exists>x'\<in>\<Union>(s - {k}). x' \<noteq> x \<and> dist x' x < e" apply(rule_tac x=y in bexI) 
 | 
3037  | 
    proof have "d \<in> {c..d}" using s(3)[OF k(1)] unfolding k interval_eq_empty mem_interval by(fastsimp simp add: not_less)
 | 
|
3038  | 
      hence "d \<in> {a..b}" using s(2)[OF k(1)] unfolding k by auto note di = this[unfolded mem_interval,THEN spec[where x=i]]
 | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3039  | 
hence xyi:"y$$i \<noteq> x$$i" unfolding y_def unfolding i xi euclidean_lambda_beta'[OF i(2)] if_P[OF refl]  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3040  | 
apply(cases) apply(subst if_P,assumption) unfolding if_not_P not_le using as(2)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3041  | 
using assms(2)[unfolded content_eq_0] using i(2) by smt+  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3042  | 
thus "y \<noteq> x" unfolding euclidean_eq[where 'a='a] using i by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3043  | 
      have *:"{..<DIM('a)} = insert i ({..<DIM('a)} - {i})" using i by auto
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3044  | 
      have "norm (y - x) < e + setsum (\<lambda>i. 0) {..<DIM('a)}" apply(rule le_less_trans[OF norm_le_l1])
 | 
| 35172 | 3045  | 
apply(subst *,subst setsum_insert) prefer 3 apply(rule add_less_le_mono)  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3046  | 
proof- show "\<bar>(y - x) $$ i\<bar> < e" unfolding y_def euclidean_simps euclidean_lambda_beta'[OF i(2)] if_P[OF refl]  | 
| 35172 | 3047  | 
apply(cases) apply(subst if_P,assumption) unfolding if_not_P unfolding i xi using di as(2) by auto  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3048  | 
        show "(\<Sum>i\<in>{..<DIM('a)} - {i}. \<bar>(y - x) $$ i\<bar>) \<le> (\<Sum>i\<in>{..<DIM('a)}. 0)" unfolding y_def by auto 
 | 
| 36587 | 3049  | 
qed auto thus "dist y x < e" unfolding dist_norm by auto  | 
| 35172 | 3050  | 
have "y\<notin>k" unfolding k mem_interval apply rule apply(erule_tac x=i in allE) using xyi unfolding k i xi by auto  | 
3051  | 
moreover have "y \<in> \<Union>s" unfolding s mem_interval  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3052  | 
proof(rule,rule) note simps = y_def euclidean_lambda_beta' if_not_P  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3053  | 
        fix j assume j:"j<DIM('a)" show "a $$ j \<le> y $$ j \<and> y $$ j \<le> b $$ j" 
 | 
| 35172 | 3054  | 
        proof(cases "j = i") case False have "x \<in> {a..b}" using s(2)[OF k(1)] as(1) by auto
 | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3055  | 
thus ?thesis using j apply- unfolding simps if_not_P[OF False] unfolding mem_interval by auto  | 
| 35172 | 3056  | 
next case True note T = this show ?thesis  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3057  | 
proof(cases "c $$ i \<le> (a $$ i + b $$ i) / 2")  | 
| 35172 | 3058  | 
case True show ?thesis unfolding simps if_P[OF T] if_P[OF True] unfolding i  | 
3059  | 
using True as(2) di apply-apply rule unfolding T by (auto simp add:field_simps)  | 
|
3060  | 
next case False thus ?thesis unfolding simps if_P[OF T] if_not_P[OF False] unfolding i  | 
|
3061  | 
using True as(2) di apply-apply rule unfolding T by (auto simp add:field_simps)  | 
|
3062  | 
qed qed qed  | 
|
3063  | 
      ultimately show "y \<in> \<Union>(s - {k})" by auto
 | 
|
3064  | 
    qed qed hence "\<Union>(s - {k}) = {a..b}" unfolding s(6)[THEN sym] by auto
 | 
|
3065  | 
  hence  "{ka \<in> s - {k}. content ka \<noteq> 0} division_of {a..b}" apply-apply(rule assm(2)[rule_format,OF card refl])
 | 
|
3066  | 
apply(rule division_ofI) defer apply(rule_tac[1-4] s) using assm(1) by auto  | 
|
3067  | 
  moreover have "{ka \<in> s - {k}. content ka \<noteq> 0} = {k \<in> s. content k \<noteq> 0}" using k by auto ultimately show ?thesis by auto qed
 | 
|
3068  | 
||
3069  | 
subsection {* Integrabibility on subintervals. *}
 | 
|
3070  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3071  | 
lemma operative_integrable: fixes f::"'b::ordered_euclidean_space \<Rightarrow> 'a::banach" shows  | 
| 35172 | 3072  | 
"operative op \<and> (\<lambda>i. f integrable_on i)"  | 
3073  | 
unfolding operative_def neutral_and apply safe apply(subst integrable_on_def)  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3074  | 
unfolding has_integral_null_eq apply(rule,rule refl) apply(rule,assumption,assumption)+  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3075  | 
unfolding integrable_on_def by(auto intro!: has_integral_split)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3076  | 
|
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3077  | 
lemma integrable_subinterval: fixes f::"'b::ordered_euclidean_space \<Rightarrow> 'a::banach"  | 
| 35172 | 3078  | 
  assumes "f integrable_on {a..b}" "{c..d} \<subseteq> {a..b}" shows "f integrable_on {c..d}" 
 | 
3079  | 
  apply(cases "{c..d} = {}") defer apply(rule partial_division_extend_1[OF assms(2)],assumption)
 | 
|
3080  | 
using operative_division_and[OF operative_integrable,THEN sym,of _ _ _ f] assms(1) by auto  | 
|
3081  | 
||
3082  | 
subsection {* Combining adjacent intervals in 1 dimension. *}
 | 
|
3083  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3084  | 
lemma has_integral_combine: assumes "(a::real) \<le> c" "c \<le> b"  | 
| 35172 | 3085  | 
  "(f has_integral i) {a..c}" "(f has_integral (j::'a::banach)) {c..b}"
 | 
3086  | 
  shows "(f has_integral (i + j)) {a..b}"
 | 
|
3087  | 
proof- note operative_integral[of f, unfolded operative_1_le[OF monoidal_lifted[OF monoidal_monoid]]]  | 
|
3088  | 
note conjunctD2[OF this,rule_format] note * = this(2)[OF conjI[OF assms(1-2)],unfolded if_P[OF assms(3)]]  | 
|
3089  | 
  hence "f integrable_on {a..b}" apply- apply(rule ccontr) apply(subst(asm) if_P) defer
 | 
|
3090  | 
apply(subst(asm) if_P) using assms(3-) by auto  | 
|
3091  | 
with * show ?thesis apply-apply(subst(asm) if_P) defer apply(subst(asm) if_P) defer apply(subst(asm) if_P)  | 
|
3092  | 
unfolding lifted.simps using assms(3-) by(auto simp add: integrable_on_def integral_unique) qed  | 
|
3093  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3094  | 
lemma integral_combine: fixes f::"real \<Rightarrow> 'a::banach"  | 
| 35172 | 3095  | 
  assumes "a \<le> c" "c \<le> b" "f integrable_on ({a..b})"
 | 
3096  | 
  shows "integral {a..c} f + integral {c..b} f = integral({a..b}) f"
 | 
|
3097  | 
apply(rule integral_unique[THEN sym]) apply(rule has_integral_combine[OF assms(1-2)])  | 
|
3098  | 
apply(rule_tac[!] integrable_integral integrable_subinterval[OF assms(3)])+ using assms(1-2) by auto  | 
|
3099  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3100  | 
lemma integrable_combine: fixes f::"real \<Rightarrow> 'a::banach"  | 
| 35172 | 3101  | 
  assumes "a \<le> c" "c \<le> b" "f integrable_on {a..c}" "f integrable_on {c..b}"
 | 
3102  | 
  shows "f integrable_on {a..b}" using assms unfolding integrable_on_def by(fastsimp intro!:has_integral_combine)
 | 
|
3103  | 
||
3104  | 
subsection {* Reduce integrability to "local" integrability. *}
 | 
|
3105  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3106  | 
lemma integrable_on_little_subintervals: fixes f::"'b::ordered_euclidean_space \<Rightarrow> 'a::banach"  | 
| 35172 | 3107  | 
  assumes "\<forall>x\<in>{a..b}. \<exists>d>0. \<forall>u v. x \<in> {u..v} \<and> {u..v} \<subseteq> ball x d \<and> {u..v} \<subseteq> {a..b} \<longrightarrow> f integrable_on {u..v}"
 | 
3108  | 
  shows "f integrable_on {a..b}"
 | 
|
3109  | 
proof- have "\<forall>x. \<exists>d. x\<in>{a..b} \<longrightarrow> d>0 \<and> (\<forall>u v. x \<in> {u..v} \<and> {u..v} \<subseteq> ball x d \<and> {u..v} \<subseteq> {a..b} \<longrightarrow> f integrable_on {u..v})"
 | 
|
3110  | 
using assms by auto note this[unfolded gauge_existence_lemma] from choice[OF this] guess d .. note d=this[rule_format]  | 
|
3111  | 
guess p apply(rule fine_division_exists[OF gauge_ball_dependent,of d a b]) using d by auto note p=this(1-2)  | 
|
3112  | 
note division_of_tagged_division[OF this(1)] note * = operative_division_and[OF operative_integrable,OF this,THEN sym,of f]  | 
|
3113  | 
show ?thesis unfolding * apply safe unfolding snd_conv  | 
|
3114  | 
proof- fix x k assume "(x,k) \<in> p" note tagged_division_ofD(2-4)[OF p(1) this] fineD[OF p(2) this]  | 
|
3115  | 
thus "f integrable_on k" apply safe apply(rule d[THEN conjunct2,rule_format,of x]) by auto qed qed  | 
|
3116  | 
||
3117  | 
subsection {* Second FCT or existence of antiderivative. *}
 | 
|
3118  | 
||
3119  | 
lemma integrable_const[intro]:"(\<lambda>x. c) integrable_on {a..b}"
 | 
|
3120  | 
unfolding integrable_on_def by(rule,rule has_integral_const)  | 
|
3121  | 
||
3122  | 
lemma integral_has_vector_derivative: fixes f::"real \<Rightarrow> 'a::banach"  | 
|
3123  | 
  assumes "continuous_on {a..b} f" "x \<in> {a..b}"
 | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3124  | 
  shows "((\<lambda>u. integral {a..u} f) has_vector_derivative f(x)) (at x within {a..b})"
 | 
| 35172 | 3125  | 
unfolding has_vector_derivative_def has_derivative_within_alt  | 
| 
44282
 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 
huffman 
parents: 
44176 
diff
changeset
 | 
3126  | 
apply safe apply(rule bounded_linear_scaleR_left)  | 
| 35172 | 3127  | 
proof- fix e::real assume e:"e>0"  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3128  | 
note compact_uniformly_continuous[OF assms(1) compact_interval,unfolded uniformly_continuous_on_def]  | 
| 35172 | 3129  | 
from this[rule_format,OF e] guess d apply-by(erule conjE exE)+ note d=this[rule_format]  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3130  | 
  let ?I = "\<lambda>a b. integral {a..b} f"
 | 
| 35172 | 3131  | 
  show "\<exists>d>0. \<forall>y\<in>{a..b}. norm (y - x) < d \<longrightarrow> norm (?I a y - ?I a x - (y - x) *\<^sub>R f x) \<le> e * norm (y - x)"
 | 
3132  | 
proof(rule,rule,rule d,safe) case goal1 show ?case proof(cases "y < x")  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3133  | 
      case False have "f integrable_on {a..y}" apply(rule integrable_subinterval,rule integrable_continuous)
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3134  | 
apply(rule assms) unfolding not_less using assms(2) goal1 by auto  | 
| 36350 | 3135  | 
hence *:"?I a y - ?I a x = ?I x y" unfolding algebra_simps apply(subst eq_commute) apply(rule integral_combine)  | 
| 35172 | 3136  | 
using False unfolding not_less using assms(2) goal1 by auto  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3137  | 
      have **:"norm (y - x) = content {x..y}" apply(subst content_real) using False unfolding not_less by auto
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3138  | 
show ?thesis unfolding ** apply(rule has_integral_bound[where f="(\<lambda>u. f u - f x)"]) unfolding * unfolding o_def  | 
| 35172 | 3139  | 
defer apply(rule has_integral_sub) apply(rule integrable_integral)  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3140  | 
apply(rule integrable_subinterval,rule integrable_continuous) apply(rule assms)+  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3141  | 
      proof- show "{x..y} \<subseteq> {a..b}" using goal1 assms(2) by auto
 | 
| 35172 | 3142  | 
have *:"y - x = norm(y - x)" using False by auto  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3143  | 
        show "((\<lambda>xa. f x) has_integral (y - x) *\<^sub>R f x) {x.. y}" apply(subst *) unfolding ** by auto
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3144  | 
        show "\<forall>xa\<in>{x..y}. norm (f xa - f x) \<le> e" apply safe apply(rule less_imp_le)
 | 
| 36587 | 3145  | 
apply(rule d(2)[unfolded dist_norm]) using assms(2) using goal1 by auto  | 
| 35172 | 3146  | 
qed(insert e,auto)  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3147  | 
    next case True have "f integrable_on {a..x}" apply(rule integrable_subinterval,rule integrable_continuous)
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3148  | 
apply(rule assms)+ unfolding not_less using assms(2) goal1 by auto  | 
| 36350 | 3149  | 
hence *:"?I a x - ?I a y = ?I y x" unfolding algebra_simps apply(subst eq_commute) apply(rule integral_combine)  | 
| 35172 | 3150  | 
using True using assms(2) goal1 by auto  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3151  | 
      have **:"norm (y - x) = content {y..x}" apply(subst content_real) using True unfolding not_less by auto
 | 
| 35172 | 3152  | 
have ***:"\<And>fy fx c::'a. fx - fy - (y - x) *\<^sub>R c = -(fy - fx - (x - y) *\<^sub>R c)" unfolding scaleR_left.diff by auto  | 
3153  | 
show ?thesis apply(subst ***) unfolding norm_minus_cancel **  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3154  | 
apply(rule has_integral_bound[where f="(\<lambda>u. f u - f x)"]) unfolding * unfolding o_def  | 
| 35172 | 3155  | 
defer apply(rule has_integral_sub) apply(subst minus_minus[THEN sym]) unfolding minus_minus  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3156  | 
apply(rule integrable_integral) apply(rule integrable_subinterval,rule integrable_continuous) apply(rule assms)+  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3157  | 
      proof- show "{y..x} \<subseteq> {a..b}" using goal1 assms(2) by auto
 | 
| 35172 | 3158  | 
have *:"x - y = norm(y - x)" using True by auto  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3159  | 
        show "((\<lambda>xa. f x) has_integral (x - y) *\<^sub>R f x) {y..x}" apply(subst *) unfolding ** by auto
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3160  | 
        show "\<forall>xa\<in>{y..x}. norm (f xa - f x) \<le> e" apply safe apply(rule less_imp_le)
 | 
| 36587 | 3161  | 
apply(rule d(2)[unfolded dist_norm]) using assms(2) using goal1 by auto  | 
| 35172 | 3162  | 
qed(insert e,auto) qed qed qed  | 
3163  | 
||
3164  | 
lemma antiderivative_continuous: assumes "continuous_on {a..b::real} f"
 | 
|
3165  | 
  obtains g where "\<forall>x\<in> {a..b}. (g has_vector_derivative (f(x)::_::banach)) (at x within {a..b})"
 | 
|
3166  | 
apply(rule that,rule) using integral_has_vector_derivative[OF assms] by auto  | 
|
3167  | 
||
3168  | 
subsection {* Combined fundamental theorem of calculus. *}
 | 
|
3169  | 
||
3170  | 
lemma antiderivative_integral_continuous: fixes f::"real \<Rightarrow> 'a::banach" assumes "continuous_on {a..b} f"
 | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3171  | 
  obtains g where "\<forall>u\<in>{a..b}. \<forall>v \<in> {a..b}. u \<le> v \<longrightarrow> (f has_integral (g v - g u)) {u..v}"
 | 
| 35172 | 3172  | 
proof- from antiderivative_continuous[OF assms] guess g . note g=this  | 
3173  | 
show ?thesis apply(rule that[of g])  | 
|
3174  | 
  proof safe case goal1 have "\<forall>x\<in>{u..v}. (g has_vector_derivative f x) (at x within {u..v})"
 | 
|
3175  | 
apply(rule,rule has_vector_derivative_within_subset) apply(rule g[rule_format]) using goal1(1-2) by auto  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3176  | 
thus ?case using fundamental_theorem_of_calculus[OF goal1(3),of "g" "f"] by auto qed qed  | 
| 35172 | 3177  | 
|
3178  | 
subsection {* General "twiddling" for interval-to-interval function image. *}
 | 
|
3179  | 
||
3180  | 
lemma has_integral_twiddle:  | 
|
3181  | 
assumes "0 < r" "\<forall>x. h(g x) = x" "\<forall>x. g(h x) = x" "\<forall>x. continuous (at x) g"  | 
|
3182  | 
  "\<forall>u v. \<exists>w z. g ` {u..v} = {w..z}"
 | 
|
3183  | 
  "\<forall>u v. \<exists>w z. h ` {u..v} = {w..z}"
 | 
|
3184  | 
  "\<forall>u v. content(g ` {u..v}) = r * content {u..v}"
 | 
|
3185  | 
  "(f has_integral i) {a..b}"
 | 
|
3186  | 
  shows "((\<lambda>x. f(g x)) has_integral (1 / r) *\<^sub>R i) (h ` {a..b})"
 | 
|
3187  | 
proof- { presume *:"{a..b} \<noteq> {} \<Longrightarrow> ?thesis"
 | 
|
3188  | 
show ?thesis apply cases defer apply(rule *,assumption)  | 
|
3189  | 
proof- case goal1 thus ?thesis unfolding goal1 assms(8)[unfolded goal1 has_integral_empty_eq] by auto qed }  | 
|
3190  | 
  assume "{a..b} \<noteq> {}" from assms(6)[rule_format,of a b] guess w z apply-by(erule exE)+ note wz=this
 | 
|
3191  | 
have inj:"inj g" "inj h" unfolding inj_on_def apply safe apply(rule_tac[!] ccontr)  | 
|
3192  | 
using assms(2) apply(erule_tac x=x in allE) using assms(2) apply(erule_tac x=y in allE) defer  | 
|
3193  | 
using assms(3) apply(erule_tac x=x in allE) using assms(3) apply(erule_tac x=y in allE) by auto  | 
|
3194  | 
show ?thesis unfolding has_integral_def has_integral_compact_interval_def apply(subst if_P) apply(rule,rule,rule wz)  | 
|
3195  | 
proof safe fix e::real assume e:"e>0" hence "e * r > 0" using assms(1) by(rule mult_pos_pos)  | 
|
3196  | 
from assms(8)[unfolded has_integral,rule_format,OF this] guess d apply-by(erule exE conjE)+ note d=this[rule_format]  | 
|
| 
44170
 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 
huffman 
parents: 
44167 
diff
changeset
 | 
3197  | 
    def d' \<equiv> "\<lambda>x. {y. g y \<in> d (g x)}" have d':"\<And>x. d' x = {y. g y \<in> (d (g x))}" unfolding d'_def ..
 | 
| 35172 | 3198  | 
    show "\<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of h ` {a..b} \<and> d fine p \<longrightarrow> norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f (g x)) - (1 / r) *\<^sub>R i) < e)"
 | 
3199  | 
proof(rule_tac x=d' in exI,safe) show "gauge d'" using d(1) unfolding gauge_def d' using continuous_open_preimage_univ[OF assms(4)] by auto  | 
|
3200  | 
      fix p assume as:"p tagged_division_of h ` {a..b}" "d' fine p" note p = tagged_division_ofD[OF as(1)] 
 | 
|
3201  | 
      have "(\<lambda>(x, k). (g x, g ` k)) ` p tagged_division_of {a..b} \<and> d fine (\<lambda>(x, k). (g x, g ` k)) ` p" unfolding tagged_division_of 
 | 
|
3202  | 
proof safe show "finite ((\<lambda>(x, k). (g x, g ` k)) ` p)" using as by auto  | 
|
3203  | 
show "d fine (\<lambda>(x, k). (g x, g ` k)) ` p" using as(2) unfolding fine_def d' by auto  | 
|
3204  | 
fix x k assume xk[intro]:"(x,k) \<in> p" show "g x \<in> g ` k" using p(2)[OF xk] by auto  | 
|
3205  | 
        show "\<exists>u v. g ` k = {u..v}" using p(4)[OF xk] using assms(5-6) by auto
 | 
|
3206  | 
        { fix y assume "y \<in> k" thus "g y \<in> {a..b}" "g y \<in> {a..b}" using p(3)[OF xk,unfolded subset_eq,rule_format,of "h (g y)"]
 | 
|
3207  | 
using assms(2)[rule_format,of y] unfolding inj_image_mem_iff[OF inj(2)] by auto }  | 
|
3208  | 
fix x' k' assume xk':"(x',k') \<in> p" fix z assume "z \<in> interior (g ` k)" "z \<in> interior (g ` k')"  | 
|
3209  | 
        hence *:"interior (g ` k) \<inter> interior (g ` k') \<noteq> {}" by auto
 | 
|
3210  | 
have same:"(x, k) = (x', k')" apply-apply(rule ccontr,drule p(5)[OF xk xk'])  | 
|
3211  | 
        proof- assume as:"interior k \<inter> interior k' = {}" from nonempty_witness[OF *] guess z .
 | 
|
3212  | 
hence "z \<in> g ` (interior k \<inter> interior k')" using interior_image_subset[OF assms(4) inj(1)]  | 
|
3213  | 
unfolding image_Int[OF inj(1)] by auto thus False using as by blast  | 
|
3214  | 
qed thus "g x = g x'" by auto  | 
|
3215  | 
        { fix z assume "z \<in> k"  thus  "g z \<in> g ` k'" using same by auto }
 | 
|
3216  | 
        { fix z assume "z \<in> k'" thus  "g z \<in> g ` k"  using same by auto }
 | 
|
3217  | 
      next fix x assume "x \<in> {a..b}" hence "h x \<in>  \<Union>{k. \<exists>x. (x, k) \<in> p}" using p(6) by auto
 | 
|
3218  | 
then guess X unfolding Union_iff .. note X=this from this(1) guess y unfolding mem_Collect_eq ..  | 
|
3219  | 
        thus "x \<in> \<Union>{k. \<exists>x. (x, k) \<in> (\<lambda>(x, k). (g x, g ` k)) ` p}" apply-
 | 
|
3220  | 
apply(rule_tac X="g ` X" in UnionI) defer apply(rule_tac x="h x" in image_eqI)  | 
|
3221  | 
using X(2) assms(3)[rule_format,of x] by auto  | 
|
3222  | 
qed note ** = d(2)[OF this] have *:"inj_on (\<lambda>(x, k). (g x, g ` k)) p" using inj(1) unfolding inj_on_def by fastsimp  | 
|
| 36350 | 3223  | 
have "(\<Sum>(x, k)\<in>(\<lambda>(x, k). (g x, g ` k)) ` p. content k *\<^sub>R f x) - i = r *\<^sub>R (\<Sum>(x, k)\<in>p. content k *\<^sub>R f (g x)) - i" (is "?l = _") unfolding algebra_simps add_left_cancel  | 
| 35172 | 3224  | 
unfolding setsum_reindex[OF *] apply(subst scaleR_right.setsum) defer apply(rule setsum_cong2) unfolding o_def split_paired_all split_conv  | 
3225  | 
apply(drule p(4)) apply safe unfolding assms(7)[rule_format] using p by auto  | 
|
| 
44282
 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 
huffman 
parents: 
44176 
diff
changeset
 | 
3226  | 
also have "... = r *\<^sub>R ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f (g x)) - (1 / r) *\<^sub>R i)" (is "_ = ?r") unfolding scaleR_diff_right scaleR_scaleR  | 
| 
 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 
huffman 
parents: 
44176 
diff
changeset
 | 
3227  | 
using assms(1) by auto finally have *:"?l = ?r" .  | 
| 35172 | 3228  | 
show "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f (g x)) - (1 / r) *\<^sub>R i) < e" using ** unfolding * unfolding norm_scaleR  | 
3229  | 
using assms(1) by(auto simp add:field_simps) qed qed qed  | 
|
3230  | 
||
3231  | 
subsection {* Special case of a basic affine transformation. *}
 | 
|
3232  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3233  | 
lemma interval_image_affinity_interval: shows "\<exists>u v. (\<lambda>x. m *\<^sub>R (x::'a::ordered_euclidean_space) + c) ` {a..b} = {u..v}"
 | 
| 35172 | 3234  | 
unfolding image_affinity_interval by auto  | 
3235  | 
||
3236  | 
lemma setprod_cong2: assumes "\<And>x. x \<in> A \<Longrightarrow> f x = g x" shows "setprod f A = setprod g A"  | 
|
3237  | 
apply(rule setprod_cong) using assms by auto  | 
|
3238  | 
||
3239  | 
lemma content_image_affinity_interval:  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3240  | 
 "content((\<lambda>x::'a::ordered_euclidean_space. m *\<^sub>R x + c) ` {a..b}) = (abs m) ^ DIM('a) * content {a..b}" (is "?l = ?r")
 | 
| 35172 | 3241  | 
proof- { presume *:"{a..b}\<noteq>{} \<Longrightarrow> ?thesis" show ?thesis apply(cases,rule *,assumption)
 | 
3242  | 
unfolding not_not using content_empty by auto }  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3243  | 
  have *:"DIM('a) = card {..<DIM('a)}" by auto
 | 
| 35172 | 3244  | 
  assume as:"{a..b}\<noteq>{}" show ?thesis proof(cases "m \<ge> 0")
 | 
3245  | 
case True show ?thesis unfolding image_affinity_interval if_not_P[OF as] if_P[OF True]  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3246  | 
unfolding content_closed_interval'[OF as] apply(subst content_closed_interval') defer apply(subst(2) *)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3247  | 
apply(subst setprod_constant[THEN sym]) apply(rule finite_lessThan) unfolding setprod_timesf[THEN sym]  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3248  | 
apply(rule setprod_cong2) using True as unfolding interval_ne_empty euclidean_simps not_le  | 
| 35172 | 3249  | 
by(auto simp add:field_simps intro:mult_left_mono)  | 
3250  | 
next case False show ?thesis unfolding image_affinity_interval if_not_P[OF as] if_not_P[OF False]  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3251  | 
unfolding content_closed_interval'[OF as] apply(subst content_closed_interval') defer apply(subst(2) *)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3252  | 
apply(subst setprod_constant[THEN sym]) apply(rule finite_lessThan) unfolding setprod_timesf[THEN sym]  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3253  | 
apply(rule setprod_cong2) using False as unfolding interval_ne_empty euclidean_simps not_le  | 
| 35172 | 3254  | 
by(auto simp add:field_simps mult_le_cancel_left_neg) qed qed  | 
3255  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3256  | 
lemma has_integral_affinity: fixes a::"'a::ordered_euclidean_space" assumes "(f has_integral i) {a..b}" "m \<noteq> 0"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3257  | 
  shows "((\<lambda>x. f(m *\<^sub>R x + c)) has_integral ((1 / (abs(m) ^ DIM('a))) *\<^sub>R i)) ((\<lambda>x. (1 / m) *\<^sub>R x + -((1 / m) *\<^sub>R c)) ` {a..b})"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3258  | 
apply(rule has_integral_twiddle,safe) apply(rule zero_less_power) unfolding euclidean_eq[where 'a='a]  | 
| 
44282
 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 
huffman 
parents: 
44176 
diff
changeset
 | 
3259  | 
unfolding scaleR_right_distrib euclidean_simps scaleR_scaleR  | 
| 35172 | 3260  | 
defer apply(insert assms(2), simp add:field_simps) apply(insert assms(2), simp add:field_simps)  | 
3261  | 
apply(rule continuous_intros)+ apply(rule interval_image_affinity_interval)+ apply(rule content_image_affinity_interval) using assms by auto  | 
|
3262  | 
||
3263  | 
lemma integrable_affinity: assumes "f integrable_on {a..b}" "m \<noteq> 0"
 | 
|
3264  | 
  shows "(\<lambda>x. f(m *\<^sub>R x + c)) integrable_on ((\<lambda>x. (1 / m) *\<^sub>R x + -((1/m) *\<^sub>R c)) ` {a..b})"
 | 
|
3265  | 
using assms unfolding integrable_on_def apply safe apply(drule has_integral_affinity) by auto  | 
|
3266  | 
||
3267  | 
subsection {* Special case of stretching coordinate axes separately. *}
 | 
|
3268  | 
||
3269  | 
lemma image_stretch_interval:  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3270  | 
  "(\<lambda>x. \<chi>\<chi> k. m k * x$$k) ` {a..b::'a::ordered_euclidean_space} =
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3271  | 
  (if {a..b} = {} then {} else {(\<chi>\<chi> k. min (m(k) * a$$k) (m(k) * b$$k))::'a ..  (\<chi>\<chi> k. max (m(k) * a$$k) (m(k) * b$$k))})"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3272  | 
(is "?l = ?r")  | 
| 35172 | 3273  | 
proof(cases "{a..b}={}") case True thus ?thesis unfolding True by auto
 | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3274  | 
next have *:"\<And>P Q. (\<forall>i<DIM('a). P i) \<and> (\<forall>i<DIM('a). Q i) \<longleftrightarrow> (\<forall>i<DIM('a). P i \<and> Q i)" by auto
 | 
| 35172 | 3275  | 
case False note ab = this[unfolded interval_ne_empty]  | 
| 
39302
 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 
nipkow 
parents: 
38656 
diff
changeset
 | 
3276  | 
show ?thesis apply-apply(rule set_eqI)  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3277  | 
  proof- fix x::"'a" have **:"\<And>P Q. (\<forall>i<DIM('a). P i = Q i) \<Longrightarrow> (\<forall>i<DIM('a). P i) = (\<forall>i<DIM('a). Q i)" by auto
 | 
| 35172 | 3278  | 
show "x \<in> ?l \<longleftrightarrow> x \<in> ?r" unfolding if_not_P[OF False]  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3279  | 
unfolding image_iff mem_interval Bex_def euclidean_simps euclidean_eq[where 'a='a] *  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3280  | 
unfolding imp_conjR[THEN sym] apply(subst euclidean_lambda_beta'') apply(subst lambda_skolem'[THEN sym])  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3281  | 
apply(rule **,rule,rule) unfolding euclidean_lambda_beta'  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3282  | 
    proof- fix i assume i:"i<DIM('a)" show "(\<exists>xa. (a $$ i \<le> xa \<and> xa \<le> b $$ i) \<and> x $$ i = m i * xa) =
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3283  | 
(min (m i * a $$ i) (m i * b $$ i) \<le> x $$ i \<and> x $$ i \<le> max (m i * a $$ i) (m i * b $$ i))"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3284  | 
proof(cases "m i = 0") case True thus ?thesis using ab i by auto  | 
| 35172 | 3285  | 
next case False hence "0 < m i \<or> 0 > m i" by auto thus ?thesis apply-  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3286  | 
proof(erule disjE) assume as:"0 < m i" hence *:"min (m i * a $$ i) (m i * b $$ i) = m i * a $$ i"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3287  | 
"max (m i * a $$ i) (m i * b $$ i) = m i * b $$ i" using ab i unfolding min_def max_def by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3288  | 
show ?thesis unfolding * apply rule defer apply(rule_tac x="1 / m i * x$$i" in exI)  | 
| 35172 | 3289  | 
using as by(auto simp add:field_simps)  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3290  | 
next assume as:"0 > m i" hence *:"max (m i * a $$ i) (m i * b $$ i) = m i * a $$ i"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3291  | 
"min (m i * a $$ i) (m i * b $$ i) = m i * b $$ i" using ab as i unfolding min_def max_def  | 
| 
36778
 
739a9379e29b
avoid using real-specific versions of generic lemmas
 
huffman 
parents: 
36725 
diff
changeset
 | 
3292  | 
by(auto simp add:field_simps mult_le_cancel_left_neg intro: order_antisym)  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3293  | 
show ?thesis unfolding * apply rule defer apply(rule_tac x="1 / m i * x$$i" in exI)  | 
| 35172 | 3294  | 
using as by(auto simp add:field_simps) qed qed qed qed qed  | 
3295  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3296  | 
lemma interval_image_stretch_interval: "\<exists>u v. (\<lambda>x. \<chi>\<chi> k. m k * x$$k) ` {a..b::'a::ordered_euclidean_space} = {u..v::'a}"
 | 
| 35172 | 3297  | 
unfolding image_stretch_interval by auto  | 
3298  | 
||
3299  | 
lemma content_image_stretch_interval:  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3300  | 
  "content((\<lambda>x::'a::ordered_euclidean_space. (\<chi>\<chi> k. m k * x$$k)::'a) ` {a..b}) = abs(setprod m {..<DIM('a)}) * content({a..b})"
 | 
| 35172 | 3301  | 
proof(cases "{a..b} = {}") case True thus ?thesis
 | 
3302  | 
unfolding content_def image_is_empty image_stretch_interval if_P[OF True] by auto  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3303  | 
next case False hence "(\<lambda>x. (\<chi>\<chi> k. m k * x $$ k)::'a) ` {a..b} \<noteq> {}" by auto
 | 
| 35172 | 3304  | 
thus ?thesis using False unfolding content_def image_stretch_interval apply- unfolding interval_bounds' if_not_P  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3305  | 
unfolding abs_setprod setprod_timesf[THEN sym] apply(rule setprod_cong2) unfolding lessThan_iff euclidean_lambda_beta'  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3306  | 
  proof- fix i assume i:"i<DIM('a)" have "(m i < 0 \<or> m i > 0) \<or> m i = 0" by auto
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3307  | 
thus "max (m i * a $$ i) (m i * b $$ i) - min (m i * a $$ i) (m i * b $$ i) = \<bar>m i\<bar> * (b $$ i - a $$ i)"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3308  | 
apply-apply(erule disjE)+ unfolding min_def max_def using False[unfolded interval_ne_empty,rule_format,of i] i  | 
| 35172 | 3309  | 
by(auto simp add:field_simps not_le mult_le_cancel_left_neg mult_le_cancel_left_pos) qed qed  | 
3310  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3311  | 
lemma has_integral_stretch: fixes f::"'a::ordered_euclidean_space => 'b::real_normed_vector"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3312  | 
  assumes "(f has_integral i) {a..b}" "\<forall>k<DIM('a). ~(m k = 0)"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3313  | 
shows "((\<lambda>x. f(\<chi>\<chi> k. m k * x$$k)) has_integral  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3314  | 
             ((1/(abs(setprod m {..<DIM('a)}))) *\<^sub>R i)) ((\<lambda>x. (\<chi>\<chi> k. 1/(m k) * x$$k)::'a) ` {a..b})"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3315  | 
apply(rule has_integral_twiddle[where f=f]) unfolding zero_less_abs_iff content_image_stretch_interval  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3316  | 
unfolding image_stretch_interval empty_as_interval euclidean_eq[where 'a='a] using assms  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3317  | 
proof- show "\<forall>y::'a. continuous (at y) (\<lambda>x. (\<chi>\<chi> k. m k * x $$ k)::'a)"  | 
| 35172 | 3318  | 
apply(rule,rule linear_continuous_at) unfolding linear_linear  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3319  | 
unfolding linear_def euclidean_simps euclidean_eq[where 'a='a] by(auto simp add:field_simps) qed auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3320  | 
|
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3321  | 
lemma integrable_stretch: fixes f::"'a::ordered_euclidean_space => 'b::real_normed_vector"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3322  | 
  assumes "f integrable_on {a..b}" "\<forall>k<DIM('a). ~(m k = 0)"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3323  | 
  shows "(\<lambda>x::'a. f(\<chi>\<chi> k. m k * x$$k)) integrable_on ((\<lambda>x. \<chi>\<chi> k. 1/(m k) * x$$k) ` {a..b})"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3324  | 
using assms unfolding integrable_on_def apply-apply(erule exE)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3325  | 
apply(drule has_integral_stretch,assumption) by auto  | 
| 35172 | 3326  | 
|
3327  | 
subsection {* even more special cases. *}
 | 
|
3328  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3329  | 
lemma uminus_interval_vector[simp]:"uminus ` {a..b} = {-b .. -a::'a::ordered_euclidean_space}"
 | 
| 
39302
 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 
nipkow 
parents: 
38656 
diff
changeset
 | 
3330  | 
apply(rule set_eqI,rule) defer unfolding image_iff  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3331  | 
apply(rule_tac x="-x" in bexI) by(auto simp add:minus_le_iff le_minus_iff eucl_le[where 'a='a])  | 
| 35172 | 3332  | 
|
3333  | 
lemma has_integral_reflect_lemma[intro]: assumes "(f has_integral i) {a..b}"
 | 
|
3334  | 
  shows "((\<lambda>x. f(-x)) has_integral i) {-b .. -a}"
 | 
|
3335  | 
using has_integral_affinity[OF assms, of "-1" 0] by auto  | 
|
3336  | 
||
3337  | 
lemma has_integral_reflect[simp]: "((\<lambda>x. f(-x)) has_integral i) {-b..-a} \<longleftrightarrow> (f has_integral i) ({a..b})"
 | 
|
3338  | 
apply rule apply(drule_tac[!] has_integral_reflect_lemma) by auto  | 
|
3339  | 
||
3340  | 
lemma integrable_reflect[simp]: "(\<lambda>x. f(-x)) integrable_on {-b..-a} \<longleftrightarrow> f integrable_on {a..b}"
 | 
|
3341  | 
unfolding integrable_on_def by auto  | 
|
3342  | 
||
3343  | 
lemma integral_reflect[simp]: "integral {-b..-a} (\<lambda>x. f(-x)) = integral ({a..b}) f"
 | 
|
3344  | 
unfolding integral_def by auto  | 
|
3345  | 
||
3346  | 
subsection {* Stronger form of FCT; quite a tedious proof. *}
 | 
|
3347  | 
||
3348  | 
lemma bgauge_existence_lemma: "(\<forall>x\<in>s. \<exists>d::real. 0 < d \<and> q d x) \<longleftrightarrow> (\<forall>x. \<exists>d>0. x\<in>s \<longrightarrow> q d x)" by(meson zero_less_one)  | 
|
3349  | 
||
3350  | 
lemma additive_tagged_division_1': fixes f::"real \<Rightarrow> 'a::real_normed_vector"  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3351  | 
  assumes "a \<le> b" "p tagged_division_of {a..b}"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3352  | 
shows "setsum (\<lambda>(x,k). f (interval_upperbound k) - f(interval_lowerbound k)) p = f b - f a"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3353  | 
using additive_tagged_division_1[OF _ assms(2), of f] using assms(1) by auto  | 
| 35172 | 3354  | 
|
| 36318 | 3355  | 
lemma split_minus[simp]:"(\<lambda>(x, k). f x k) x - (\<lambda>(x, k). g x k) x = (\<lambda>(x, k). f x k - g x k) x"  | 
| 35172 | 3356  | 
unfolding split_def by(rule refl)  | 
3357  | 
||
3358  | 
lemma norm_triangle_le_sub: "norm x + norm y \<le> e \<Longrightarrow> norm (x - y) \<le> e"  | 
|
3359  | 
apply(subst(asm)(2) norm_minus_cancel[THEN sym])  | 
|
| 36350 | 3360  | 
apply(drule norm_triangle_le) by(auto simp add:algebra_simps)  | 
| 35172 | 3361  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3362  | 
lemma fundamental_theorem_of_calculus_interior: fixes f::"real => 'a::real_normed_vector"  | 
| 35172 | 3363  | 
  assumes"a \<le> b" "continuous_on {a..b} f" "\<forall>x\<in>{a<..<b}. (f has_vector_derivative f'(x)) (at x)"
 | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3364  | 
  shows "(f' has_integral (f b - f a)) {a..b}"
 | 
| 35172 | 3365  | 
proof- { presume *:"a < b \<Longrightarrow> ?thesis" 
 | 
3366  | 
show ?thesis proof(cases,rule *,assumption)  | 
|
3367  | 
assume "\<not> a < b" hence "a = b" using assms(1) by auto  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3368  | 
      hence *:"{a .. b} = {b}" "f b - f a = 0" by(auto simp add:  order_antisym)
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3369  | 
show ?thesis unfolding *(2) apply(rule has_integral_null) unfolding content_eq_0 using * `a=b` by auto  | 
| 35172 | 3370  | 
qed } assume ab:"a < b"  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3371  | 
  let ?P = "\<lambda>e. \<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {a..b} \<and> d fine p \<longrightarrow>
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3372  | 
                   norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f' x) - (f b - f a)) \<le> e * content {a..b})"
 | 
| 35172 | 3373  | 
  { presume "\<And>e. e>0 \<Longrightarrow> ?P e" thus ?thesis unfolding has_integral_factor_content by auto }
 | 
3374  | 
fix e::real assume e:"e>0"  | 
|
3375  | 
note assms(3)[unfolded has_vector_derivative_def has_derivative_at_alt ball_conj_distrib]  | 
|
3376  | 
note conjunctD2[OF this] note bounded=this(1) and this(2)  | 
|
3377  | 
  from this(2) have "\<forall>x\<in>{a<..<b}. \<exists>d>0. \<forall>y. norm (y - x) < d \<longrightarrow> norm (f y - f x - (y - x) *\<^sub>R f' x) \<le> e/2 * norm (y - x)"
 | 
|
3378  | 
apply-apply safe apply(erule_tac x=x in ballE,erule_tac x="e/2" in allE) using e by auto note this[unfolded bgauge_existence_lemma]  | 
|
3379  | 
from choice[OF this] guess d .. note conjunctD2[OF this[rule_format]] note d = this[rule_format]  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3380  | 
  have "bounded (f ` {a..b})" apply(rule compact_imp_bounded compact_continuous_image)+ using compact_interval assms by auto
 | 
| 35172 | 3381  | 
from this[unfolded bounded_pos] guess B .. note B = this[rule_format]  | 
3382  | 
||
3383  | 
  have "\<exists>da. 0 < da \<and> (\<forall>c. a \<le> c \<and> {a..c} \<subseteq> {a..b} \<and> {a..c} \<subseteq> ball a da
 | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3384  | 
    \<longrightarrow> norm(content {a..c} *\<^sub>R f' a - (f c - f a)) \<le> (e * (b - a)) / 4)"
 | 
| 35172 | 3385  | 
  proof- have "a\<in>{a..b}" using ab by auto
 | 
3386  | 
note assms(2)[unfolded continuous_on_eq_continuous_within,rule_format,OF this]  | 
|
3387  | 
note * = this[unfolded continuous_within Lim_within,rule_format] have "(e * (b - a)) / 8 > 0" using e ab by(auto simp add:field_simps)  | 
|
3388  | 
from *[OF this] guess k .. note k = conjunctD2[OF this,rule_format]  | 
|
3389  | 
have "\<exists>l. 0 < l \<and> norm(l *\<^sub>R f' a) \<le> (e * (b - a)) / 8"  | 
|
3390  | 
proof(cases "f' a = 0") case True  | 
|
3391  | 
thus ?thesis apply(rule_tac x=1 in exI) using ab e by(auto intro!:mult_nonneg_nonneg)  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3392  | 
next case False thus ?thesis  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3393  | 
apply(rule_tac x="(e * (b - a)) / 8 / norm (f' a)" in exI) using ab e by(auto simp add:field_simps)  | 
| 35172 | 3394  | 
qed then guess l .. note l = conjunctD2[OF this]  | 
3395  | 
show ?thesis apply(rule_tac x="min k l" in exI) apply safe unfolding min_less_iff_conj apply(rule,(rule l k)+)  | 
|
3396  | 
    proof- fix c assume as:"a \<le> c" "{a..c} \<subseteq> {a..b}" "{a..c} \<subseteq> ball a (min k l)" 
 | 
|
3397  | 
note as' = this[unfolded subset_eq Ball_def mem_ball dist_real_def mem_interval]  | 
|
3398  | 
have "norm ((c - a) *\<^sub>R f' a - (f c - f a)) \<le> norm ((c - a) *\<^sub>R f' a) + norm (f c - f a)" by(rule norm_triangle_ineq4)  | 
|
3399  | 
also have "... \<le> e * (b - a) / 8 + e * (b - a) / 8"  | 
|
3400  | 
proof(rule add_mono) case goal1 have "\<bar>c - a\<bar> \<le> \<bar>l\<bar>" using as' by auto  | 
|
3401  | 
thus ?case apply-apply(rule order_trans[OF _ l(2)]) unfolding norm_scaleR apply(rule mult_right_mono) by auto  | 
|
3402  | 
next case goal2 show ?case apply(rule less_imp_le) apply(cases "a = c") defer  | 
|
| 36587 | 3403  | 
apply(rule k(2)[unfolded dist_norm]) using as' e ab by(auto simp add:field_simps)  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3404  | 
      qed finally show "norm (content {a..c} *\<^sub>R f' a - (f c - f a)) \<le> e * (b - a) / 4"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3405  | 
unfolding content_real[OF as(1)] by auto  | 
| 35172 | 3406  | 
qed qed then guess da .. note da=conjunctD2[OF this,rule_format]  | 
3407  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3408  | 
  have "\<exists>db>0. \<forall>c\<le>b. {c..b} \<subseteq> {a..b} \<and> {c..b} \<subseteq> ball b db \<longrightarrow>
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3409  | 
    norm(content {c..b} *\<^sub>R f' b - (f b - f c)) \<le> (e * (b - a)) / 4"
 | 
| 35172 | 3410  | 
  proof- have "b\<in>{a..b}" using ab by auto
 | 
3411  | 
note assms(2)[unfolded continuous_on_eq_continuous_within,rule_format,OF this]  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3412  | 
note * = this[unfolded continuous_within Lim_within,rule_format] have "(e * (b - a)) / 8 > 0"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3413  | 
using e ab by(auto simp add:field_simps)  | 
| 35172 | 3414  | 
from *[OF this] guess k .. note k = conjunctD2[OF this,rule_format]  | 
3415  | 
have "\<exists>l. 0 < l \<and> norm(l *\<^sub>R f' b) \<le> (e * (b - a)) / 8"  | 
|
3416  | 
proof(cases "f' b = 0") case True  | 
|
3417  | 
thus ?thesis apply(rule_tac x=1 in exI) using ab e by(auto intro!:mult_nonneg_nonneg)  | 
|
3418  | 
next case False thus ?thesis  | 
|
3419  | 
apply(rule_tac x="(e * (b - a)) / 8 / norm (f' b)" in exI)  | 
|
3420  | 
using ab e by(auto simp add:field_simps)  | 
|
3421  | 
qed then guess l .. note l = conjunctD2[OF this]  | 
|
3422  | 
show ?thesis apply(rule_tac x="min k l" in exI) apply safe unfolding min_less_iff_conj apply(rule,(rule l k)+)  | 
|
3423  | 
    proof- fix c assume as:"c \<le> b" "{c..b} \<subseteq> {a..b}" "{c..b} \<subseteq> ball b (min k l)" 
 | 
|
3424  | 
note as' = this[unfolded subset_eq Ball_def mem_ball dist_real_def mem_interval]  | 
|
3425  | 
have "norm ((b - c) *\<^sub>R f' b - (f b - f c)) \<le> norm ((b - c) *\<^sub>R f' b) + norm (f b - f c)" by(rule norm_triangle_ineq4)  | 
|
3426  | 
also have "... \<le> e * (b - a) / 8 + e * (b - a) / 8"  | 
|
3427  | 
proof(rule add_mono) case goal1 have "\<bar>c - b\<bar> \<le> \<bar>l\<bar>" using as' by auto  | 
|
3428  | 
thus ?case apply-apply(rule order_trans[OF _ l(2)]) unfolding norm_scaleR apply(rule mult_right_mono) by auto  | 
|
3429  | 
next case goal2 show ?case apply(rule less_imp_le) apply(cases "b = c") defer apply(subst norm_minus_commute)  | 
|
| 36587 | 3430  | 
apply(rule k(2)[unfolded dist_norm]) using as' e ab by(auto simp add:field_simps)  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3431  | 
      qed finally show "norm (content {c..b} *\<^sub>R f' b - (f b - f c)) \<le> e * (b - a) / 4"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3432  | 
unfolding content_real[OF as(1)] by auto  | 
| 35172 | 3433  | 
qed qed then guess db .. note db=conjunctD2[OF this,rule_format]  | 
3434  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3435  | 
let ?d = "(\<lambda>x. ball x (if x=a then da else if x=b then db else d x))"  | 
| 35172 | 3436  | 
show "?P e" apply(rule_tac x="?d" in exI)  | 
3437  | 
proof safe case goal1 show ?case apply(rule gauge_ball_dependent) using ab db(1) da(1) d(1) by auto  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3438  | 
  next case goal2 note as=this let ?A = "{t. fst t \<in> {a, b}}" note p = tagged_division_ofD[OF goal2(1)]
 | 
| 35172 | 3439  | 
    have pA:"p = (p \<inter> ?A) \<union> (p - ?A)" "finite (p \<inter> ?A)" "finite (p - ?A)" "(p \<inter> ?A) \<inter> (p - ?A) = {}"  using goal2 by auto
 | 
3440  | 
note * = additive_tagged_division_1'[OF assms(1) goal2(1), THEN sym]  | 
|
3441  | 
have **:"\<And>n1 s1 n2 s2::real. n2 \<le> s2 / 2 \<Longrightarrow> n1 - s1 \<le> s2 / 2 \<Longrightarrow> n1 + n2 \<le> s1 + s2" by arith  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3442  | 
show ?case unfolding content_real[OF assms(1)] and *[of "\<lambda>x. x"] *[of f] setsum_subtractf[THEN sym] split_minus  | 
| 35172 | 3443  | 
unfolding setsum_right_distrib apply(subst(2) pA,subst pA) unfolding setsum_Un_disjoint[OF pA(2-)]  | 
3444  | 
proof(rule norm_triangle_le,rule **)  | 
|
| 
44282
 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 
huffman 
parents: 
44176 
diff
changeset
 | 
3445  | 
case goal1 show ?case apply(rule order_trans,rule setsum_norm_le) defer apply(subst setsum_divide_distrib)  | 
| 35172 | 3446  | 
proof(rule order_refl,safe,unfold not_le o_def split_conv fst_conv,rule ccontr) fix x k assume as:"(x,k) \<in> p"  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3447  | 
"e * (interval_upperbound k - interval_lowerbound k) / 2  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3448  | 
< norm (content k *\<^sub>R f' x - (f (interval_upperbound k) - f (interval_lowerbound k)))"  | 
| 35172 | 3449  | 
from p(4)[OF this(1)] guess u v apply-by(erule exE)+ note k=this  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3450  | 
        hence "u \<le> v" and uv:"{u,v}\<subseteq>{u..v}" using p(2)[OF as(1)] by auto
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3451  | 
note result = as(2)[unfolded k interval_bounds_real[OF this(1)] content_real[OF this(1)]]  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3452  | 
|
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3453  | 
        assume as':"x \<noteq> a" "x \<noteq> b" hence "x \<in> {a<..<b}" using p(2-3)[OF as(1)] by auto
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3454  | 
note * = d(2)[OF this]  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3455  | 
have "norm ((v - u) *\<^sub>R f' (x) - (f (v) - f (u))) =  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3456  | 
norm ((f (u) - f (x) - (u - x) *\<^sub>R f' (x)) - (f (v) - f (x) - (v - x) *\<^sub>R f' (x)))"  | 
| 35172 | 3457  | 
apply(rule arg_cong[of _ _ norm]) unfolding scaleR_left.diff by auto  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3458  | 
also have "... \<le> e / 2 * norm (u - x) + e / 2 * norm (v - x)" apply(rule norm_triangle_le_sub)  | 
| 35172 | 3459  | 
apply(rule add_mono) apply(rule_tac[!] *) using fineD[OF goal2(2) as(1)] as' unfolding k subset_eq  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3460  | 
apply- apply(erule_tac x=u in ballE,erule_tac[3] x=v in ballE) using uv by(auto simp:dist_real_def)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3461  | 
also have "... \<le> e / 2 * norm (v - u)" using p(2)[OF as(1)] unfolding k by(auto simp add:field_simps)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3462  | 
finally have "e * (v - u) / 2 < e * (v - u) / 2"  | 
| 35172 | 3463  | 
apply- apply(rule less_le_trans[OF result]) using uv by auto thus False by auto qed  | 
3464  | 
||
3465  | 
next have *:"\<And>x s1 s2::real. 0 \<le> s1 \<Longrightarrow> x \<le> (s1 + s2) / 2 \<Longrightarrow> x - s1 \<le> s2 / 2" by auto  | 
|
3466  | 
case goal2 show ?case apply(rule *) apply(rule setsum_nonneg) apply(rule,unfold split_paired_all split_conv)  | 
|
3467  | 
defer unfolding setsum_Un_disjoint[OF pA(2-),THEN sym] pA(1)[THEN sym] unfolding setsum_right_distrib[THEN sym]  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3468  | 
apply(subst additive_tagged_division_1[OF _ as(1)]) apply(rule assms)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3469  | 
      proof- fix x k assume "(x,k) \<in> p \<inter> {t. fst t \<in> {a, b}}" note xk=IntD1[OF this]
 | 
| 35172 | 3470  | 
from p(4)[OF this] guess u v apply-by(erule exE)+ note uv=this  | 
3471  | 
        with p(2)[OF xk] have "{u..v} \<noteq> {}" by auto
 | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3472  | 
thus "0 \<le> e * ((interval_upperbound k) - (interval_lowerbound k))"  | 
| 35172 | 3473  | 
unfolding uv using e by(auto simp add:field_simps)  | 
3474  | 
next have *:"\<And>s f t e. setsum f s = setsum f t \<Longrightarrow> norm(setsum f t) \<le> e \<Longrightarrow> norm(setsum f s) \<le> e" by auto  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3475  | 
show "norm (\<Sum>(x, k)\<in>p \<inter> ?A. content k *\<^sub>R f' x -  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3476  | 
(f ((interval_upperbound k)) - f ((interval_lowerbound k)))) \<le> e * (b - a) / 2"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3477  | 
          apply(rule *[where t="p \<inter> {t. fst t \<in> {a, b} \<and> content(snd t) \<noteq> 0}"])
 | 
| 35172 | 3478  | 
apply(rule setsum_mono_zero_right[OF pA(2)]) defer apply(rule) unfolding split_paired_all split_conv o_def  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3479  | 
        proof- fix x k assume "(x,k) \<in> p \<inter> {t. fst t \<in> {a, b}} - p \<inter> {t. fst t \<in> {a, b} \<and> content (snd t) \<noteq> 0}"
 | 
| 35172 | 3480  | 
hence xk:"(x,k)\<in>p" "content k = 0" by auto from p(4)[OF xk(1)] guess u v apply-by(erule exE)+ note uv=this  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3481  | 
          have "k\<noteq>{}" using p(2)[OF xk(1)] by auto hence *:"u = v" using xk
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3482  | 
unfolding uv content_eq_0 interval_eq_empty by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3483  | 
thus "content k *\<^sub>R (f' (x)) - (f ((interval_upperbound k)) - f ((interval_lowerbound k))) = 0" using xk unfolding uv by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3484  | 
        next have *:"p \<inter> {t. fst t \<in> {a, b} \<and> content(snd t) \<noteq> 0} = 
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3485  | 
            {t. t\<in>p \<and> fst t = a \<and> content(snd t) \<noteq> 0} \<union> {t. t\<in>p \<and> fst t = b \<and> content(snd t) \<noteq> 0}" by blast
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3486  | 
have **:"\<And>s f. \<And>e::real. (\<forall>x y. x \<in> s \<and> y \<in> s \<longrightarrow> x = y) \<Longrightarrow> (\<forall>x. x \<in> s \<longrightarrow> norm(f x) \<le> e)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3487  | 
\<Longrightarrow> e>0 \<Longrightarrow> norm(setsum f s) \<le> e"  | 
| 35172 | 3488  | 
          proof(case_tac "s={}") case goal2 then obtain x where "x\<in>s" by auto hence *:"s = {x}" using goal2(1) by auto
 | 
3489  | 
thus ?case using `x\<in>s` goal2(2) by auto  | 
|
3490  | 
qed auto  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3491  | 
case goal2 show ?case apply(subst *, subst setsum_Un_disjoint) prefer 4  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3492  | 
apply(rule order_trans[of _ "e * (b - a)/4 + e * (b - a)/4"])  | 
| 35172 | 3493  | 
apply(rule norm_triangle_le,rule add_mono) apply(rule_tac[1-2] **)  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3494  | 
          proof- let ?B = "\<lambda>x. {t \<in> p. fst t = x \<and> content (snd t) \<noteq> 0}"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3495  | 
            have pa:"\<And>k. (a, k) \<in> p \<Longrightarrow> \<exists>v. k = {a .. v} \<and> a \<le> v" 
 | 
| 35172 | 3496  | 
proof- case goal1 guess u v using p(4)[OF goal1] apply-by(erule exE)+ note uv=this  | 
3497  | 
have *:"u \<le> v" using p(2)[OF goal1] unfolding uv by auto  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3498  | 
              have u:"u = a" proof(rule ccontr)  have "u \<in> {u..v}" using p(2-3)[OF goal1(1)] unfolding uv by auto 
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3499  | 
have "u \<ge> a" using p(2-3)[OF goal1(1)] unfolding uv subset_eq by auto moreover assume "u\<noteq>a" ultimately  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3500  | 
have "u > a" by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3501  | 
thus False using p(2)[OF goal1(1)] unfolding uv by(auto simp add:)  | 
| 35172 | 3502  | 
qed thus ?case apply(rule_tac x=v in exI) unfolding uv using * by auto  | 
3503  | 
qed  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3504  | 
            have pb:"\<And>k. (b, k) \<in> p \<Longrightarrow> \<exists>v. k = {v .. b} \<and> b \<ge> v" 
 | 
| 35172 | 3505  | 
proof- case goal1 guess u v using p(4)[OF goal1] apply-by(erule exE)+ note uv=this  | 
3506  | 
have *:"u \<le> v" using p(2)[OF goal1] unfolding uv by auto  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3507  | 
              have u:"v =  b" proof(rule ccontr)  have "u \<in> {u..v}" using p(2-3)[OF goal1(1)] unfolding uv by auto 
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3508  | 
have "v \<le> b" using p(2-3)[OF goal1(1)] unfolding uv subset_eq by auto moreover assume "v\<noteq> b" ultimately  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3509  | 
have "v < b" by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3510  | 
thus False using p(2)[OF goal1(1)] unfolding uv by(auto simp add:)  | 
| 35172 | 3511  | 
qed thus ?case apply(rule_tac x=u in exI) unfolding uv using * by auto  | 
3512  | 
qed  | 
|
3513  | 
||
3514  | 
show "\<forall>x y. x \<in> ?B a \<and> y \<in> ?B a \<longrightarrow> x = y" apply(rule,rule,rule,unfold split_paired_all)  | 
|
3515  | 
unfolding mem_Collect_eq fst_conv snd_conv apply safe  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3516  | 
proof- fix x k k' assume k:"( a, k) \<in> p" "( a, k') \<in> p" "content k \<noteq> 0" "content k' \<noteq> 0"  | 
| 35172 | 3517  | 
guess v using pa[OF k(1)] .. note v = conjunctD2[OF this]  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3518  | 
guess v' using pa[OF k(2)] .. note v' = conjunctD2[OF this] let ?v = " (min (v) (v'))"  | 
| 
44522
 
2f7e9d890efe
rename subset_{interior,closure} to {interior,closure}_mono;
 
huffman 
parents: 
44514 
diff
changeset
 | 
3519  | 
              have "{ a <..< ?v} \<subseteq> k \<inter> k'" unfolding v v' by(auto simp add:) note interior_mono[OF this,unfolded interior_inter]
 | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3520  | 
              moreover have " ((a + ?v)/2) \<in> { a <..< ?v}" using k(3-)
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3521  | 
unfolding v v' content_eq_0 not_le by(auto simp add:not_le)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3522  | 
ultimately have " ((a + ?v)/2) \<in> interior k \<inter> interior k'" unfolding interior_open[OF open_interval] by auto  | 
| 35172 | 3523  | 
hence *:"k = k'" apply- apply(rule ccontr) using p(5)[OF k(1-2)] by auto  | 
3524  | 
              { assume "x\<in>k" thus "x\<in>k'" unfolding * . } { assume "x\<in>k'" thus "x\<in>k" unfolding * . }
 | 
|
3525  | 
qed  | 
|
3526  | 
show "\<forall>x y. x \<in> ?B b \<and> y \<in> ?B b \<longrightarrow> x = y" apply(rule,rule,rule,unfold split_paired_all)  | 
|
3527  | 
unfolding mem_Collect_eq fst_conv snd_conv apply safe  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3528  | 
proof- fix x k k' assume k:"( b, k) \<in> p" "( b, k') \<in> p" "content k \<noteq> 0" "content k' \<noteq> 0"  | 
| 35172 | 3529  | 
guess v using pb[OF k(1)] .. note v = conjunctD2[OF this]  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3530  | 
guess v' using pb[OF k(2)] .. note v' = conjunctD2[OF this] let ?v = " (max (v) (v'))"  | 
| 
44522
 
2f7e9d890efe
rename subset_{interior,closure} to {interior,closure}_mono;
 
huffman 
parents: 
44514 
diff
changeset
 | 
3531  | 
              have "{?v <..<  b} \<subseteq> k \<inter> k'" unfolding v v' by(auto simp add:) note interior_mono[OF this,unfolded interior_inter]
 | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3532  | 
              moreover have " ((b + ?v)/2) \<in> {?v <..<  b}" using k(3-) unfolding v v' content_eq_0 not_le by auto
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3533  | 
ultimately have " ((b + ?v)/2) \<in> interior k \<inter> interior k'" unfolding interior_open[OF open_interval] by auto  | 
| 35172 | 3534  | 
hence *:"k = k'" apply- apply(rule ccontr) using p(5)[OF k(1-2)] by auto  | 
3535  | 
              { assume "x\<in>k" thus "x\<in>k'" unfolding * . } { assume "x\<in>k'" thus "x\<in>k" unfolding * . }
 | 
|
3536  | 
qed  | 
|
3537  | 
||
3538  | 
let ?a = a and ?b = b (* a is something else while proofing the next theorem. *)  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3539  | 
show "\<forall>x. x \<in> ?B a \<longrightarrow> norm ((\<lambda>(x, k). content k *\<^sub>R f' (x) - (f ((interval_upperbound k)) -  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3540  | 
f ((interval_lowerbound k)))) x) \<le> e * (b - a) / 4" apply(rule,rule) unfolding mem_Collect_eq  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3541  | 
unfolding split_paired_all fst_conv snd_conv  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3542  | 
proof safe case goal1 guess v using pa[OF goal1(1)] .. note v = conjunctD2[OF this]  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3543  | 
              have " ?a\<in>{ ?a..v}" using v(2) by auto hence "v \<le> ?b" using p(3)[OF goal1(1)] unfolding subset_eq v by auto
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3544  | 
              moreover have "{?a..v} \<subseteq> ball ?a da" using fineD[OF as(2) goal1(1)]
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3545  | 
apply-apply(subst(asm) if_P,rule refl) unfolding subset_eq apply safe apply(erule_tac x=" x" in ballE)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3546  | 
by(auto simp add:subset_eq dist_real_def v) ultimately  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3547  | 
show ?case unfolding v interval_bounds_real[OF v(2)] apply- apply(rule da(2)[of "v"])  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3548  | 
using goal1 fineD[OF as(2) goal1(1)] unfolding v content_eq_0 by auto  | 
| 35172 | 3549  | 
qed  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3550  | 
show "\<forall>x. x \<in> ?B b \<longrightarrow> norm ((\<lambda>(x, k). content k *\<^sub>R f' (x) -  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3551  | 
(f ((interval_upperbound k)) - f ((interval_lowerbound k)))) x) \<le> e * (b - a) / 4"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3552  | 
apply(rule,rule) unfolding mem_Collect_eq unfolding split_paired_all fst_conv snd_conv  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3553  | 
proof safe case goal1 guess v using pb[OF goal1(1)] .. note v = conjunctD2[OF this]  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3554  | 
              have " ?b\<in>{v.. ?b}" using v(2) by auto hence "v \<ge> ?a" using p(3)[OF goal1(1)]
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3555  | 
unfolding subset_eq v by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3556  | 
              moreover have "{v..?b} \<subseteq> ball ?b db" using fineD[OF as(2) goal1(1)]
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3557  | 
apply-apply(subst(asm) if_P,rule refl) unfolding subset_eq apply safe  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3558  | 
apply(erule_tac x=" x" in ballE) using ab  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3559  | 
by(auto simp add:subset_eq v dist_real_def) ultimately  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3560  | 
show ?case unfolding v unfolding interval_bounds_real[OF v(2)] apply- apply(rule db(2)[of "v"])  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3561  | 
using goal1 fineD[OF as(2) goal1(1)] unfolding v content_eq_0 by auto  | 
| 35172 | 3562  | 
qed  | 
3563  | 
qed(insert p(1) ab e, auto simp add:field_simps) qed auto qed qed qed qed  | 
|
3564  | 
||
3565  | 
subsection {* Stronger form with finite number of exceptional points. *}
 | 
|
3566  | 
||
3567  | 
lemma fundamental_theorem_of_calculus_interior_strong: fixes f::"real \<Rightarrow> 'a::banach"  | 
|
3568  | 
  assumes"finite s" "a \<le> b" "continuous_on {a..b} f"
 | 
|
3569  | 
  "\<forall>x\<in>{a<..<b} - s. (f has_vector_derivative f'(x)) (at x)"
 | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3570  | 
  shows "(f' has_integral (f b - f a)) {a..b}" using assms apply- 
 | 
| 35172 | 3571  | 
proof(induct "card s" arbitrary:s a b)  | 
3572  | 
case 0 show ?case apply(rule fundamental_theorem_of_calculus_interior) using 0 by auto  | 
|
3573  | 
next case (Suc n) from this(2) guess c s' apply-apply(subst(asm) eq_commute) unfolding card_Suc_eq  | 
|
3574  | 
apply(subst(asm)(2) eq_commute) by(erule exE conjE)+ note cs = this[rule_format]  | 
|
3575  | 
  show ?case proof(cases "c\<in>{a<..<b}")
 | 
|
3576  | 
case False thus ?thesis apply- apply(rule Suc(1)[OF cs(3) _ Suc(4,5)]) apply safe defer  | 
|
3577  | 
apply(rule Suc(6)[rule_format]) using Suc(3) unfolding cs by auto  | 
|
3578  | 
next have *:"f b - f a = (f c - f a) + (f b - f c)" by auto  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3579  | 
case True hence "a \<le> c" "c \<le> b" by auto  | 
| 35172 | 3580  | 
thus ?thesis apply(subst *) apply(rule has_integral_combine) apply assumption+  | 
3581  | 
apply(rule_tac[!] Suc(1)[OF cs(3)]) using Suc(3) unfolding cs  | 
|
3582  | 
    proof- show "continuous_on {a..c} f" "continuous_on {c..b} f"
 | 
|
3583  | 
apply(rule_tac[!] continuous_on_subset[OF Suc(5)]) using True by auto  | 
|
3584  | 
      let ?P = "\<lambda>i j. \<forall>x\<in>{i<..<j} - s'. (f has_vector_derivative f' x) (at x)"
 | 
|
3585  | 
show "?P a c" "?P c b" apply safe apply(rule_tac[!] Suc(6)[rule_format]) using True unfolding cs by auto  | 
|
3586  | 
qed auto qed qed  | 
|
3587  | 
||
3588  | 
lemma fundamental_theorem_of_calculus_strong: fixes f::"real \<Rightarrow> 'a::banach"  | 
|
3589  | 
  assumes "finite s" "a \<le> b" "continuous_on {a..b} f"
 | 
|
3590  | 
  "\<forall>x\<in>{a..b} - s. (f has_vector_derivative f'(x)) (at x)"
 | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3591  | 
  shows "(f' has_integral (f(b) - f(a))) {a..b}"
 | 
| 35172 | 3592  | 
apply(rule fundamental_theorem_of_calculus_interior_strong[OF assms(1-3), of f'])  | 
3593  | 
using assms(4) by auto  | 
|
3594  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3595  | 
lemma indefinite_integral_continuous_left: fixes f::"real \<Rightarrow> 'a::banach"  | 
| 35751 | 3596  | 
  assumes "f integrable_on {a..b}" "a < c" "c \<le> b" "0 < e"
 | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3597  | 
  obtains d where "0 < d" "\<forall>t. c - d < t \<and> t \<le> c \<longrightarrow> norm(integral {a..c} f - integral {a..t} f) < e"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3598  | 
proof- have "\<exists>w>0. \<forall>t. c - w < t \<and> t < c \<longrightarrow> norm(f c) * norm(c - t) < e / 3"  | 
| 35751 | 3599  | 
proof(cases "f c = 0") case False hence "0 < e / 3 / norm (f c)"  | 
3600  | 
apply-apply(rule divide_pos_pos) using `e>0` by auto  | 
|
3601  | 
thus ?thesis apply-apply(rule,rule,assumption,safe)  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3602  | 
proof- fix t assume as:"t < c" and "c - e / 3 / norm (f c) < t"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3603  | 
hence "c - t < e / 3 / norm (f c)" by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3604  | 
hence "norm (c - t) < e / 3 / norm (f c)" using as by auto  | 
| 35751 | 3605  | 
thus "norm (f c) * norm (c - t) < e / 3" using False apply-  | 
| 
36778
 
739a9379e29b
avoid using real-specific versions of generic lemmas
 
huffman 
parents: 
36725 
diff
changeset
 | 
3606  | 
apply(subst mult_commute) apply(subst pos_less_divide_eq[THEN sym]) by auto  | 
| 35751 | 3607  | 
qed next case True show ?thesis apply(rule_tac x=1 in exI) unfolding True using `e>0` by auto  | 
3608  | 
qed then guess w .. note w = conjunctD2[OF this,rule_format]  | 
|
3609  | 
||
3610  | 
have *:"e / 3 > 0" using assms by auto  | 
|
3611  | 
  have "f integrable_on {a..c}" apply(rule integrable_subinterval[OF assms(1)]) using assms(2-3) by auto
 | 
|
3612  | 
from integrable_integral[OF this,unfolded has_integral,rule_format,OF *] guess d1 ..  | 
|
3613  | 
note d1 = conjunctD2[OF this,rule_format] def d \<equiv> "\<lambda>x. ball x w \<inter> d1 x"  | 
|
3614  | 
have "gauge d" unfolding d_def using w(1) d1 by auto  | 
|
3615  | 
note this[unfolded gauge_def,rule_format,of c] note conjunctD2[OF this]  | 
|
3616  | 
from this(2)[unfolded open_contains_ball,rule_format,OF this(1)] guess k .. note k=conjunctD2[OF this]  | 
|
3617  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3618  | 
let ?d = "min k (c - a)/2" show ?thesis apply(rule that[of ?d])  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3619  | 
proof safe show "?d > 0" using k(1) using assms(2) by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3620  | 
    fix t assume as:"c - ?d < t" "t \<le> c" let ?thesis = "norm (integral {a..c} f - integral {a..t} f) < e"
 | 
| 35751 | 3621  | 
    { presume *:"t < c \<Longrightarrow> ?thesis"
 | 
3622  | 
show ?thesis apply(cases "t = c") defer apply(rule *)  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3623  | 
apply(subst less_le) using `e>0` as(2) by auto } assume "t < c"  | 
| 35751 | 3624  | 
|
3625  | 
    have "f integrable_on {a..t}" apply(rule integrable_subinterval[OF assms(1)]) using assms(2-3) as(2) by auto
 | 
|
3626  | 
from integrable_integral[OF this,unfolded has_integral,rule_format,OF *] guess d2 ..  | 
|
3627  | 
note d2 = conjunctD2[OF this,rule_format]  | 
|
3628  | 
def d3 \<equiv> "\<lambda>x. if x \<le> t then d1 x \<inter> d2 x else d1 x"  | 
|
3629  | 
have "gauge d3" using d2(1) d1(1) unfolding d3_def gauge_def by auto  | 
|
3630  | 
from fine_division_exists[OF this, of a t] guess p . note p=this  | 
|
3631  | 
note p'=tagged_division_ofD[OF this(1)]  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3632  | 
have pt:"\<forall>(x,k)\<in>p. x \<le> t" proof safe case goal1 from p'(2,3)[OF this] show ?case by auto qed  | 
| 35751 | 3633  | 
with p(2) have "d2 fine p" unfolding fine_def d3_def apply safe apply(erule_tac x="(a,b)" in ballE)+ by auto  | 
3634  | 
note d2_fin = d2(2)[OF conjI[OF p(1) this]]  | 
|
3635  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3636  | 
    have *:"{a..c} \<inter> {x. x $$0 \<le> t} = {a..t}" "{a..c} \<inter> {x. x$$0 \<ge> t} = {t..c}"
 | 
| 35751 | 3637  | 
using assms(2-3) as by(auto simp add:field_simps)  | 
3638  | 
    have "p \<union> {(c, {t..c})} tagged_division_of {a..c} \<and> d1 fine p \<union> {(c, {t..c})}" apply rule
 | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3639  | 
apply(rule tagged_division_union_interval[of _ _ _ 0 "t"]) unfolding * apply(rule p)  | 
| 35751 | 3640  | 
apply(rule tagged_division_of_self) unfolding fine_def  | 
3641  | 
proof safe fix x k y assume "(x,k)\<in>p" "y\<in>k" thus "y\<in>d1 x"  | 
|
3642  | 
using p(2) pt unfolding fine_def d3_def apply- apply(erule_tac x="(x,k)" in ballE)+ by auto  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3643  | 
    next fix x assume "x\<in>{t..c}" hence "dist c x < k" unfolding dist_real_def
 | 
| 35751 | 3644  | 
using as(1) by(auto simp add:field_simps)  | 
3645  | 
thus "x \<in> d1 c" using k(2) unfolding d_def by auto  | 
|
3646  | 
qed(insert as(2), auto) note d1_fin = d1(2)[OF this]  | 
|
3647  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3648  | 
    have *:"integral{a..c} f - integral {a..t} f = -(((c - t) *\<^sub>R f c + (\<Sum>(x, k)\<in>p. content k *\<^sub>R f x)) -
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3649  | 
        integral {a..c} f) + ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - integral {a..t} f) + (c - t) *\<^sub>R f c" 
 | 
| 35751 | 3650  | 
"e = (e/3 + e/3) + e/3" by auto  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3651  | 
    have **:"(\<Sum>(x, k)\<in>p \<union> {(c, {t..c})}. content k *\<^sub>R f x) = (c - t) *\<^sub>R f c + (\<Sum>(x, k)\<in>p. content k *\<^sub>R f x)"
 | 
| 35751 | 3652  | 
    proof- have **:"\<And>x F. F \<union> {x} = insert x F" by auto
 | 
3653  | 
      have "(c, {t..c}) \<notin> p" proof safe case goal1 from p'(2-3)[OF this]
 | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3654  | 
        have "c \<in> {a..t}" by auto thus False using `t<c` by auto
 | 
| 35751 | 3655  | 
qed thus ?thesis unfolding ** apply- apply(subst setsum_insert) apply(rule p')  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3656  | 
unfolding split_conv defer apply(subst content_real) using as(2) by auto qed  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3657  | 
|
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3658  | 
have ***:"c - w < t \<and> t < c"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3659  | 
proof- have "c - k < t" using `k>0` as(1) by(auto simp add:field_simps)  | 
| 35751 | 3660  | 
moreover have "k \<le> w" apply(rule ccontr) using k(2)  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3661  | 
unfolding subset_eq apply(erule_tac x="c + ((k + w)/2)" in ballE)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3662  | 
unfolding d_def using `k>0` `w>0` by(auto simp add:field_simps not_le not_less dist_real_def)  | 
| 35751 | 3663  | 
ultimately show ?thesis using `t<c` by(auto simp add:field_simps) qed  | 
3664  | 
||
3665  | 
show ?thesis unfolding *(1) apply(subst *(2)) apply(rule norm_triangle_lt add_strict_mono)+  | 
|
3666  | 
unfolding norm_minus_cancel apply(rule d1_fin[unfolded **]) apply(rule d2_fin)  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3667  | 
using w(2)[OF ***] unfolding norm_scaleR by(auto simp add:field_simps) qed qed  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3668  | 
|
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3669  | 
lemma indefinite_integral_continuous_right: fixes f::"real \<Rightarrow> 'a::banach"  | 
| 35751 | 3670  | 
  assumes "f integrable_on {a..b}" "a \<le> c" "c < b" "0 < e"
 | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3671  | 
  obtains d where "0 < d" "\<forall>t. c \<le> t \<and> t < c + d \<longrightarrow> norm(integral{a..c} f - integral{a..t} f) < e"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3672  | 
proof- have *:"(\<lambda>x. f (- x)) integrable_on {- b..- a}" "- b < - c" "- c \<le> - a" using assms by auto
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3673  | 
from indefinite_integral_continuous_left[OF * `e>0`] guess d . note d = this let ?d = "min d (b - c)"  | 
| 35751 | 3674  | 
show ?thesis apply(rule that[of "?d"])  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3675  | 
proof safe show "0 < ?d" using d(1) assms(3) by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3676  | 
fix t::"real" assume as:"c \<le> t" "t < c + ?d"  | 
| 35751 | 3677  | 
    have *:"integral{a..c} f = integral{a..b} f - integral{c..b} f"
 | 
| 36350 | 3678  | 
      "integral{a..t} f = integral{a..b} f - integral{t..b} f" unfolding algebra_simps
 | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3679  | 
apply(rule_tac[!] integral_combine) using assms as by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3680  | 
have "(- c) - d < (- t) \<and> - t \<le> - c" using as by auto note d(2)[rule_format,OF this]  | 
| 35751 | 3681  | 
    thus "norm (integral {a..c} f - integral {a..t} f) < e" unfolding * 
 | 
| 36350 | 3682  | 
unfolding integral_reflect apply-apply(subst norm_minus_commute) by(auto simp add:algebra_simps) qed qed  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3683  | 
|
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3684  | 
lemma indefinite_integral_continuous: fixes f::"real \<Rightarrow> 'a::banach"  | 
| 35751 | 3685  | 
  assumes "f integrable_on {a..b}" shows  "continuous_on {a..b} (\<lambda>x. integral {a..x} f)"
 | 
| 36359 | 3686  | 
proof(unfold continuous_on_iff, safe)  fix x e assume as:"x\<in>{a..b}" "0<(e::real)"
 | 
| 35751 | 3687  | 
  let ?thesis = "\<exists>d>0. \<forall>x'\<in>{a..b}. dist x' x < d \<longrightarrow> dist (integral {a..x'} f) (integral {a..x} f) < e"
 | 
3688  | 
  { presume *:"a<b \<Longrightarrow> ?thesis"
 | 
|
3689  | 
show ?thesis apply(cases,rule *,assumption)  | 
|
| 
39302
 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 
nipkow 
parents: 
38656 
diff
changeset
 | 
3690  | 
    proof- case goal1 hence "{a..b} = {x}" using as(1) apply-apply(rule set_eqI)
 | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3691  | 
unfolding atLeastAtMost_iff by(auto simp only:field_simps not_less DIM_real)  | 
| 35751 | 3692  | 
thus ?case using `e>0` by auto  | 
3693  | 
qed } assume "a<b"  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3694  | 
have "(x=a \<or> x=b) \<or> (a<x \<and> x<b)" using as(1) by (auto simp add:)  | 
| 35751 | 3695  | 
thus ?thesis apply-apply(erule disjE)+  | 
3696  | 
proof- assume "x=a" have "a \<le> a" by auto  | 
|
3697  | 
from indefinite_integral_continuous_right[OF assms(1) this `a<b` `e>0`] guess d . note d=this  | 
|
3698  | 
show ?thesis apply(rule,rule,rule d,safe) apply(subst dist_commute)  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3699  | 
unfolding `x=a` dist_norm apply(rule d(2)[rule_format]) by auto  | 
| 35751 | 3700  | 
next assume "x=b" have "b \<le> b" by auto  | 
3701  | 
from indefinite_integral_continuous_left[OF assms(1) `a<b` this `e>0`] guess d . note d=this  | 
|
3702  | 
show ?thesis apply(rule,rule,rule d,safe) apply(subst dist_commute)  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3703  | 
unfolding `x=b` dist_norm apply(rule d(2)[rule_format]) by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3704  | 
next assume "a<x \<and> x<b" hence xl:"a<x" "x\<le>b" and xr:"a\<le>x" "x<b" by(auto simp add: )  | 
| 35751 | 3705  | 
from indefinite_integral_continuous_left [OF assms(1) xl `e>0`] guess d1 . note d1=this  | 
3706  | 
from indefinite_integral_continuous_right[OF assms(1) xr `e>0`] guess d2 . note d2=this  | 
|
3707  | 
show ?thesis apply(rule_tac x="min d1 d2" in exI)  | 
|
3708  | 
proof safe show "0 < min d1 d2" using d1 d2 by auto  | 
|
3709  | 
      fix y assume "y\<in>{a..b}" "dist y x < min d1 d2"
 | 
|
3710  | 
      thus "dist (integral {a..y} f) (integral {a..x} f) < e" apply-apply(subst dist_commute)
 | 
|
| 36587 | 3711  | 
apply(cases "y < x") unfolding dist_norm apply(rule d1(2)[rule_format]) defer  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3712  | 
apply(rule d2(2)[rule_format]) unfolding not_less by(auto simp add:field_simps)  | 
| 35751 | 3713  | 
qed qed qed  | 
3714  | 
||
3715  | 
subsection {* This doesn't directly involve integration, but that gives an easy proof. *}
 | 
|
3716  | 
||
3717  | 
lemma has_derivative_zero_unique_strong_interval: fixes f::"real \<Rightarrow> 'a::banach"  | 
|
3718  | 
  assumes "finite k" "continuous_on {a..b} f" "f a = y"
 | 
|
3719  | 
  "\<forall>x\<in>({a..b} - k). (f has_derivative (\<lambda>h. 0)) (at x within {a..b})" "x \<in> {a..b}"
 | 
|
3720  | 
shows "f x = y"  | 
|
3721  | 
proof- have ab:"a\<le>b" using assms by auto  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3722  | 
have *:"a\<le>x" using assms(5) by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3723  | 
  have "((\<lambda>x. 0\<Colon>'a) has_integral f x - f a) {a..x}"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3724  | 
apply(rule fundamental_theorem_of_calculus_interior_strong[OF assms(1) *])  | 
| 35751 | 3725  | 
apply(rule continuous_on_subset[OF assms(2)]) defer  | 
3726  | 
apply safe unfolding has_vector_derivative_def apply(subst has_derivative_within_open[THEN sym])  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3727  | 
    apply assumption apply(rule open_interval) apply(rule has_derivative_within_subset[where s="{a..b}"])
 | 
| 35751 | 3728  | 
using assms(4) assms(5) by auto note this[unfolded *]  | 
3729  | 
note has_integral_unique[OF has_integral_0 this]  | 
|
3730  | 
thus ?thesis unfolding assms by auto qed  | 
|
3731  | 
||
3732  | 
subsection {* Generalize a bit to any convex set. *}
 | 
|
3733  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3734  | 
lemma has_derivative_zero_unique_strong_convex: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::banach"  | 
| 35751 | 3735  | 
assumes "convex s" "finite k" "continuous_on s f" "c \<in> s" "f c = y"  | 
3736  | 
"\<forall>x\<in>(s - k). (f has_derivative (\<lambda>h. 0)) (at x within s)" "x \<in> s"  | 
|
3737  | 
shows "f x = y"  | 
|
3738  | 
proof- { presume *:"x \<noteq> c \<Longrightarrow> ?thesis" show ?thesis apply(cases,rule *,assumption)
 | 
|
3739  | 
unfolding assms(5)[THEN sym] by auto } assume "x\<noteq>c"  | 
|
3740  | 
note conv = assms(1)[unfolded convex_alt,rule_format]  | 
|
3741  | 
  have as1:"continuous_on {0..1} (f \<circ> (\<lambda>t. (1 - t) *\<^sub>R c + t *\<^sub>R x))"
 | 
|
3742  | 
apply(rule continuous_on_intros)+ apply(rule continuous_on_subset[OF assms(3)])  | 
|
3743  | 
apply safe apply(rule conv) using assms(4,7) by auto  | 
|
3744  | 
have *:"\<And>t xa. (1 - t) *\<^sub>R c + t *\<^sub>R x = (1 - xa) *\<^sub>R c + xa *\<^sub>R x \<Longrightarrow> t = xa"  | 
|
3745  | 
proof- case goal1 hence "(t - xa) *\<^sub>R x = (t - xa) *\<^sub>R c"  | 
|
| 36350 | 3746  | 
unfolding scaleR_simps by(auto simp add:algebra_simps)  | 
| 35751 | 3747  | 
thus ?case using `x\<noteq>c` by auto qed  | 
3748  | 
  have as2:"finite {t. ((1 - t) *\<^sub>R c + t *\<^sub>R x) \<in> k}" using assms(2) 
 | 
|
3749  | 
apply(rule finite_surj[where f="\<lambda>z. SOME t. (1-t) *\<^sub>R c + t *\<^sub>R x = z"])  | 
|
3750  | 
apply safe unfolding image_iff apply rule defer apply assumption  | 
|
3751  | 
apply(rule sym) apply(rule some_equality) defer apply(drule *) by auto  | 
|
3752  | 
have "(f \<circ> (\<lambda>t. (1 - t) *\<^sub>R c + t *\<^sub>R x)) 1 = y"  | 
|
3753  | 
apply(rule has_derivative_zero_unique_strong_interval[OF as2 as1, of ])  | 
|
3754  | 
unfolding o_def using assms(5) defer apply-apply(rule)  | 
|
3755  | 
  proof- fix t assume as:"t\<in>{0..1} - {t. (1 - t) *\<^sub>R c + t *\<^sub>R x \<in> k}"
 | 
|
3756  | 
have *:"c - t *\<^sub>R c + t *\<^sub>R x \<in> s - k" apply safe apply(rule conv[unfolded scaleR_simps])  | 
|
| 
36362
 
06475a1547cb
fix lots of looping simp calls and other warnings
 
huffman 
parents: 
36359 
diff
changeset
 | 
3757  | 
using `x\<in>s` `c\<in>s` as by(auto simp add: algebra_simps)  | 
| 35751 | 3758  | 
    have "(f \<circ> (\<lambda>t. (1 - t) *\<^sub>R c + t *\<^sub>R x) has_derivative (\<lambda>x. 0) \<circ> (\<lambda>z. (0 - z *\<^sub>R c) + z *\<^sub>R x)) (at t within {0..1})"
 | 
3759  | 
apply(rule diff_chain_within) apply(rule has_derivative_add)  | 
|
| 
44140
 
2c10c35dd4be
remove several redundant and unused theorems about derivatives
 
huffman 
parents: 
44125 
diff
changeset
 | 
3760  | 
unfolding scaleR_simps  | 
| 
 
2c10c35dd4be
remove several redundant and unused theorems about derivatives
 
huffman 
parents: 
44125 
diff
changeset
 | 
3761  | 
apply(intro has_derivative_intros)  | 
| 
 
2c10c35dd4be
remove several redundant and unused theorems about derivatives
 
huffman 
parents: 
44125 
diff
changeset
 | 
3762  | 
apply(intro has_derivative_intros)  | 
| 35751 | 3763  | 
apply(rule has_derivative_within_subset,rule assms(6)[rule_format])  | 
3764  | 
apply(rule *) apply safe apply(rule conv[unfolded scaleR_simps]) using `x\<in>s` `c\<in>s` by auto  | 
|
3765  | 
    thus "((\<lambda>xa. f ((1 - xa) *\<^sub>R c + xa *\<^sub>R x)) has_derivative (\<lambda>h. 0)) (at t within {0..1})" unfolding o_def .
 | 
|
3766  | 
qed auto thus ?thesis by auto qed  | 
|
3767  | 
||
3768  | 
subsection {* Also to any open connected set with finite set of exceptions. Could 
 | 
|
3769  | 
generalize to locally convex set with limpt-free set of exceptions. *}  | 
|
3770  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3771  | 
lemma has_derivative_zero_unique_strong_connected: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::banach"  | 
| 35751 | 3772  | 
assumes "connected s" "open s" "finite k" "continuous_on s f" "c \<in> s" "f c = y"  | 
3773  | 
"\<forall>x\<in>(s - k). (f has_derivative (\<lambda>h. 0)) (at x within s)" "x\<in>s"  | 
|
3774  | 
shows "f x = y"  | 
|
3775  | 
proof- have "{x \<in> s. f x \<in> {y}} = {} \<or> {x \<in> s. f x \<in> {y}} = s"
 | 
|
3776  | 
apply(rule assms(1)[unfolded connected_clopen,rule_format]) apply rule defer  | 
|
| 41969 | 3777  | 
apply(rule continuous_closed_in_preimage[OF assms(4) closed_singleton])  | 
| 35751 | 3778  | 
apply(rule open_openin_trans[OF assms(2)]) unfolding open_contains_ball  | 
3779  | 
proof safe fix x assume "x\<in>s"  | 
|
3780  | 
from assms(2)[unfolded open_contains_ball,rule_format,OF this] guess e .. note e=conjunctD2[OF this]  | 
|
3781  | 
    show "\<exists>e>0. ball x e \<subseteq> {xa \<in> s. f xa \<in> {f x}}" apply(rule,rule,rule e)
 | 
|
3782  | 
proof safe fix y assume y:"y \<in> ball x e" thus "y\<in>s" using e by auto  | 
|
3783  | 
show "f y = f x" apply(rule has_derivative_zero_unique_strong_convex[OF convex_ball])  | 
|
3784  | 
apply(rule assms) apply(rule continuous_on_subset,rule assms) apply(rule e)+  | 
|
3785  | 
apply(subst centre_in_ball,rule e,rule) apply safe  | 
|
3786  | 
apply(rule has_derivative_within_subset) apply(rule assms(7)[rule_format])  | 
|
3787  | 
using y e by auto qed qed  | 
|
3788  | 
thus ?thesis using `x\<in>s` `f c = y` `c\<in>s` by auto qed  | 
|
3789  | 
||
3790  | 
subsection {* Integrating characteristic function of an interval. *}
 | 
|
3791  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3792  | 
lemma has_integral_restrict_open_subinterval: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::banach"  | 
| 35751 | 3793  | 
  assumes "(f has_integral i) {c..d}" "{c..d} \<subseteq> {a..b}"
 | 
3794  | 
  shows "((\<lambda>x. if x \<in> {c<..<d} then f x else 0) has_integral i) {a..b}"
 | 
|
3795  | 
proof- def g \<equiv> "\<lambda>x. if x \<in>{c<..<d} then f x else 0"
 | 
|
3796  | 
  { presume *:"{c..d}\<noteq>{} \<Longrightarrow> ?thesis"
 | 
|
3797  | 
show ?thesis apply(cases,rule *,assumption)  | 
|
3798  | 
    proof- case goal1 hence *:"{c<..<d} = {}" using interval_open_subset_closed by auto 
 | 
|
3799  | 
show ?thesis using assms(1) unfolding * using goal1 by auto  | 
|
3800  | 
    qed } assume "{c..d}\<noteq>{}"
 | 
|
3801  | 
from partial_division_extend_1[OF assms(2) this] guess p . note p=this  | 
|
3802  | 
note mon = monoidal_lifted[OF monoidal_monoid]  | 
|
3803  | 
note operat = operative_division[OF this operative_integral p(1), THEN sym]  | 
|
3804  | 
  let ?P = "(if g integrable_on {a..b} then Some (integral {a..b} g) else None) = Some i"
 | 
|
3805  | 
  { presume "?P" hence "g integrable_on {a..b} \<and> integral {a..b} g = i"
 | 
|
3806  | 
apply- apply(cases,subst(asm) if_P,assumption) by auto  | 
|
3807  | 
thus ?thesis using integrable_integral unfolding g_def by auto }  | 
|
3808  | 
||
3809  | 
note iterate_eq_neutral[OF mon,unfolded neutral_lifted[OF monoidal_monoid]]  | 
|
3810  | 
note * = this[unfolded neutral_monoid]  | 
|
3811  | 
  have iterate:"iterate (lifted op +) (p - {{c..d}})
 | 
|
3812  | 
(\<lambda>i. if g integrable_on i then Some (integral i g) else None) = Some 0"  | 
|
3813  | 
proof(rule *,rule) case goal1 hence "x\<in>p" by auto note div = division_ofD(2-5)[OF p(1) this]  | 
|
3814  | 
from div(3) guess u v apply-by(erule exE)+ note uv=this  | 
|
3815  | 
    have "interior x \<inter> interior {c..d} = {}" using div(4)[OF p(2)] goal1 by auto
 | 
|
3816  | 
hence "(g has_integral 0) x" unfolding uv apply-apply(rule has_integral_spike_interior[where f="\<lambda>x. 0"])  | 
|
3817  | 
unfolding g_def interior_closed_interval by auto thus ?case by auto  | 
|
3818  | 
qed  | 
|
3819  | 
||
3820  | 
  have *:"p = insert {c..d} (p - {{c..d}})" using p by auto
 | 
|
3821  | 
  have **:"g integrable_on {c..d}" apply(rule integrable_spike_interior[where f=f])
 | 
|
3822  | 
unfolding g_def defer apply(rule has_integral_integrable) using assms(1) by auto  | 
|
3823  | 
  moreover have "integral {c..d} g = i" apply(rule has_integral_unique[OF _ assms(1)])
 | 
|
3824  | 
apply(rule has_integral_spike_interior[where f=g]) defer  | 
|
3825  | 
apply(rule integrable_integral[OF **]) unfolding g_def by auto  | 
|
3826  | 
ultimately show ?P unfolding operat apply- apply(subst *) apply(subst iterate_insert) apply rule+  | 
|
3827  | 
unfolding iterate defer apply(subst if_not_P) defer using p by auto qed  | 
|
3828  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3829  | 
lemma has_integral_restrict_closed_subinterval: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::banach"  | 
| 35751 | 3830  | 
  assumes "(f has_integral i) ({c..d})" "{c..d} \<subseteq> {a..b}" 
 | 
3831  | 
  shows "((\<lambda>x. if x \<in> {c..d} then f x else 0) has_integral i) {a..b}"
 | 
|
3832  | 
proof- note has_integral_restrict_open_subinterval[OF assms]  | 
|
3833  | 
note * = has_integral_spike[OF negligible_frontier_interval _ this]  | 
|
3834  | 
show ?thesis apply(rule *[of c d]) using interval_open_subset_closed[of c d] by auto qed  | 
|
3835  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3836  | 
lemma has_integral_restrict_closed_subintervals_eq: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::banach" assumes "{c..d} \<subseteq> {a..b}" 
 | 
| 35751 | 3837  | 
  shows "((\<lambda>x. if x \<in> {c..d} then f x else 0) has_integral i) {a..b} \<longleftrightarrow> (f has_integral i) {c..d}" (is "?l = ?r")
 | 
3838  | 
proof(cases "{c..d} = {}") case False let ?g = "\<lambda>x. if x \<in> {c..d} then f x else 0"
 | 
|
3839  | 
show ?thesis apply rule defer apply(rule has_integral_restrict_closed_subinterval[OF _ assms])  | 
|
3840  | 
  proof assumption assume ?l hence "?g integrable_on {c..d}"
 | 
|
3841  | 
apply-apply(rule integrable_subinterval[OF _ assms]) by auto  | 
|
3842  | 
    hence *:"f integrable_on {c..d}"apply-apply(rule integrable_eq) by auto
 | 
|
3843  | 
    hence "i = integral {c..d} f" apply-apply(rule has_integral_unique)
 | 
|
3844  | 
apply(rule `?l`) apply(rule has_integral_restrict_closed_subinterval[OF _ assms]) by auto  | 
|
3845  | 
thus ?r using * by auto qed qed auto  | 
|
3846  | 
||
3847  | 
subsection {* Hence we can apply the limit process uniformly to all integrals. *}
 | 
|
3848  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3849  | 
lemma has_integral': fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" shows  | 
| 35751 | 3850  | 
 "(f has_integral i) s \<longleftrightarrow> (\<forall>e>0. \<exists>B>0. \<forall>a b. ball 0 B \<subseteq> {a..b}
 | 
3851  | 
  \<longrightarrow> (\<exists>z. ((\<lambda>x. if x \<in> s then f(x) else 0) has_integral z) {a..b} \<and> norm(z - i) < e))" (is "?l \<longleftrightarrow> (\<forall>e>0. ?r e)")
 | 
|
3852  | 
proof- { presume *:"\<exists>a b. s = {a..b} \<Longrightarrow> ?thesis"
 | 
|
3853  | 
show ?thesis apply(cases,rule *,assumption)  | 
|
3854  | 
apply(subst has_integral_alt) by auto }  | 
|
3855  | 
  assume "\<exists>a b. s = {a..b}" then guess a b apply-by(erule exE)+ note s=this
 | 
|
3856  | 
from bounded_interval[of a b, THEN conjunct1, unfolded bounded_pos] guess B ..  | 
|
3857  | 
note B = conjunctD2[OF this,rule_format] show ?thesis apply safe  | 
|
3858  | 
proof- fix e assume ?l "e>(0::real)"  | 
|
3859  | 
show "?r e" apply(rule_tac x="B+1" in exI) apply safe defer apply(rule_tac x=i in exI)  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3860  | 
    proof fix c d assume as:"ball 0 (B+1) \<subseteq> {c..d::'n::ordered_euclidean_space}"
 | 
| 35751 | 3861  | 
      thus "((\<lambda>x. if x \<in> s then f x else 0) has_integral i) {c..d}" unfolding s
 | 
3862  | 
apply-apply(rule has_integral_restrict_closed_subinterval) apply(rule `?l`[unfolded s])  | 
|
3863  | 
apply safe apply(drule B(2)[rule_format]) unfolding subset_eq apply(erule_tac x=x in ballE)  | 
|
| 36587 | 3864  | 
by(auto simp add:dist_norm)  | 
| 35751 | 3865  | 
qed(insert B `e>0`, auto)  | 
3866  | 
next assume as:"\<forall>e>0. ?r e"  | 
|
3867  | 
from this[rule_format,OF zero_less_one] guess C .. note C=conjunctD2[OF this,rule_format]  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3868  | 
def c \<equiv> "(\<chi>\<chi> i. - max B C)::'n::ordered_euclidean_space" and d \<equiv> "(\<chi>\<chi> i. max B C)::'n::ordered_euclidean_space"  | 
| 35751 | 3869  | 
    have c_d:"{a..b} \<subseteq> {c..d}" apply safe apply(drule B(2)) unfolding mem_interval
 | 
3870  | 
proof case goal1 thus ?case using component_le_norm[of x i] unfolding c_def d_def  | 
|
3871  | 
by(auto simp add:field_simps) qed  | 
|
| 36587 | 3872  | 
    have "ball 0 C \<subseteq> {c..d}" apply safe unfolding mem_interval mem_ball dist_norm 
 | 
| 35751 | 3873  | 
proof case goal1 thus ?case using component_le_norm[of x i] unfolding c_def d_def by auto qed  | 
3874  | 
    from C(2)[OF this] have "\<exists>y. (f has_integral y) {a..b}"
 | 
|
3875  | 
unfolding has_integral_restrict_closed_subintervals_eq[OF c_d,THEN sym] unfolding s by auto  | 
|
3876  | 
then guess y .. note y=this  | 
|
3877  | 
||
3878  | 
have "y = i" proof(rule ccontr) assume "y\<noteq>i" hence "0 < norm (y - i)" by auto  | 
|
3879  | 
from as[rule_format,OF this] guess C .. note C=conjunctD2[OF this,rule_format]  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3880  | 
def c \<equiv> "(\<chi>\<chi> i. - max B C)::'n::ordered_euclidean_space" and d \<equiv> "(\<chi>\<chi> i. max B C)::'n::ordered_euclidean_space"  | 
| 35751 | 3881  | 
      have c_d:"{a..b} \<subseteq> {c..d}" apply safe apply(drule B(2)) unfolding mem_interval
 | 
3882  | 
proof case goal1 thus ?case using component_le_norm[of x i] unfolding c_def d_def  | 
|
3883  | 
by(auto simp add:field_simps) qed  | 
|
| 36587 | 3884  | 
      have "ball 0 C \<subseteq> {c..d}" apply safe unfolding mem_interval mem_ball dist_norm 
 | 
| 35751 | 3885  | 
proof case goal1 thus ?case using component_le_norm[of x i] unfolding c_def d_def by auto qed  | 
3886  | 
note C(2)[OF this] then guess z .. note z = conjunctD2[OF this, unfolded s]  | 
|
3887  | 
note this[unfolded has_integral_restrict_closed_subintervals_eq[OF c_d]]  | 
|
3888  | 
hence "z = y" "norm (z - i) < norm (y - i)" apply- apply(rule has_integral_unique[OF _ y(1)]) .  | 
|
3889  | 
thus False by auto qed  | 
|
3890  | 
thus ?l using y unfolding s by auto qed qed  | 
|
3891  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3892  | 
(*lemma has_integral_trans[simp]: fixes f::"'n::ordered_euclidean_space \<Rightarrow> real" shows  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
3893  | 
"((\<lambda>x. vec1 (f x)) has_integral vec1 i) s \<longleftrightarrow> (f has_integral i) s"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
3894  | 
unfolding has_integral'[unfolded has_integral]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
3895  | 
proof case goal1 thus ?case apply safe  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
3896  | 
apply(erule_tac x=e in allE,safe) apply(rule_tac x=B in exI,safe)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
3897  | 
apply(erule_tac x=a in allE, erule_tac x=b in allE,safe)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
3898  | 
apply(rule_tac x="dest_vec1 z" in exI,safe) apply(erule_tac x=ea in allE,safe)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
3899  | 
apply(rule_tac x=d in exI,safe) apply(erule_tac x=p in allE,safe)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
3900  | 
apply(subst(asm)(2) norm_vector_1) unfolding split_def  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
3901  | 
unfolding setsum_component Cart_nth.diff cond_value_iff[of dest_vec1]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
3902  | 
Cart_nth.scaleR vec1_dest_vec1 zero_index apply assumption  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
3903  | 
apply(subst(asm)(2) norm_vector_1) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
3904  | 
next case goal2 thus ?case apply safe  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
3905  | 
apply(erule_tac x=e in allE,safe) apply(rule_tac x=B in exI,safe)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
3906  | 
apply(erule_tac x=a in allE, erule_tac x=b in allE,safe)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
3907  | 
apply(rule_tac x="vec1 z" in exI,safe) apply(erule_tac x=ea in allE,safe)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
3908  | 
apply(rule_tac x=d in exI,safe) apply(erule_tac x=p in allE,safe)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
3909  | 
apply(subst norm_vector_1) unfolding split_def  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
3910  | 
unfolding setsum_component Cart_nth.diff cond_value_iff[of dest_vec1]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
3911  | 
Cart_nth.scaleR vec1_dest_vec1 zero_index apply assumption  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
3912  | 
apply(subst norm_vector_1) by auto qed  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
3913  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3914  | 
lemma integral_trans[simp]: assumes "(f::'n::ordered_euclidean_space \<Rightarrow> real) integrable_on s"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
3915  | 
shows "integral s (\<lambda>x. vec1 (f x)) = vec1 (integral s f)"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
3916  | 
apply(rule integral_unique) using assms by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
3917  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3918  | 
lemma integrable_on_trans[simp]: fixes f::"'n::ordered_euclidean_space \<Rightarrow> real" shows  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
3919  | 
"(\<lambda>x. vec1 (f x)) integrable_on s \<longleftrightarrow> (f integrable_on s)"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
3920  | 
unfolding integrable_on_def  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
3921  | 
apply(subst(2) vec1_dest_vec1(1)[THEN sym]) unfolding has_integral_trans  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3922  | 
apply safe defer apply(rule_tac x="vec1 y" in exI) by auto *)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3923  | 
|
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3924  | 
lemma has_integral_le: fixes f::"'n::ordered_euclidean_space \<Rightarrow> real"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
3925  | 
assumes "(f has_integral i) s" "(g has_integral j) s" "\<forall>x\<in>s. (f x) \<le> (g x)"  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3926  | 
shows "i \<le> j" using has_integral_component_le[OF assms(1-2), of 0] using assms(3) by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3927  | 
|
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3928  | 
lemma integral_le: fixes f::"'n::ordered_euclidean_space \<Rightarrow> real"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
3929  | 
assumes "f integrable_on s" "g integrable_on s" "\<forall>x\<in>s. f x \<le> g x"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
3930  | 
shows "integral s f \<le> integral s g"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
3931  | 
using has_integral_le[OF assms(1,2)[unfolded has_integral_integral] assms(3)] .  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
3932  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3933  | 
lemma has_integral_nonneg: fixes f::"'n::ordered_euclidean_space \<Rightarrow> real"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
3934  | 
assumes "(f has_integral i) s" "\<forall>x\<in>s. 0 \<le> f x" shows "0 \<le> i"  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3935  | 
using has_integral_component_nonneg[of "f" "i" s 0]  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
3936  | 
unfolding o_def using assms by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
3937  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3938  | 
lemma integral_nonneg: fixes f::"'n::ordered_euclidean_space \<Rightarrow> real"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
3939  | 
assumes "f integrable_on s" "\<forall>x\<in>s. 0 \<le> f x" shows "0 \<le> integral s f"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
3940  | 
using has_integral_nonneg[OF assms(1)[unfolded has_integral_integral] assms(2)] .  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
3941  | 
|
| 35751 | 3942  | 
subsection {* Hence a general restriction property. *}
 | 
3943  | 
||
3944  | 
lemma has_integral_restrict[simp]: assumes "s \<subseteq> t" shows  | 
|
3945  | 
"((\<lambda>x. if x \<in> s then f x else (0::'a::banach)) has_integral i) t \<longleftrightarrow> (f has_integral i) s"  | 
|
3946  | 
proof- have *:"\<And>x. (if x \<in> t then if x \<in> s then f x else 0 else 0) = (if x\<in>s then f x else 0)" using assms by auto  | 
|
3947  | 
show ?thesis apply(subst(2) has_integral') apply(subst has_integral') unfolding * by rule qed  | 
|
3948  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3949  | 
lemma has_integral_restrict_univ: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" shows  | 
| 35751 | 3950  | 
"((\<lambda>x. if x \<in> s then f x else 0) has_integral i) UNIV \<longleftrightarrow> (f has_integral i) s" by auto  | 
3951  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3952  | 
lemma has_integral_on_superset: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"  | 
| 35751 | 3953  | 
assumes "\<forall>x. ~(x \<in> s) \<longrightarrow> f x = 0" "s \<subseteq> t" "(f has_integral i) s"  | 
3954  | 
shows "(f has_integral i) t"  | 
|
3955  | 
proof- have "(\<lambda>x. if x \<in> s then f x else 0) = (\<lambda>x. if x \<in> t then f x else 0)"  | 
|
3956  | 
apply(rule) using assms(1-2) by auto  | 
|
3957  | 
thus ?thesis apply- using assms(3) apply(subst has_integral_restrict_univ[THEN sym])  | 
|
3958  | 
apply- apply(subst(asm) has_integral_restrict_univ[THEN sym]) by auto qed  | 
|
3959  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3960  | 
lemma integrable_on_superset: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"  | 
| 35751 | 3961  | 
assumes "\<forall>x. ~(x \<in> s) \<longrightarrow> f x = 0" "s \<subseteq> t" "f integrable_on s"  | 
3962  | 
shows "f integrable_on t"  | 
|
3963  | 
using assms unfolding integrable_on_def by(auto intro:has_integral_on_superset)  | 
|
3964  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3965  | 
lemma integral_restrict_univ[intro]: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"  | 
| 35751 | 3966  | 
shows "f integrable_on s \<Longrightarrow> integral UNIV (\<lambda>x. if x \<in> s then f x else 0) = integral s f"  | 
3967  | 
apply(rule integral_unique) unfolding has_integral_restrict_univ by auto  | 
|
3968  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3969  | 
lemma integrable_restrict_univ: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" shows  | 
| 35751 | 3970  | 
"(\<lambda>x. if x \<in> s then f x else 0) integrable_on UNIV \<longleftrightarrow> f integrable_on s"  | 
3971  | 
unfolding integrable_on_def by auto  | 
|
3972  | 
||
3973  | 
lemma negligible_on_intervals: "negligible s \<longleftrightarrow> (\<forall>a b. negligible(s \<inter> {a..b}))" (is "?l = ?r")
 | 
|
3974  | 
proof assume ?r show ?l unfolding negligible_def  | 
|
3975  | 
proof safe case goal1 show ?case apply(rule has_integral_negligible[OF `?r`[rule_format,of a b]])  | 
|
3976  | 
unfolding indicator_def by auto qed qed auto  | 
|
3977  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3978  | 
lemma has_integral_spike_set_eq: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"  | 
| 35751 | 3979  | 
assumes "negligible((s - t) \<union> (t - s))" shows "((f has_integral y) s \<longleftrightarrow> (f has_integral y) t)"  | 
| 
36362
 
06475a1547cb
fix lots of looping simp calls and other warnings
 
huffman 
parents: 
36359 
diff
changeset
 | 
3980  | 
unfolding has_integral_restrict_univ[THEN sym,of f] apply(rule has_integral_spike_eq[OF assms]) by (safe, auto split: split_if_asm)  | 
| 35751 | 3981  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3982  | 
lemma has_integral_spike_set[dest]: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"  | 
| 35751 | 3983  | 
assumes "negligible((s - t) \<union> (t - s))" "(f has_integral y) s"  | 
3984  | 
shows "(f has_integral y) t"  | 
|
3985  | 
using assms has_integral_spike_set_eq by auto  | 
|
3986  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3987  | 
lemma integrable_spike_set[dest]: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"  | 
| 35751 | 3988  | 
assumes "negligible((s - t) \<union> (t - s))" "f integrable_on s"  | 
3989  | 
shows "f integrable_on t" using assms(2) unfolding integrable_on_def  | 
|
3990  | 
unfolding has_integral_spike_set_eq[OF assms(1)] .  | 
|
3991  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
3992  | 
lemma integrable_spike_set_eq: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"  | 
| 35751 | 3993  | 
assumes "negligible((s - t) \<union> (t - s))"  | 
3994  | 
shows "(f integrable_on s \<longleftrightarrow> f integrable_on t)"  | 
|
3995  | 
apply(rule,rule_tac[!] integrable_spike_set) using assms by auto  | 
|
3996  | 
||
3997  | 
(*lemma integral_spike_set:  | 
|
3998  | 
"\<forall>f:real^M->real^N g s t.  | 
|
3999  | 
negligible(s DIFF t \<union> t DIFF s)  | 
|
4000  | 
\<longrightarrow> integral s f = integral t f"  | 
|
4001  | 
qed REPEAT STRIP_TAC THEN REWRITE_TAC[integral] THEN  | 
|
4002  | 
AP_TERM_TAC THEN ABS_TAC THEN MATCH_MP_TAC HAS_INTEGRAL_SPIKE_SET_EQ THEN  | 
|
4003  | 
ASM_MESON_TAC[]);;  | 
|
4004  | 
||
4005  | 
lemma has_integral_interior:  | 
|
4006  | 
"\<forall>f:real^M->real^N y s.  | 
|
4007  | 
negligible(frontier s)  | 
|
4008  | 
\<longrightarrow> ((f has_integral y) (interior s) \<longleftrightarrow> (f has_integral y) s)"  | 
|
4009  | 
qed REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_INTEGRAL_SPIKE_SET_EQ THEN  | 
|
4010  | 
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ]  | 
|
4011  | 
NEGLIGIBLE_SUBSET)) THEN  | 
|
4012  | 
REWRITE_TAC[frontier] THEN  | 
|
4013  | 
MP_TAC(ISPEC `s:real^M->bool` INTERIOR_SUBSET) THEN  | 
|
4014  | 
MP_TAC(ISPEC `s:real^M->bool` CLOSURE_SUBSET) THEN  | 
|
4015  | 
SET_TAC[]);;  | 
|
4016  | 
||
4017  | 
lemma has_integral_closure:  | 
|
4018  | 
"\<forall>f:real^M->real^N y s.  | 
|
4019  | 
negligible(frontier s)  | 
|
4020  | 
\<longrightarrow> ((f has_integral y) (closure s) \<longleftrightarrow> (f has_integral y) s)"  | 
|
4021  | 
qed REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_INTEGRAL_SPIKE_SET_EQ THEN  | 
|
4022  | 
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ]  | 
|
4023  | 
NEGLIGIBLE_SUBSET)) THEN  | 
|
4024  | 
REWRITE_TAC[frontier] THEN  | 
|
4025  | 
MP_TAC(ISPEC `s:real^M->bool` INTERIOR_SUBSET) THEN  | 
|
4026  | 
MP_TAC(ISPEC `s:real^M->bool` CLOSURE_SUBSET) THEN  | 
|
4027  | 
SET_TAC[]);;*)  | 
|
4028  | 
||
4029  | 
subsection {* More lemmas that are useful later. *}
 | 
|
4030  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4031  | 
lemma has_integral_subset_component_le: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4032  | 
assumes "s \<subseteq> t" "(f has_integral i) s" "(f has_integral j) t" "\<forall>x\<in>t. 0 \<le> f(x)$$k"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4033  | 
shows "i$$k \<le> j$$k"  | 
| 35751 | 4034  | 
proof- note has_integral_restrict_univ[THEN sym, of f]  | 
4035  | 
note assms(2-3)[unfolded this] note * = has_integral_component_le[OF this]  | 
|
4036  | 
show ?thesis apply(rule *) using assms(1,4) by auto qed  | 
|
4037  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4038  | 
lemma has_integral_subset_le: fixes f::"'n::ordered_euclidean_space \<Rightarrow> real"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4039  | 
assumes "s \<subseteq> t" "(f has_integral i) s" "(f has_integral j) t" "\<forall>x\<in>t. 0 \<le> f(x)"  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4040  | 
shows "i \<le> j" using has_integral_subset_component_le[OF assms(1), of "f" "i" "j" 0] using assms by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4041  | 
|
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4042  | 
lemma integral_subset_component_le: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4043  | 
assumes "s \<subseteq> t" "f integrable_on s" "f integrable_on t" "\<forall>x \<in> t. 0 \<le> f(x)$$k"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4044  | 
shows "(integral s f)$$k \<le> (integral t f)$$k"  | 
| 35751 | 4045  | 
apply(rule has_integral_subset_component_le) using assms by auto  | 
4046  | 
||
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4047  | 
lemma integral_subset_le: fixes f::"'n::ordered_euclidean_space \<Rightarrow> real"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4048  | 
assumes "s \<subseteq> t" "f integrable_on s" "f integrable_on t" "\<forall>x \<in> t. 0 \<le> f(x)"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4049  | 
shows "(integral s f) \<le> (integral t f)"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4050  | 
apply(rule has_integral_subset_le) using assms by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4051  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4052  | 
lemma has_integral_alt': fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"  | 
| 35751 | 4053  | 
  shows "(f has_integral i) s \<longleftrightarrow> (\<forall>a b. (\<lambda>x. if x \<in> s then f x else 0) integrable_on {a..b}) \<and>
 | 
4054  | 
  (\<forall>e>0. \<exists>B>0. \<forall>a b. ball 0 B \<subseteq> {a..b} \<longrightarrow> norm(integral {a..b} (\<lambda>x. if x \<in> s then f x else 0) - i) < e)" (is "?l = ?r")
 | 
|
4055  | 
proof assume ?r  | 
|
4056  | 
show ?l apply- apply(subst has_integral')  | 
|
4057  | 
proof safe case goal1 from `?r`[THEN conjunct2,rule_format,OF this] guess B .. note B=conjunctD2[OF this]  | 
|
4058  | 
show ?case apply(rule,rule,rule B,safe)  | 
|
4059  | 
      apply(rule_tac x="integral {a..b} (\<lambda>x. if x \<in> s then f x else 0)" in exI)
 | 
|
4060  | 
apply(drule B(2)[rule_format]) using integrable_integral[OF `?r`[THEN conjunct1,rule_format]] by auto  | 
|
4061  | 
qed next  | 
|
4062  | 
assume ?l note as = this[unfolded has_integral'[of f],rule_format]  | 
|
4063  | 
let ?f = "\<lambda>x. if x \<in> s then f x else 0"  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4064  | 
show ?r proof safe fix a b::"'n::ordered_euclidean_space"  | 
| 35751 | 4065  | 
from as[OF zero_less_one] guess B .. note B=conjunctD2[OF this,rule_format]  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4066  | 
let ?a = "(\<chi>\<chi> i. min (a$$i) (-B))::'n::ordered_euclidean_space" and ?b = "(\<chi>\<chi> i. max (b$$i) B)::'n::ordered_euclidean_space"  | 
| 35751 | 4067  | 
    show "?f integrable_on {a..b}" apply(rule integrable_subinterval[of _ ?a ?b])
 | 
| 36587 | 4068  | 
    proof- have "ball 0 B \<subseteq> {?a..?b}" apply safe unfolding mem_ball mem_interval dist_norm
 | 
| 35751 | 4069  | 
proof case goal1 thus ?case using component_le_norm[of x i] by(auto simp add:field_simps) qed  | 
4070  | 
from B(2)[OF this] guess z .. note conjunct1[OF this]  | 
|
4071  | 
      thus "?f integrable_on {?a..?b}" unfolding integrable_on_def by auto
 | 
|
4072  | 
      show "{a..b} \<subseteq> {?a..?b}" apply safe unfolding mem_interval apply(rule,erule_tac x=i in allE) by auto qed
 | 
|
4073  | 
||
4074  | 
fix e::real assume "e>0" from as[OF this] guess B .. note B=conjunctD2[OF this,rule_format]  | 
|
4075  | 
    show "\<exists>B>0. \<forall>a b. ball 0 B \<subseteq> {a..b} \<longrightarrow>
 | 
|
4076  | 
                    norm (integral {a..b} (\<lambda>x. if x \<in> s then f x else 0) - i) < e"
 | 
|
4077  | 
proof(rule,rule,rule B,safe) case goal1 from B(2)[OF this] guess z .. note z=conjunctD2[OF this]  | 
|
4078  | 
from integral_unique[OF this(1)] show ?case using z(2) by auto qed qed qed  | 
|
4079  | 
||
| 35752 | 4080  | 
|
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4081  | 
subsection {* Continuity of the integral (for a 1-dimensional interval). *}
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4082  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4083  | 
lemma integrable_alt: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" shows  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4084  | 
"f integrable_on s \<longleftrightarrow>  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4085  | 
          (\<forall>a b. (\<lambda>x. if x \<in> s then f x else 0) integrable_on {a..b}) \<and>
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4086  | 
          (\<forall>e>0. \<exists>B>0. \<forall>a b c d. ball 0 B \<subseteq> {a..b} \<and> ball 0 B \<subseteq> {c..d}
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4087  | 
  \<longrightarrow> norm(integral {a..b} (\<lambda>x. if x \<in> s then f x else 0) -
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4088  | 
          integral {c..d}  (\<lambda>x. if x \<in> s then f x else 0)) < e)" (is "?l = ?r")
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4089  | 
proof assume ?l then guess y unfolding integrable_on_def .. note this[unfolded has_integral_alt'[of f]]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4090  | 
note y=conjunctD2[OF this,rule_format] show ?r apply safe apply(rule y)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4091  | 
proof- case goal1 hence "e/2 > 0" by auto from y(2)[OF this] guess B .. note B=conjunctD2[OF this,rule_format]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4092  | 
show ?case apply(rule,rule,rule B)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4093  | 
proof safe case goal1 show ?case apply(rule norm_triangle_half_l)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4094  | 
using B(2)[OF goal1(1)] B(2)[OF goal1(2)] by auto qed qed  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4095  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4096  | 
next assume ?r note as = conjunctD2[OF this,rule_format]  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4097  | 
  have "Cauchy (\<lambda>n. integral ({(\<chi>\<chi> i. - real n)::'n .. (\<chi>\<chi> i. real n)}) (\<lambda>x. if x \<in> s then f x else 0))"
 | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4098  | 
proof(unfold Cauchy_def,safe) case goal1  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4099  | 
from as(2)[OF this] guess B .. note B = conjunctD2[OF this,rule_format]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4100  | 
from real_arch_simple[of B] guess N .. note N = this  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4101  | 
    { fix n assume n:"n \<ge> N" have "ball 0 B \<subseteq> {(\<chi>\<chi> i. - real n)::'n..\<chi>\<chi> i. real n}" apply safe
 | 
| 36587 | 4102  | 
unfolding mem_ball mem_interval dist_norm  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4103  | 
proof case goal1 thus ?case using component_le_norm[of x i]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4104  | 
using n N by(auto simp add:field_simps) qed }  | 
| 36587 | 4105  | 
thus ?case apply-apply(rule_tac x=N in exI) apply safe unfolding dist_norm apply(rule B(2)) by auto  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4106  | 
qed from this[unfolded convergent_eq_cauchy[THEN sym]] guess i ..  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4107  | 
note i = this[unfolded Lim_sequentially, rule_format]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4108  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4109  | 
show ?l unfolding integrable_on_def has_integral_alt'[of f] apply(rule_tac x=i in exI)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4110  | 
apply safe apply(rule as(1)[unfolded integrable_on_def])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4111  | 
proof- case goal1 hence *:"e/2 > 0" by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4112  | 
from i[OF this] guess N .. note N =this[rule_format]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4113  | 
from as(2)[OF *] guess B .. note B=conjunctD2[OF this,rule_format] let ?B = "max (real N) B"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4114  | 
show ?case apply(rule_tac x="?B" in exI)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4115  | 
proof safe show "0 < ?B" using B(1) by auto  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4116  | 
      fix a b assume ab:"ball 0 ?B \<subseteq> {a..b::'n::ordered_euclidean_space}"
 | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4117  | 
from real_arch_simple[of ?B] guess n .. note n=this  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4118  | 
      show "norm (integral {a..b} (\<lambda>x. if x \<in> s then f x else 0) - i) < e"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4119  | 
apply(rule norm_triangle_half_l) apply(rule B(2)) defer apply(subst norm_minus_commute)  | 
| 36587 | 4120  | 
apply(rule N[unfolded dist_norm, of n])  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4121  | 
proof safe show "N \<le> n" using n by auto  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4122  | 
fix x::"'n::ordered_euclidean_space" assume x:"x \<in> ball 0 B" hence "x\<in> ball 0 ?B" by auto  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4123  | 
        thus "x\<in>{a..b}" using ab by blast 
 | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4124  | 
        show "x\<in>{\<chi>\<chi> i. - real n..\<chi>\<chi> i. real n}" using x unfolding mem_interval mem_ball dist_norm apply-
 | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4125  | 
proof case goal1 thus ?case using component_le_norm[of x i]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4126  | 
using n by(auto simp add:field_simps) qed qed qed qed qed  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4127  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4128  | 
lemma integrable_altD: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4129  | 
assumes "f integrable_on s"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4130  | 
  shows "\<And>a b. (\<lambda>x. if x \<in> s then f x else 0) integrable_on {a..b}"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4131  | 
  "\<And>e. e>0 \<Longrightarrow> \<exists>B>0. \<forall>a b c d. ball 0 B \<subseteq> {a..b} \<and> ball 0 B \<subseteq> {c..d}
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4132  | 
  \<longrightarrow> norm(integral {a..b} (\<lambda>x. if x \<in> s then f x else 0) - integral {c..d}  (\<lambda>x. if x \<in> s then f x else 0)) < e"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4133  | 
using assms[unfolded integrable_alt[of f]] by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4134  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4135  | 
lemma integrable_on_subinterval: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4136  | 
  assumes "f integrable_on s" "{a..b} \<subseteq> s" shows "f integrable_on {a..b}"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4137  | 
apply(rule integrable_eq) defer apply(rule integrable_altD(1)[OF assms(1)])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4138  | 
using assms(2) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4139  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4140  | 
subsection {* A straddling criterion for integrability. *}
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4141  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4142  | 
lemma integrable_straddle_interval: fixes f::"'n::ordered_euclidean_space \<Rightarrow> real"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4143  | 
  assumes "\<forall>e>0. \<exists>g  h i j. (g has_integral i) ({a..b}) \<and> (h has_integral j) ({a..b}) \<and>
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4144  | 
  norm(i - j) < e \<and> (\<forall>x\<in>{a..b}. (g x) \<le> (f x) \<and> (f x) \<le>(h x))"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4145  | 
  shows "f integrable_on {a..b}"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4146  | 
proof(subst integrable_cauchy,safe)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4147  | 
case goal1 hence e:"e/3 > 0" by auto note assms[rule_format,OF this]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4148  | 
then guess g h i j apply- by(erule exE conjE)+ note obt = this  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4149  | 
from obt(1)[unfolded has_integral[of g], rule_format, OF e] guess d1 .. note d1=conjunctD2[OF this,rule_format]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4150  | 
from obt(2)[unfolded has_integral[of h], rule_format, OF e] guess d2 .. note d2=conjunctD2[OF this,rule_format]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4151  | 
show ?case apply(rule_tac x="\<lambda>x. d1 x \<inter> d2 x" in exI) apply(rule conjI gauge_inter d1 d2)+ unfolding fine_inter  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4152  | 
proof safe have **:"\<And>i j g1 g2 h1 h2 f1 f2. g1 - h2 \<le> f1 - f2 \<Longrightarrow> f1 - f2 \<le> h1 - g2 \<Longrightarrow>  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4153  | 
abs(i - j) < e / 3 \<Longrightarrow> abs(g2 - i) < e / 3 \<Longrightarrow> abs(g1 - i) < e / 3 \<Longrightarrow>  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4154  | 
abs(h2 - j) < e / 3 \<Longrightarrow> abs(h1 - j) < e / 3 \<Longrightarrow> abs(f1 - f2) < e" using `e>0` by arith  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4155  | 
case goal1 note tagged_division_ofD(2-4) note * = this[OF goal1(1)] this[OF goal1(4)]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4156  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4157  | 
have "(\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x) - (\<Sum>(x, k)\<in>p1. content k *\<^sub>R g x) \<ge> 0"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4158  | 
"0 \<le> (\<Sum>(x, k)\<in>p2. content k *\<^sub>R h x) - (\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x)"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4159  | 
"(\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x) - (\<Sum>(x, k)\<in>p2. content k *\<^sub>R g x) \<ge> 0"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4160  | 
"0 \<le> (\<Sum>(x, k)\<in>p1. content k *\<^sub>R h x) - (\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x)"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4161  | 
unfolding setsum_subtractf[THEN sym] apply- apply(rule_tac[!] setsum_nonneg)  | 
| 
44282
 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 
huffman 
parents: 
44176 
diff
changeset
 | 
4162  | 
apply safe unfolding real_scaleR_def right_diff_distrib[THEN sym]  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4163  | 
apply(rule_tac[!] mult_nonneg_nonneg)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4164  | 
proof- fix a b assume ab:"(a,b) \<in> p1"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4165  | 
show "0 \<le> content b" using *(3)[OF ab] apply safe using content_pos_le . thus "0 \<le> content b" .  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4166  | 
show "0 \<le> f a - g a" "0 \<le> h a - f a" using *(1-2)[OF ab] using obt(4)[rule_format,of a] by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4167  | 
next fix a b assume ab:"(a,b) \<in> p2"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4168  | 
show "0 \<le> content b" using *(6)[OF ab] apply safe using content_pos_le . thus "0 \<le> content b" .  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4169  | 
show "0 \<le> f a - g a" "0 \<le> h a - f a" using *(4-5)[OF ab] using obt(4)[rule_format,of a] by auto qed  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4170  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4171  | 
thus ?case apply- unfolding real_norm_def apply(rule **) defer defer  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4172  | 
unfolding real_norm_def[THEN sym] apply(rule obt(3))  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4173  | 
apply(rule d1(2)[OF conjI[OF goal1(4,5)]])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4174  | 
apply(rule d1(2)[OF conjI[OF goal1(1,2)]])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4175  | 
apply(rule d2(2)[OF conjI[OF goal1(4,6)]])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4176  | 
apply(rule d2(2)[OF conjI[OF goal1(1,3)]]) by auto qed qed  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4177  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4178  | 
lemma integrable_straddle: fixes f::"'n::ordered_euclidean_space \<Rightarrow> real"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4179  | 
assumes "\<forall>e>0. \<exists>g h i j. (g has_integral i) s \<and> (h has_integral j) s \<and>  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4180  | 
norm(i - j) < e \<and> (\<forall>x\<in>s. (g x) \<le>(f x) \<and>(f x) \<le>(h x))"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4181  | 
shows "f integrable_on s"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4182  | 
proof- have "\<And>a b. (\<lambda>x. if x \<in> s then f x else 0) integrable_on {a..b}"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4183  | 
proof(rule integrable_straddle_interval,safe) case goal1 hence *:"e/4 > 0" by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4184  | 
from assms[rule_format,OF this] guess g h i j apply-by(erule exE conjE)+ note obt=this  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4185  | 
note obt(1)[unfolded has_integral_alt'[of g]] note conjunctD2[OF this, rule_format]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4186  | 
note g = this(1) and this(2)[OF *] from this(2) guess B1 .. note B1 = conjunctD2[OF this,rule_format]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4187  | 
note obt(2)[unfolded has_integral_alt'[of h]] note conjunctD2[OF this, rule_format]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4188  | 
note h = this(1) and this(2)[OF *] from this(2) guess B2 .. note B2 = conjunctD2[OF this,rule_format]  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4189  | 
def c \<equiv> "(\<chi>\<chi> i. min (a$$i) (- (max B1 B2)))::'n" and d \<equiv> "(\<chi>\<chi> i. max (b$$i) (max B1 B2))::'n"  | 
| 36587 | 4190  | 
    have *:"ball 0 B1 \<subseteq> {c..d}" "ball 0 B2 \<subseteq> {c..d}" apply safe unfolding mem_ball mem_interval dist_norm
 | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4191  | 
proof(rule_tac[!] allI)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4192  | 
case goal1 thus ?case using component_le_norm[of x i] unfolding c_def d_def by auto next  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4193  | 
case goal2 thus ?case using component_le_norm[of x i] unfolding c_def d_def by auto qed  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4194  | 
have **:"\<And>ch cg ag ah::real. norm(ah - ag) \<le> norm(ch - cg) \<Longrightarrow> norm(cg - i) < e / 4 \<Longrightarrow>  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4195  | 
norm(ch - j) < e / 4 \<Longrightarrow> norm(ag - ah) < e"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4196  | 
using obt(3) unfolding real_norm_def by arith  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4197  | 
show ?case apply(rule_tac x="\<lambda>x. if x \<in> s then g x else 0" in exI)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4198  | 
apply(rule_tac x="\<lambda>x. if x \<in> s then h x else 0" in exI)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4199  | 
      apply(rule_tac x="integral {a..b} (\<lambda>x. if x \<in> s then g x else 0)" in exI)
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4200  | 
      apply(rule_tac x="integral {a..b} (\<lambda>x. if x \<in> s then h x else 0)" in exI)
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4201  | 
apply safe apply(rule_tac[1-2] integrable_integral,rule g,rule h)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4202  | 
apply(rule **[OF _ B1(2)[OF *(1)] B2(2)[OF *(2)]])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4203  | 
proof- have *:"\<And>x f g. (if x \<in> s then f x else 0) - (if x \<in> s then g x else 0) =  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4204  | 
(if x \<in> s then f x - g x else (0::real))" by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4205  | 
note ** = abs_of_nonneg[OF integral_nonneg[OF integrable_sub, OF h g]]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4206  | 
      show " norm (integral {a..b} (\<lambda>x. if x \<in> s then h x else 0) -
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4207  | 
                   integral {a..b} (\<lambda>x. if x \<in> s then g x else 0))
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4208  | 
           \<le> norm (integral {c..d} (\<lambda>x. if x \<in> s then h x else 0) -
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4209  | 
                   integral {c..d} (\<lambda>x. if x \<in> s then g x else 0))"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4210  | 
unfolding integral_sub[OF h g,THEN sym] real_norm_def apply(subst **) defer apply(subst **) defer  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4211  | 
apply(rule has_integral_subset_le) defer apply(rule integrable_integral integrable_sub h g)+  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4212  | 
      proof safe fix x assume "x\<in>{a..b}" thus "x\<in>{c..d}" unfolding mem_interval c_def d_def
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4213  | 
apply - apply rule apply(erule_tac x=i in allE) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4214  | 
qed(insert obt(4), auto) qed(insert obt(4), auto) qed note interv = this  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4215  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4216  | 
show ?thesis unfolding integrable_alt[of f] apply safe apply(rule interv)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4217  | 
proof- case goal1 hence *:"e/3 > 0" by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4218  | 
from assms[rule_format,OF this] guess g h i j apply-by(erule exE conjE)+ note obt=this  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4219  | 
note obt(1)[unfolded has_integral_alt'[of g]] note conjunctD2[OF this, rule_format]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4220  | 
note g = this(1) and this(2)[OF *] from this(2) guess B1 .. note B1 = conjunctD2[OF this,rule_format]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4221  | 
note obt(2)[unfolded has_integral_alt'[of h]] note conjunctD2[OF this, rule_format]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4222  | 
note h = this(1) and this(2)[OF *] from this(2) guess B2 .. note B2 = conjunctD2[OF this,rule_format]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4223  | 
show ?case apply(rule_tac x="max B1 B2" in exI) apply safe apply(rule min_max.less_supI1,rule B1)  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4224  | 
    proof- fix a b c d::"'n::ordered_euclidean_space" assume as:"ball 0 (max B1 B2) \<subseteq> {a..b}" "ball 0 (max B1 B2) \<subseteq> {c..d}"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4225  | 
have **:"ball 0 B1 \<subseteq> ball (0::'n::ordered_euclidean_space) (max B1 B2)" "ball 0 B2 \<subseteq> ball (0::'n::ordered_euclidean_space) (max B1 B2)" by auto  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4226  | 
have *:"\<And>ga gc ha hc fa fc::real. abs(ga - i) < e / 3 \<and> abs(gc - i) < e / 3 \<and> abs(ha - j) < e / 3 \<and>  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4227  | 
abs(hc - j) < e / 3 \<and> abs(i - j) < e / 3 \<and> ga \<le> fa \<and> fa \<le> ha \<and> gc \<le> fc \<and> fc \<le> hc\<Longrightarrow> abs(fa - fc) < e" by smt  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4228  | 
      show "norm (integral {a..b} (\<lambda>x. if x \<in> s then f x else 0) - integral {c..d} (\<lambda>x. if x \<in> s then f x else 0)) < e"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4229  | 
unfolding real_norm_def apply(rule *, safe) unfolding real_norm_def[THEN sym]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4230  | 
apply(rule B1(2),rule order_trans,rule **,rule as(1))  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4231  | 
apply(rule B1(2),rule order_trans,rule **,rule as(2))  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4232  | 
apply(rule B2(2),rule order_trans,rule **,rule as(1))  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4233  | 
apply(rule B2(2),rule order_trans,rule **,rule as(2))  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4234  | 
apply(rule obt) apply(rule_tac[!] integral_le) using obt  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4235  | 
by(auto intro!: h g interv) qed qed qed  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4236  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4237  | 
subsection {* Adding integrals over several sets. *}
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4238  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4239  | 
lemma has_integral_union: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4240  | 
assumes "(f has_integral i) s" "(f has_integral j) t" "negligible(s \<inter> t)"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4241  | 
shows "(f has_integral (i + j)) (s \<union> t)"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4242  | 
proof- note * = has_integral_restrict_univ[THEN sym, of f]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4243  | 
show ?thesis unfolding * apply(rule has_integral_spike[OF assms(3)])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4244  | 
defer apply(rule has_integral_add[OF assms(1-2)[unfolded *]]) by auto qed  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4245  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4246  | 
lemma has_integral_unions: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4247  | 
assumes "finite t" "\<forall>s\<in>t. (f has_integral (i s)) s" "\<forall>s\<in>t. \<forall>s'\<in>t. ~(s = s') \<longrightarrow> negligible(s \<inter> s')"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4248  | 
shows "(f has_integral (setsum i t)) (\<Union>t)"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4249  | 
proof- note * = has_integral_restrict_univ[THEN sym, of f]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4250  | 
  have **:"negligible (\<Union>((\<lambda>(a,b). a \<inter> b) ` {(a,b). a \<in> t \<and> b \<in> {y. y \<in> t \<and> ~(a = y)}}))"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4251  | 
apply(rule negligible_unions) apply(rule finite_imageI) apply(rule finite_subset[of _ "t \<times> t"]) defer  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4252  | 
apply(rule finite_cartesian_product[OF assms(1,1)]) using assms(3) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4253  | 
note assms(2)[unfolded *] note has_integral_setsum[OF assms(1) this]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4254  | 
thus ?thesis unfolding * apply-apply(rule has_integral_spike[OF **]) defer apply assumption  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4255  | 
proof safe case goal1 thus ?case  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4256  | 
proof(cases "x\<in>\<Union>t") case True then guess s unfolding Union_iff .. note s=this  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4257  | 
hence *:"\<forall>b\<in>t. x \<in> b \<longleftrightarrow> b = s" using goal1(3) by blast  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4258  | 
show ?thesis unfolding if_P[OF True] apply(rule trans) defer  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4259  | 
apply(rule setsum_cong2) apply(subst *, assumption) apply(rule refl)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4260  | 
unfolding setsum_delta[OF assms(1)] using s by auto qed auto qed qed  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4261  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4262  | 
subsection {* In particular adding integrals over a division, maybe not of an interval. *}
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4263  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4264  | 
lemma has_integral_combine_division: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4265  | 
assumes "d division_of s" "\<forall>k\<in>d. (f has_integral (i k)) k"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4266  | 
shows "(f has_integral (setsum i d)) s"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4267  | 
proof- note d = division_ofD[OF assms(1)]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4268  | 
show ?thesis unfolding d(6)[THEN sym] apply(rule has_integral_unions)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4269  | 
apply(rule d assms)+ apply(rule,rule,rule)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4270  | 
proof- case goal1 from d(4)[OF this(1)] d(4)[OF this(2)]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4271  | 
guess a c b d apply-by(erule exE)+ note obt=this  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4272  | 
from d(5)[OF goal1] show ?case unfolding obt interior_closed_interval  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4273  | 
      apply-apply(rule negligible_subset[of "({a..b}-{a<..<b}) \<union> ({c..d}-{c<..<d})"])
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4274  | 
apply(rule negligible_union negligible_frontier_interval)+ by auto qed qed  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4275  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4276  | 
lemma integral_combine_division_bottomup: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4277  | 
assumes "d division_of s" "\<forall>k\<in>d. f integrable_on k"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4278  | 
shows "integral s f = setsum (\<lambda>i. integral i f) d"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4279  | 
apply(rule integral_unique) apply(rule has_integral_combine_division[OF assms(1)])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4280  | 
using assms(2) unfolding has_integral_integral .  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4281  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4282  | 
lemma has_integral_combine_division_topdown: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4283  | 
assumes "f integrable_on s" "d division_of k" "k \<subseteq> s"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4284  | 
shows "(f has_integral (setsum (\<lambda>i. integral i f) d)) k"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4285  | 
apply(rule has_integral_combine_division[OF assms(2)])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4286  | 
apply safe unfolding has_integral_integral[THEN sym]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4287  | 
proof- case goal1 from division_ofD(2,4)[OF assms(2) this]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4288  | 
show ?case apply safe apply(rule integrable_on_subinterval)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4289  | 
apply(rule assms) using assms(3) by auto qed  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4290  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4291  | 
lemma integral_combine_division_topdown: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4292  | 
assumes "f integrable_on s" "d division_of s"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4293  | 
shows "integral s f = setsum (\<lambda>i. integral i f) d"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4294  | 
apply(rule integral_unique,rule has_integral_combine_division_topdown) using assms by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4295  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4296  | 
lemma integrable_combine_division: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4297  | 
assumes "d division_of s" "\<forall>i\<in>d. f integrable_on i"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4298  | 
shows "f integrable_on s"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4299  | 
using assms(2) unfolding integrable_on_def  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4300  | 
by(metis has_integral_combine_division[OF assms(1)])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4301  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4302  | 
lemma integrable_on_subdivision: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4303  | 
assumes "d division_of i" "f integrable_on s" "i \<subseteq> s"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4304  | 
shows "f integrable_on i"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4305  | 
apply(rule integrable_combine_division assms)+  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4306  | 
proof safe case goal1 note division_ofD(2,4)[OF assms(1) this]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4307  | 
thus ?case apply safe apply(rule integrable_on_subinterval[OF assms(2)])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4308  | 
using assms(3) by auto qed  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4309  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4310  | 
subsection {* Also tagged divisions. *}
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4311  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4312  | 
lemma has_integral_combine_tagged_division: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4313  | 
assumes "p tagged_division_of s" "\<forall>(x,k) \<in> p. (f has_integral (i k)) k"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4314  | 
shows "(f has_integral (setsum (\<lambda>(x,k). i k) p)) s"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4315  | 
proof- have *:"(f has_integral (setsum (\<lambda>k. integral k f) (snd ` p))) s"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4316  | 
apply(rule has_integral_combine_division) apply(rule division_of_tagged_division[OF assms(1)])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4317  | 
using assms(2) unfolding has_integral_integral[THEN sym] by(safe,auto)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4318  | 
thus ?thesis apply- apply(rule subst[where P="\<lambda>i. (f has_integral i) s"]) defer apply assumption  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4319  | 
apply(rule trans[of _ "setsum (\<lambda>(x,k). integral k f) p"]) apply(subst eq_commute)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4320  | 
apply(rule setsum_over_tagged_division_lemma[OF assms(1)]) apply(rule integral_null,assumption)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4321  | 
apply(rule setsum_cong2) using assms(2) by auto qed  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4322  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4323  | 
lemma integral_combine_tagged_division_bottomup: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4324  | 
  assumes "p tagged_division_of {a..b}" "\<forall>(x,k)\<in>p. f integrable_on k"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4325  | 
  shows "integral {a..b} f = setsum (\<lambda>(x,k). integral k f) p"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4326  | 
apply(rule integral_unique) apply(rule has_integral_combine_tagged_division[OF assms(1)])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4327  | 
using assms(2) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4328  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4329  | 
lemma has_integral_combine_tagged_division_topdown: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4330  | 
  assumes "f integrable_on {a..b}" "p tagged_division_of {a..b}"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4331  | 
  shows "(f has_integral (setsum (\<lambda>(x,k). integral k f) p)) {a..b}"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4332  | 
apply(rule has_integral_combine_tagged_division[OF assms(2)])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4333  | 
proof safe case goal1 note tagged_division_ofD(3-4)[OF assms(2) this]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4334  | 
thus ?case using integrable_subinterval[OF assms(1)] by auto qed  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4335  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4336  | 
lemma integral_combine_tagged_division_topdown: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4337  | 
  assumes "f integrable_on {a..b}" "p tagged_division_of {a..b}"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4338  | 
  shows "integral {a..b} f = setsum (\<lambda>(x,k). integral k f) p"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4339  | 
apply(rule integral_unique,rule has_integral_combine_tagged_division_topdown) using assms by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4340  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4341  | 
subsection {* Henstock's lemma. *}
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4342  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4343  | 
lemma henstock_lemma_part1: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4344  | 
  assumes "f integrable_on {a..b}" "0 < e" "gauge d"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4345  | 
  "(\<forall>p. p tagged_division_of {a..b} \<and> d fine p \<longrightarrow> norm (setsum (\<lambda>(x,k). content k *\<^sub>R f x) p - integral({a..b}) f) < e)"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4346  | 
  and p:"p tagged_partial_division_of {a..b}" "d fine p"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4347  | 
shows "norm(setsum (\<lambda>(x,k). content k *\<^sub>R f x - integral k f) p) \<le> e" (is "?x \<le> e")  | 
| 41863 | 4348  | 
proof-  { presume "\<And>k. 0<k \<Longrightarrow> ?x \<le> e + k" thus ?thesis by (blast intro: field_le_epsilon) }
 | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4349  | 
fix k::real assume k:"k>0" note p' = tagged_partial_division_ofD[OF p(1)]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4350  | 
  have "\<Union>snd ` p \<subseteq> {a..b}" using p'(3) by fastsimp
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4351  | 
note partial_division_of_tagged_division[OF p(1)] this  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4352  | 
from partial_division_extend_interval[OF this] guess q . note q=this and q' = division_ofD[OF this(2)]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4353  | 
  def r \<equiv> "q - snd ` p" have "snd ` p \<inter> r = {}" unfolding r_def by auto
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4354  | 
have r:"finite r" using q' unfolding r_def by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4355  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4356  | 
have "\<forall>i\<in>r. \<exists>p. p tagged_division_of i \<and> d fine p \<and>  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4357  | 
norm(setsum (\<lambda>(x,j). content j *\<^sub>R f x) p - integral i f) < k / (real (card r) + 1)"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4358  | 
proof safe case goal1 hence i:"i \<in> q" unfolding r_def by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4359  | 
from q'(4)[OF this] guess u v apply-by(erule exE)+ note uv=this  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4360  | 
have *:"k / (real (card r) + 1) > 0" apply(rule divide_pos_pos,rule k) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4361  | 
    have "f integrable_on {u..v}" apply(rule integrable_subinterval[OF assms(1)])
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4362  | 
using q'(2)[OF i] unfolding uv by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4363  | 
note integrable_integral[OF this, unfolded has_integral[of f]]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4364  | 
from this[rule_format,OF *] guess dd .. note dd=conjunctD2[OF this,rule_format]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4365  | 
note gauge_inter[OF `gauge d` dd(1)] from fine_division_exists[OF this,of u v] guess qq .  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4366  | 
thus ?case apply(rule_tac x=qq in exI) using dd(2)[of qq] unfolding fine_inter uv by auto qed  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4367  | 
from bchoice[OF this] guess qq .. note qq=this[rule_format]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4368  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4369  | 
  let ?p = "p \<union> \<Union>qq ` r" have "norm ((\<Sum>(x, k)\<in>?p. content k *\<^sub>R f x) - integral {a..b} f) < e"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4370  | 
apply(rule assms(4)[rule_format])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4371  | 
proof show "d fine ?p" apply(rule fine_union,rule p) apply(rule fine_unions) using qq by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4372  | 
note * = tagged_partial_division_of_union_self[OF p(1)]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4373  | 
have "p \<union> \<Union>qq ` r tagged_division_of \<Union>snd ` p \<union> \<Union>r"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4374  | 
proof(rule tagged_division_union[OF * tagged_division_unions])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4375  | 
show "finite r" by fact case goal2 thus ?case using qq by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4376  | 
next case goal3 thus ?case apply(rule,rule,rule) apply(rule q'(5)) unfolding r_def by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4377  | 
next case goal4 thus ?case apply(rule inter_interior_unions_intervals) apply(fact,rule)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4378  | 
apply(rule,rule q') defer apply(rule,subst Int_commute)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4379  | 
apply(rule inter_interior_unions_intervals) apply(rule finite_imageI,rule p',rule) defer  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4380  | 
apply(rule,rule q') using q(1) p' unfolding r_def by auto qed  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4381  | 
    moreover have "\<Union>snd ` p \<union> \<Union>r = {a..b}" "{qq i |i. i \<in> r} = qq ` r"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4382  | 
unfolding Union_Un_distrib[THEN sym] r_def using q by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4383  | 
    ultimately show "?p tagged_division_of {a..b}" by fastsimp qed
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4384  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4385  | 
hence "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) + (\<Sum>(x, k)\<in>\<Union>qq ` r. content k *\<^sub>R f x) -  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4386  | 
    integral {a..b} f) < e" apply(subst setsum_Un_zero[THEN sym]) apply(rule p') prefer 3 
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4387  | 
apply assumption apply rule apply(rule finite_imageI,rule r) apply safe apply(drule qq)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4388  | 
proof- fix x l k assume as:"(x,l)\<in>p" "(x,l)\<in>qq k" "k\<in>r"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4389  | 
note qq[OF this(3)] note tagged_division_ofD(3,4)[OF conjunct1[OF this] as(2)]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4390  | 
from this(2) guess u v apply-by(erule exE)+ note uv=this  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4391  | 
have "l\<in>snd ` p" unfolding image_iff apply(rule_tac x="(x,l)" in bexI) using as by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4392  | 
hence "l\<in>q" "k\<in>q" "l\<noteq>k" using as(1,3) q(1) unfolding r_def by auto  | 
| 
44522
 
2f7e9d890efe
rename subset_{interior,closure} to {interior,closure}_mono;
 
huffman 
parents: 
44514 
diff
changeset
 | 
4393  | 
    note q'(5)[OF this] hence "interior l = {}" using interior_mono[OF `l \<subseteq> k`] by blast
 | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4394  | 
thus "content l *\<^sub>R f x = 0" unfolding uv content_eq_0_interior[THEN sym] by auto qed auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4395  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4396  | 
hence "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) + setsum (setsum (\<lambda>(x, k). content k *\<^sub>R f x))  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4397  | 
    (qq ` r) - integral {a..b} f) < e" apply(subst(asm) setsum_UNION_zero)
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4398  | 
prefer 4 apply assumption apply(rule finite_imageI,fact)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4399  | 
unfolding split_paired_all split_conv image_iff defer apply(erule bexE)+  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4400  | 
proof- fix x m k l T1 T2 assume "(x,m)\<in>T1" "(x,m)\<in>T2" "T1\<noteq>T2" "k\<in>r" "l\<in>r" "T1 = qq k" "T2 = qq l"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4401  | 
note as = this(1-5)[unfolded this(6-)] note kl = tagged_division_ofD(3,4)[OF qq[THEN conjunct1]]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4402  | 
from this(2)[OF as(4,1)] guess u v apply-by(erule exE)+ note uv=this  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4403  | 
    have *:"interior (k \<inter> l) = {}" unfolding interior_inter apply(rule q')
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4404  | 
using as unfolding r_def by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4405  | 
    have "interior m = {}" unfolding subset_empty[THEN sym] unfolding *[THEN sym]
 | 
| 
44522
 
2f7e9d890efe
rename subset_{interior,closure} to {interior,closure}_mono;
 
huffman 
parents: 
44514 
diff
changeset
 | 
4406  | 
apply(rule interior_mono) using kl(1)[OF as(4,1)] kl(1)[OF as(5,2)] by auto  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4407  | 
thus "content m *\<^sub>R f x = 0" unfolding uv content_eq_0_interior[THEN sym] by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4408  | 
qed(insert qq, auto)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4409  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4410  | 
hence **:"norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) + setsum (setsum (\<lambda>(x, k). content k *\<^sub>R f x) \<circ> qq) r -  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4411  | 
    integral {a..b} f) < e" apply(subst(asm) setsum_reindex_nonzero) apply fact
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4412  | 
apply(rule setsum_0',rule) unfolding split_paired_all split_conv defer apply assumption  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4413  | 
proof- fix k l x m assume as:"k\<in>r" "l\<in>r" "k\<noteq>l" "qq k = qq l" "(x,m)\<in>qq k"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4414  | 
note tagged_division_ofD(6)[OF qq[THEN conjunct1]] from this[OF as(1)] this[OF as(2)]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4415  | 
show "content m *\<^sub>R f x = 0" using as(3) unfolding as by auto qed  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4416  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4417  | 
have *:"\<And>ir ip i cr cp. norm((cp + cr) - i) < e \<Longrightarrow> norm(cr - ir) < k \<Longrightarrow>  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4418  | 
ip + ir = i \<Longrightarrow> norm(cp - ip) \<le> e + k"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4419  | 
proof- case goal1 thus ?case using norm_triangle_le[of "cp + cr - i" "- (cr - ir)"]  | 
| 36350 | 4420  | 
unfolding goal1(3)[THEN sym] norm_minus_cancel by(auto simp add:algebra_simps) qed  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4421  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4422  | 
have "?x = norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - (\<Sum>(x, k)\<in>p. integral k f))"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4423  | 
unfolding split_def setsum_subtractf ..  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4424  | 
also have "... \<le> e + k" apply(rule *[OF **, where ir="setsum (\<lambda>k. integral k f) r"])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4425  | 
proof- case goal2 have *:"(\<Sum>(x, k)\<in>p. integral k f) = (\<Sum>k\<in>snd ` p. integral k f)"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4426  | 
apply(subst setsum_reindex_nonzero) apply fact  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4427  | 
unfolding split_paired_all snd_conv split_def o_def  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4428  | 
proof- fix x l y m assume as:"(x,l)\<in>p" "(y,m)\<in>p" "(x,l)\<noteq>(y,m)" "l = m"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4429  | 
from p'(4)[OF as(1)] guess u v apply-by(erule exE)+ note uv=this  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4430  | 
show "integral l f = 0" unfolding uv apply(rule integral_unique)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4431  | 
apply(rule has_integral_null) unfolding content_eq_0_interior  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4432  | 
using p'(5)[OF as(1-3)] unfolding uv as(4)[THEN sym] by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4433  | 
qed auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4434  | 
show ?case unfolding integral_combine_division_topdown[OF assms(1) q(2)] * r_def  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4435  | 
apply(rule setsum_Un_disjoint'[THEN sym]) using q(1) q'(1) p'(1) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4436  | 
next case goal1 have *:"k * real (card r) / (1 + real (card r)) < k" using k by(auto simp add:field_simps)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4437  | 
show ?case apply(rule le_less_trans[of _ "setsum (\<lambda>x. k / (real (card r) + 1)) r"])  | 
| 
44176
 
eda112e9cdee
remove redundant lemma setsum_norm in favor of norm_setsum;
 
huffman 
parents: 
44170 
diff
changeset
 | 
4438  | 
unfolding setsum_subtractf[THEN sym] apply(rule setsum_norm_le)  | 
| 
36778
 
739a9379e29b
avoid using real-specific versions of generic lemmas
 
huffman 
parents: 
36725 
diff
changeset
 | 
4439  | 
apply rule apply(drule qq) defer unfolding divide_inverse setsum_left_distrib[THEN sym]  | 
| 
 
739a9379e29b
avoid using real-specific versions of generic lemmas
 
huffman 
parents: 
36725 
diff
changeset
 | 
4440  | 
unfolding divide_inverse[THEN sym] using * by(auto simp add:field_simps real_eq_of_nat)  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4441  | 
qed finally show "?x \<le> e + k" . qed  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4442  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4443  | 
lemma henstock_lemma_part2: fixes f::"'m::ordered_euclidean_space \<Rightarrow> 'n::ordered_euclidean_space"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4444  | 
  assumes "f integrable_on {a..b}" "0 < e" "gauge d"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4445  | 
  "\<forall>p. p tagged_division_of {a..b} \<and> d fine p \<longrightarrow> norm (setsum (\<lambda>(x,k). content k *\<^sub>R f x) p -
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4446  | 
          integral({a..b}) f) < e"    "p tagged_partial_division_of {a..b}" "d fine p"
 | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4447  | 
  shows "setsum (\<lambda>(x,k). norm(content k *\<^sub>R f x - integral k f)) p \<le> 2 * real (DIM('n)) * e"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4448  | 
unfolding split_def apply(rule setsum_norm_allsubsets_bound) defer  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4449  | 
apply(rule henstock_lemma_part1[unfolded split_def,OF assms(1-3)])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4450  | 
apply safe apply(rule assms[rule_format,unfolded split_def]) defer  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4451  | 
apply(rule tagged_partial_division_subset,rule assms,assumption)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4452  | 
apply(rule fine_subset,assumption,rule assms) using assms(5) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4453  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4454  | 
lemma henstock_lemma: fixes f::"'m::ordered_euclidean_space \<Rightarrow> 'n::ordered_euclidean_space"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4455  | 
  assumes "f integrable_on {a..b}" "e>0"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4456  | 
obtains d where "gauge d"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4457  | 
  "\<forall>p. p tagged_partial_division_of {a..b} \<and> d fine p
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4458  | 
\<longrightarrow> setsum (\<lambda>(x,k). norm(content k *\<^sub>R f x - integral k f)) p < e"  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4459  | 
proof- have *:"e / (2 * (real DIM('n) + 1)) > 0" apply(rule divide_pos_pos) using assms(2) by auto
 | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4460  | 
from integrable_integral[OF assms(1),unfolded has_integral[of f],rule_format,OF this]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4461  | 
guess d .. note d = conjunctD2[OF this] show thesis apply(rule that,rule d)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4462  | 
proof safe case goal1 note * = henstock_lemma_part2[OF assms(1) * d this]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4463  | 
show ?case apply(rule le_less_trans[OF *]) using `e>0` by(auto simp add:field_simps) qed qed  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4464  | 
|
| 
44514
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4465  | 
subsection {* Geometric progression *}
 | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4466  | 
|
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4467  | 
text {* FIXME: Should one or more of these theorems be moved to @{file
 | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4468  | 
"~~/src/HOL/SetInterval.thy"}, alongside @{text geometric_sum}? *}
 | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4469  | 
|
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4470  | 
lemma sum_gp_basic:  | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4471  | 
fixes x :: "'a::ring_1"  | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4472  | 
  shows "(1 - x) * setsum (\<lambda>i. x^i) {0 .. n} = (1 - x^(Suc n))"
 | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4473  | 
proof-  | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4474  | 
def y \<equiv> "1 - x"  | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4475  | 
have "y * (\<Sum>i=0..n. (1 - y) ^ i) = 1 - (1 - y) ^ Suc n"  | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4476  | 
by (induct n, simp, simp add: algebra_simps)  | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4477  | 
thus ?thesis  | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4478  | 
unfolding y_def by simp  | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4479  | 
qed  | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4480  | 
|
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4481  | 
lemma sum_gp_multiplied: assumes mn: "m <= n"  | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4482  | 
  shows "((1::'a::{field}) - x) * setsum (op ^ x) {m..n} = x^m - x^ Suc n"
 | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4483  | 
(is "?lhs = ?rhs")  | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4484  | 
proof-  | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4485  | 
  let ?S = "{0..(n - m)}"
 | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4486  | 
from mn have mn': "n - m \<ge> 0" by arith  | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4487  | 
let ?f = "op + m"  | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4488  | 
have i: "inj_on ?f ?S" unfolding inj_on_def by auto  | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4489  | 
  have f: "?f ` ?S = {m..n}"
 | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4490  | 
using mn apply (auto simp add: image_iff Bex_def) by arith  | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4491  | 
have th: "op ^ x o op + m = (\<lambda>i. x^m * x^i)"  | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4492  | 
by (rule ext, simp add: power_add power_mult)  | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4493  | 
from setsum_reindex[OF i, of "op ^ x", unfolded f th setsum_right_distrib[symmetric]]  | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4494  | 
  have "?lhs = x^m * ((1 - x) * setsum (op ^ x) {0..n - m})" by simp
 | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4495  | 
then show ?thesis unfolding sum_gp_basic using mn  | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4496  | 
by (simp add: field_simps power_add[symmetric])  | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4497  | 
qed  | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4498  | 
|
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4499  | 
lemma sum_gp: "setsum (op ^ (x::'a::{field})) {m .. n} =
 | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4500  | 
(if n < m then 0 else if x = 1 then of_nat ((n + 1) - m)  | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4501  | 
else (x^ m - x^ (Suc n)) / (1 - x))"  | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4502  | 
proof-  | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4503  | 
  {assume nm: "n < m" hence ?thesis by simp}
 | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4504  | 
moreover  | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4505  | 
  {assume "\<not> n < m" hence nm: "m \<le> n" by arith
 | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4506  | 
    {assume x: "x = 1"  hence ?thesis by simp}
 | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4507  | 
moreover  | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4508  | 
    {assume x: "x \<noteq> 1" hence nz: "1 - x \<noteq> 0" by simp
 | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4509  | 
from sum_gp_multiplied[OF nm, of x] nz have ?thesis by (simp add: field_simps)}  | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4510  | 
ultimately have ?thesis by metis  | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4511  | 
}  | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4512  | 
ultimately show ?thesis by metis  | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4513  | 
qed  | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4514  | 
|
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4515  | 
lemma sum_gp_offset: "setsum (op ^ (x::'a::{field})) {m .. m+n} =
 | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4516  | 
(if x = 1 then of_nat n + 1 else x^m * (1 - x^Suc n) / (1 - x))"  | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4517  | 
unfolding sum_gp[of x m "m + n"] power_Suc  | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4518  | 
by (simp add: field_simps power_add)  | 
| 
 
d02b01e5ab8f
move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
 
huffman 
parents: 
44457 
diff
changeset
 | 
4519  | 
|
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4520  | 
subsection {* monotone convergence (bounded interval first). *}
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4521  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4522  | 
lemma monotone_convergence_interval: fixes f::"nat \<Rightarrow> 'n::ordered_euclidean_space \<Rightarrow> real"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4523  | 
  assumes "\<forall>k. (f k) integrable_on {a..b}"
 | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4524  | 
  "\<forall>k. \<forall>x\<in>{a..b}.(f k x) \<le> (f (Suc k) x)"
 | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4525  | 
  "\<forall>x\<in>{a..b}. ((\<lambda>k. f k x) ---> g x) sequentially"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4526  | 
  "bounded {integral {a..b} (f k) | k . k \<in> UNIV}"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4527  | 
  shows "g integrable_on {a..b} \<and> ((\<lambda>k. integral ({a..b}) (f k)) ---> integral ({a..b}) g) sequentially"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4528  | 
proof(case_tac[!] "content {a..b} = 0") assume as:"content {a..b} = 0"
 | 
| 44125 | 4529  | 
show ?thesis using integrable_on_null[OF as] unfolding integral_null[OF as] using tendsto_const by auto  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4530  | 
next assume ab:"content {a..b} \<noteq> 0"
 | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4531  | 
  have fg:"\<forall>x\<in>{a..b}. \<forall> k. (f k x) $$ 0 \<le> (g x) $$ 0"
 | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4532  | 
proof safe case goal1 note assms(3)[rule_format,OF this]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4533  | 
note * = Lim_component_ge[OF this trivial_limit_sequentially]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4534  | 
show ?case apply(rule *) unfolding eventually_sequentially  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4535  | 
apply(rule_tac x=k in exI) apply- apply(rule transitive_stepwise_le)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4536  | 
using assms(2)[rule_format,OF goal1] by auto qed  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4537  | 
  have "\<exists>i. ((\<lambda>k. integral ({a..b}) (f k)) ---> i) sequentially"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4538  | 
apply(rule bounded_increasing_convergent) defer  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4539  | 
apply rule apply(rule integral_le) apply safe  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4540  | 
apply(rule assms(1-2)[rule_format])+ using assms(4) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4541  | 
then guess i .. note i=this  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4542  | 
  have i':"\<And>k. (integral({a..b}) (f k)) \<le> i$$0"
 | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4543  | 
apply(rule Lim_component_ge,rule i) apply(rule trivial_limit_sequentially)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4544  | 
unfolding eventually_sequentially apply(rule_tac x=k in exI)  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4545  | 
apply(rule transitive_stepwise_le) prefer 3 unfolding Eucl_real_simps apply(rule integral_le)  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4546  | 
apply(rule assms(1-2)[rule_format])+ using assms(2) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4547  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4548  | 
  have "(g has_integral i) {a..b}" unfolding has_integral
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4549  | 
proof safe case goal1 note e=this  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4550  | 
    hence "\<forall>k. (\<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {a..b} \<and> d fine p \<longrightarrow>
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4551  | 
             norm ((\<Sum>(x, ka)\<in>p. content ka *\<^sub>R f k x) - integral {a..b} (f k)) < e / 2 ^ (k + 2)))"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4552  | 
apply-apply(rule,rule assms(1)[unfolded has_integral_integral has_integral,rule_format])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4553  | 
apply(rule divide_pos_pos) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4554  | 
from choice[OF this] guess c .. note c=conjunctD2[OF this[rule_format],rule_format]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4555  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4556  | 
    have "\<exists>r. \<forall>k\<ge>r. 0 \<le> i$$0 - (integral {a..b} (f k)) \<and> i$$0 - (integral {a..b} (f k)) < e / 4"
 | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4557  | 
proof- case goal1 have "e/4 > 0" using e by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4558  | 
from i[unfolded Lim_sequentially,rule_format,OF this] guess r ..  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4559  | 
thus ?case apply(rule_tac x=r in exI) apply rule  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4560  | 
apply(erule_tac x=k in allE)  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4561  | 
proof- case goal1 thus ?case using i'[of k] unfolding dist_real_def by auto qed qed  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4562  | 
then guess r .. note r=conjunctD2[OF this[rule_format]]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4563  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4564  | 
    have "\<forall>x\<in>{a..b}. \<exists>n\<ge>r. \<forall>k\<ge>n. 0 \<le> (g x)$$0 - (f k x)$$0 \<and>
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4565  | 
           (g x)$$0 - (f k x)$$0 < e / (4 * content({a..b}))"
 | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4566  | 
    proof case goal1 have "e / (4 * content {a..b}) > 0" apply(rule divide_pos_pos,fact)
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4567  | 
using ab content_pos_le[of a b] by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4568  | 
from assms(3)[rule_format,OF goal1,unfolded Lim_sequentially,rule_format,OF this]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4569  | 
guess n .. note n=this  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4570  | 
thus ?case apply(rule_tac x="n + r" in exI) apply safe apply(erule_tac[2-3] x=k in allE)  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4571  | 
unfolding dist_real_def using fg[rule_format,OF goal1] by(auto simp add:field_simps) qed  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4572  | 
from bchoice[OF this] guess m .. note m=conjunctD2[OF this[rule_format],rule_format]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4573  | 
def d \<equiv> "\<lambda>x. c (m x) x"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4574  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4575  | 
show ?case apply(rule_tac x=d in exI)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4576  | 
proof safe show "gauge d" using c(1) unfolding gauge_def d_def by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4577  | 
    next fix p assume p:"p tagged_division_of {a..b}" "d fine p"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4578  | 
note p'=tagged_division_ofD[OF p(1)]  | 
| 41851 | 4579  | 
have "\<exists>a. \<forall>x\<in>p. m (fst x) \<le> a"  | 
4580  | 
by (metis finite_imageI finite_nat_set_iff_bounded_le p'(1) rev_image_eqI)  | 
|
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4581  | 
then guess s .. note s=this  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4582  | 
have *:"\<forall>a b c d. norm(a - b) \<le> e / 4 \<and> norm(b - c) < e / 2 \<and>  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4583  | 
norm(c - d) < e / 4 \<longrightarrow> norm(a - d) < e"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4584  | 
proof safe case goal1 thus ?case using norm_triangle_lt[of "a - b" "b - c" "3* e/4"]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4585  | 
norm_triangle_lt[of "a - b + (b - c)" "c - d" e] unfolding norm_minus_cancel  | 
| 36350 | 4586  | 
by(auto simp add:algebra_simps) qed  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4587  | 
show "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R g x) - i) < e" apply(rule *[rule_format,where  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4588  | 
b="\<Sum>(x, k)\<in>p. content k *\<^sub>R f (m x) x" and c="\<Sum>(x, k)\<in>p. integral k (f (m x))"])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4589  | 
proof safe case goal1  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4590  | 
         show ?case apply(rule order_trans[of _ "\<Sum>(x, k)\<in>p. content k * (e / (4 * content {a..b}))"])
 | 
| 
44176
 
eda112e9cdee
remove redundant lemma setsum_norm in favor of norm_setsum;
 
huffman 
parents: 
44170 
diff
changeset
 | 
4591  | 
unfolding setsum_subtractf[THEN sym] apply(rule order_trans,rule norm_setsum)  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4592  | 
apply(rule setsum_mono) unfolding split_paired_all split_conv  | 
| 
44282
 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 
huffman 
parents: 
44176 
diff
changeset
 | 
4593  | 
unfolding split_def setsum_left_distrib[THEN sym] scaleR_diff_right[THEN sym]  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4594  | 
unfolding additive_content_tagged_division[OF p(1), unfolded split_def]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4595  | 
         proof- fix x k assume xk:"(x,k) \<in> p" hence x:"x\<in>{a..b}" using p'(2-3)[OF xk] by auto
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4596  | 
from p'(4)[OF xk] guess u v apply-by(erule exE)+ note uv=this  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4597  | 
           show " norm (content k *\<^sub>R (g x - f (m x) x)) \<le> content k * (e / (4 * content {a..b}))"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4598  | 
unfolding norm_scaleR uv unfolding abs_of_nonneg[OF content_pos_le]  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4599  | 
apply(rule mult_left_mono) using m(2)[OF x,of "m x"] by auto  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4600  | 
qed(insert ab,auto)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4601  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4602  | 
next case goal2 show ?case apply(rule le_less_trans[of _ "norm (\<Sum>j = 0..s.  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4603  | 
           \<Sum>(x, k)\<in>{xk\<in>p. m (fst xk) = j}. content k *\<^sub>R f (m x) x - integral k (f (m x)))"])
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4604  | 
apply(subst setsum_group) apply fact apply(rule finite_atLeastAtMost) defer  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4605  | 
apply(subst split_def)+ unfolding setsum_subtractf apply rule  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4606  | 
         proof- show "norm (\<Sum>j = 0..s. \<Sum>(x, k)\<in>{xk \<in> p.
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4607  | 
m (fst xk) = j}. content k *\<^sub>R f (m x) x - integral k (f (m x))) < e / 2"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4608  | 
             apply(rule le_less_trans[of _ "setsum (\<lambda>i. e / 2^(i+2)) {0..s}"])
 | 
| 
44176
 
eda112e9cdee
remove redundant lemma setsum_norm in favor of norm_setsum;
 
huffman 
parents: 
44170 
diff
changeset
 | 
4609  | 
apply(rule setsum_norm_le)  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4610  | 
proof show "(\<Sum>i = 0..s. e / 2 ^ (i + 2)) < e / 2"  | 
| 
36778
 
739a9379e29b
avoid using real-specific versions of generic lemmas
 
huffman 
parents: 
36725 
diff
changeset
 | 
4611  | 
unfolding power_add divide_inverse inverse_mult_distrib  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4612  | 
unfolding setsum_right_distrib[THEN sym] setsum_left_distrib[THEN sym]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4613  | 
unfolding power_inverse sum_gp apply(rule mult_strict_left_mono[OF _ e])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4614  | 
unfolding power2_eq_square by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4615  | 
             fix t assume "t\<in>{0..s}"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4616  | 
             show "norm (\<Sum>(x, k)\<in>{xk \<in> p. m (fst xk) = t}. content k *\<^sub>R f (m x) x -
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4617  | 
integral k (f (m x))) \<le> e / 2 ^ (t + 2)"apply(rule order_trans[of _  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4618  | 
               "norm(setsum (\<lambda>(x,k). content k *\<^sub>R f t x - integral k (f t)) {xk \<in> p. m (fst xk) = t})"])
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4619  | 
apply(rule eq_refl) apply(rule arg_cong[where f=norm]) apply(rule setsum_cong2) defer  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4620  | 
apply(rule henstock_lemma_part1) apply(rule assms(1)[rule_format])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4621  | 
apply(rule divide_pos_pos,rule e) defer apply safe apply(rule c)+  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4622  | 
apply rule apply assumption+ apply(rule tagged_partial_division_subset[of p])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4623  | 
apply(rule p(1)[unfolded tagged_division_of_def,THEN conjunct1]) defer  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4624  | 
unfolding fine_def apply safe apply(drule p(2)[unfolded fine_def,rule_format])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4625  | 
unfolding d_def by auto qed  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4626  | 
qed(insert s, auto)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4627  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4628  | 
next case goal3  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4629  | 
note comb = integral_combine_tagged_division_topdown[OF assms(1)[rule_format] p(1)]  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4630  | 
have *:"\<And>sr sx ss ks kr::real. kr = sr \<longrightarrow> ks = ss \<longrightarrow> ks \<le> i \<and> sr \<le> sx \<and> sx \<le> ss \<and> 0 \<le> i$$0 - kr$$0  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4631  | 
\<and> i$$0 - kr$$0 < e/4 \<longrightarrow> abs(sx - i) < e/4" by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4632  | 
show ?case unfolding real_norm_def apply(rule *[rule_format],safe)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4633  | 
apply(rule comb[of r],rule comb[of s]) apply(rule i'[unfolded Eucl_real_simps])  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4634  | 
apply(rule_tac[1-2] setsum_mono) unfolding split_paired_all split_conv  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4635  | 
apply(rule_tac[1-2] integral_le[OF ])  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4636  | 
         proof safe show "0 \<le> i$$0 - (integral {a..b} (f r))$$0" using r(1) by auto
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4637  | 
           show "i$$0 - (integral {a..b} (f r))$$0 < e / 4" using r(2) by auto
 | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4638  | 
fix x k assume xk:"(x,k)\<in>p" from p'(4)[OF this] guess u v apply-by(erule exE)+ note uv=this  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4639  | 
show "f r integrable_on k" "f s integrable_on k" "f (m x) integrable_on k" "f (m x) integrable_on k"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4640  | 
unfolding uv apply(rule_tac[!] integrable_on_subinterval[OF assms(1)[rule_format]])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4641  | 
using p'(3)[OF xk] unfolding uv by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4642  | 
           fix y assume "y\<in>k" hence "y\<in>{a..b}" using p'(3)[OF xk] by auto
 | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4643  | 
hence *:"\<And>m. \<forall>n\<ge>m. (f m y) \<le> (f n y)" apply-apply(rule transitive_stepwise_le) using assms(2) by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4644  | 
show "(f r y) \<le> (f (m x) y)" "(f (m x) y) \<le> (f s y)"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4645  | 
apply(rule_tac[!] *[rule_format]) using s[rule_format,OF xk] m(1)[of x] p'(2-3)[OF xk] by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4646  | 
qed qed qed qed note * = this  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4647  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4648  | 
   have "integral {a..b} g = i" apply(rule integral_unique) using * .
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4649  | 
thus ?thesis using i * by auto qed  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4650  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4651  | 
lemma monotone_convergence_increasing: fixes f::"nat \<Rightarrow> 'n::ordered_euclidean_space \<Rightarrow> real"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4652  | 
assumes "\<forall>k. (f k) integrable_on s" "\<forall>k. \<forall>x\<in>s. (f k x) \<le> (f (Suc k) x)"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4653  | 
  "\<forall>x\<in>s. ((\<lambda>k. f k x) ---> g x) sequentially" "bounded {integral s (f k)| k. True}"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4654  | 
shows "g integrable_on s \<and> ((\<lambda>k. integral s (f k)) ---> integral s g) sequentially"  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4655  | 
proof- have lem:"\<And>f::nat \<Rightarrow> 'n::ordered_euclidean_space \<Rightarrow> real. \<And> g s. \<forall>k.\<forall>x\<in>s. 0 \<le> (f k x) \<Longrightarrow> \<forall>k. (f k) integrable_on s \<Longrightarrow>  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4656  | 
\<forall>k. \<forall>x\<in>s. (f k x) \<le> (f (Suc k) x) \<Longrightarrow> \<forall>x\<in>s. ((\<lambda>k. f k x) ---> g x) sequentially \<Longrightarrow>  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4657  | 
    bounded {integral s (f k)| k. True} \<Longrightarrow> g integrable_on s \<and> ((\<lambda>k. integral s (f k)) ---> integral s g) sequentially"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4658  | 
proof- case goal1 note assms=this[rule_format]  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4659  | 
have "\<forall>x\<in>s. \<forall>k. (f k x)$$0 \<le> (g x)$$0" apply safe apply(rule Lim_component_ge)  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4660  | 
apply(rule goal1(4)[rule_format],assumption) apply(rule trivial_limit_sequentially)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4661  | 
unfolding eventually_sequentially apply(rule_tac x=k in exI)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4662  | 
apply(rule transitive_stepwise_le) using goal1(3) by auto note fg=this[rule_format]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4663  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4664  | 
have "\<exists>i. ((\<lambda>k. integral s (f k)) ---> i) sequentially" apply(rule bounded_increasing_convergent)  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4665  | 
apply(rule goal1(5)) apply(rule,rule integral_le) apply(rule goal1(2)[rule_format])+  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4666  | 
using goal1(3) by auto then guess i .. note i=this  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4667  | 
have "\<And>k. \<forall>x\<in>s. \<forall>n\<ge>k. f k x \<le> f n x" apply(rule,rule transitive_stepwise_le) using goal1(3) by auto  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4668  | 
hence i':"\<forall>k. (integral s (f k))$$0 \<le> i$$0" apply-apply(rule,rule Lim_component_ge)  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4669  | 
apply(rule i,rule trivial_limit_sequentially) unfolding eventually_sequentially  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4670  | 
apply(rule_tac x=k in exI,safe) apply(rule integral_component_le)  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4671  | 
apply(rule goal1(2)[rule_format])+ by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4672  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4673  | 
note int = assms(2)[unfolded integrable_alt[of _ s],THEN conjunct1,rule_format]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4674  | 
have ifif:"\<And>k t. (\<lambda>x. if x \<in> t then if x \<in> s then f k x else 0 else 0) =  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4675  | 
(\<lambda>x. if x \<in> t\<inter>s then f k x else 0)" apply(rule ext) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4676  | 
    have int':"\<And>k a b. f k integrable_on {a..b} \<inter> s" apply(subst integrable_restrict_univ[THEN sym])
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4677  | 
apply(subst ifif[THEN sym]) apply(subst integrable_restrict_univ) using int .  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4678  | 
    have "\<And>a b. (\<lambda>x. if x \<in> s then g x else 0) integrable_on {a..b} \<and>
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4679  | 
      ((\<lambda>k. integral {a..b} (\<lambda>x. if x \<in> s then f k x else 0)) --->
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4680  | 
      integral {a..b} (\<lambda>x. if x \<in> s then g x else 0)) sequentially"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4681  | 
proof(rule monotone_convergence_interval,safe)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4682  | 
case goal1 show ?case using int .  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4683  | 
next case goal2 thus ?case apply-apply(cases "x\<in>s") using assms(3) by auto  | 
| 44125 | 4684  | 
next case goal3 thus ?case apply-apply(cases "x\<in>s")  | 
| 
44457
 
d366fa5551ef
declare euclidean_simps [simp] at the point they are proved;
 
huffman 
parents: 
44282 
diff
changeset
 | 
4685  | 
using assms(4) by auto  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4686  | 
next case goal4 note * = integral_nonneg  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4687  | 
      have "\<And>k. norm (integral {a..b} (\<lambda>x. if x \<in> s then f k x else 0)) \<le> norm (integral s (f k))"
 | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4688  | 
unfolding real_norm_def apply(subst abs_of_nonneg) apply(rule *[OF int])  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4689  | 
apply(safe,case_tac "x\<in>s") apply(drule assms(1)) prefer 3  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4690  | 
apply(subst abs_of_nonneg) apply(rule *[OF assms(2) goal1(1)[THEN spec]])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4691  | 
apply(subst integral_restrict_univ[THEN sym,OF int])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4692  | 
unfolding ifif unfolding integral_restrict_univ[OF int']  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4693  | 
apply(rule integral_subset_le[OF _ int' assms(2)]) using assms(1) by auto  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4694  | 
thus ?case using assms(5) unfolding bounded_iff apply safe  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4695  | 
apply(rule_tac x=aa in exI,safe) apply(erule_tac x="integral s (f k)" in ballE)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4696  | 
apply(rule order_trans) apply assumption by auto qed note g = conjunctD2[OF this]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4697  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4698  | 
have "(g has_integral i) s" unfolding has_integral_alt' apply safe apply(rule g(1))  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4699  | 
proof- case goal1 hence "e/4>0" by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4700  | 
from i[unfolded Lim_sequentially,rule_format,OF this] guess N .. note N=this  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4701  | 
note assms(2)[of N,unfolded has_integral_integral has_integral_alt'[of "f N"]]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4702  | 
from this[THEN conjunct2,rule_format,OF `e/4>0`] guess B .. note B=conjunctD2[OF this]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4703  | 
show ?case apply(rule,rule,rule B,safe)  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4704  | 
      proof- fix a b::"'n::ordered_euclidean_space" assume ab:"ball 0 B \<subseteq> {a..b}"
 | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4705  | 
from `e>0` have "e/2>0" by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4706  | 
from g(2)[unfolded Lim_sequentially,of a b,rule_format,OF this] guess M .. note M=this  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4707  | 
        have **:"norm (integral {a..b} (\<lambda>x. if x \<in> s then f N x else 0) - i) < e/2"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4708  | 
apply(rule norm_triangle_half_l) using B(2)[rule_format,OF ab] N[rule_format,of N]  | 
| 36587 | 4709  | 
unfolding dist_norm apply-defer apply(subst norm_minus_commute) by auto  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4710  | 
have *:"\<And>f1 f2 g. abs(f1 - i) < e / 2 \<longrightarrow> abs(f2 - g) < e / 2 \<longrightarrow> f1 \<le> f2 \<longrightarrow> f2 \<le> i  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4711  | 
\<longrightarrow> abs(g - i) < e" unfolding Eucl_real_simps by arith  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4712  | 
        show "norm (integral {a..b} (\<lambda>x. if x \<in> s then g x else 0) - i) < e" 
 | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4713  | 
unfolding real_norm_def apply(rule *[rule_format])  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4714  | 
apply(rule **[unfolded real_norm_def])  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4715  | 
apply(rule M[rule_format,of "M + N",unfolded dist_real_def]) apply(rule le_add1)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4716  | 
apply(rule integral_le[OF int int]) defer  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4717  | 
apply(rule order_trans[OF _ i'[rule_format,of "M + N",unfolded Eucl_real_simps]])  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4718  | 
proof safe case goal2 have "\<And>m. x\<in>s \<Longrightarrow> \<forall>n\<ge>m. (f m x)$$0 \<le> (f n x)$$0"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4719  | 
apply(rule transitive_stepwise_le) using assms(3) by auto thus ?case by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4720  | 
next case goal1 show ?case apply(subst integral_restrict_univ[THEN sym,OF int])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4721  | 
unfolding ifif integral_restrict_univ[OF int']  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4722  | 
apply(rule integral_subset_le[OF _ int']) using assms by auto  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4723  | 
qed qed qed  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4724  | 
thus ?case apply safe defer apply(drule integral_unique) using i by auto qed  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4725  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4726  | 
have sub:"\<And>k. integral s (\<lambda>x. f k x - f 0 x) = integral s (f k) - integral s (f 0)"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4727  | 
apply(subst integral_sub) apply(rule assms(1)[rule_format])+ by rule  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4728  | 
have "\<And>x m. x\<in>s \<Longrightarrow> \<forall>n\<ge>m. (f m x) \<le> (f n x)" apply(rule transitive_stepwise_le)  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4729  | 
using assms(2) by auto note * = this[rule_format]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4730  | 
have "(\<lambda>x. g x - f 0 x) integrable_on s \<and>((\<lambda>k. integral s (\<lambda>x. f (Suc k) x - f 0 x)) --->  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4731  | 
integral s (\<lambda>x. g x - f 0 x)) sequentially" apply(rule lem,safe)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4732  | 
proof- case goal1 thus ?case using *[of x 0 "Suc k"] by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4733  | 
next case goal2 thus ?case apply(rule integrable_sub) using assms(1) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4734  | 
next case goal3 thus ?case using *[of x "Suc k" "Suc (Suc k)"] by auto  | 
| 44125 | 4735  | 
next case goal4 thus ?case apply-apply(rule tendsto_diff)  | 
| 
44457
 
d366fa5551ef
declare euclidean_simps [simp] at the point they are proved;
 
huffman 
parents: 
44282 
diff
changeset
 | 
4736  | 
using seq_offset[OF assms(3)[rule_format],of x 1] by auto  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4737  | 
next case goal5 thus ?case using assms(4) unfolding bounded_iff  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4738  | 
apply safe apply(rule_tac x="a + norm (integral s (\<lambda>x. f 0 x))" in exI)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4739  | 
apply safe apply(erule_tac x="integral s (\<lambda>x. f (Suc k) x)" in ballE) unfolding sub  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4740  | 
apply(rule order_trans[OF norm_triangle_ineq4]) by auto qed  | 
| 44125 | 4741  | 
note conjunctD2[OF this] note tendsto_add[OF this(2) tendsto_const[of "integral s (f 0)"]]  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4742  | 
integrable_add[OF this(1) assms(1)[rule_format,of 0]]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4743  | 
thus ?thesis unfolding sub apply-apply rule defer apply(subst(asm) integral_sub)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4744  | 
using assms(1) apply auto apply(rule seq_offset_rev[where k=1]) by auto qed  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4745  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4746  | 
lemma monotone_convergence_decreasing: fixes f::"nat \<Rightarrow> 'n::ordered_euclidean_space \<Rightarrow> real"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4747  | 
assumes "\<forall>k. (f k) integrable_on s" "\<forall>k. \<forall>x\<in>s. (f (Suc k) x) \<le> (f k x)"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4748  | 
  "\<forall>x\<in>s. ((\<lambda>k. f k x) ---> g x) sequentially" "bounded {integral s (f k)| k. True}"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4749  | 
shows "g integrable_on s \<and> ((\<lambda>k. integral s (f k)) ---> integral s g) sequentially"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4750  | 
proof- note assm = assms[rule_format]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4751  | 
  have *:"{integral s (\<lambda>x. - f k x) |k. True} = op *\<^sub>R -1 ` {integral s (f k)| k. True}"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4752  | 
apply safe unfolding image_iff apply(rule_tac x="integral s (f k)" in bexI) prefer 3  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4753  | 
apply(rule_tac x=k in exI) unfolding integral_neg[OF assm(1)] by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4754  | 
have "(\<lambda>x. - g x) integrable_on s \<and> ((\<lambda>k. integral s (\<lambda>x. - f k x))  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4755  | 
---> integral s (\<lambda>x. - g x)) sequentially" apply(rule monotone_convergence_increasing)  | 
| 44125 | 4756  | 
apply(safe,rule integrable_neg) apply(rule assm) defer apply(rule tendsto_minus)  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4757  | 
apply(rule assm,assumption) unfolding * apply(rule bounded_scaling) using assm by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4758  | 
note * = conjunctD2[OF this]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4759  | 
show ?thesis apply rule using integrable_neg[OF *(1)] defer  | 
| 44125 | 4760  | 
using tendsto_minus[OF *(2)] apply- unfolding integral_neg[OF assm(1)]  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4761  | 
unfolding integral_neg[OF *(1),THEN sym] by auto qed  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4762  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4763  | 
subsection {* absolute integrability (this is the same as Lebesgue integrability). *}
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4764  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4765  | 
definition absolutely_integrable_on (infixr "absolutely'_integrable'_on" 46) where  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4766  | 
"f absolutely_integrable_on s \<longleftrightarrow> f integrable_on s \<and> (\<lambda>x. (norm(f x))) integrable_on s"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4767  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4768  | 
lemma absolutely_integrable_onI[intro?]:  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4769  | 
"f integrable_on s \<Longrightarrow> (\<lambda>x. (norm(f x))) integrable_on s \<Longrightarrow> f absolutely_integrable_on s"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4770  | 
unfolding absolutely_integrable_on_def by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4771  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4772  | 
lemma absolutely_integrable_onD[dest]: assumes "f absolutely_integrable_on s"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4773  | 
shows "f integrable_on s" "(\<lambda>x. (norm(f x))) integrable_on s"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4774  | 
using assms unfolding absolutely_integrable_on_def by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4775  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4776  | 
(*lemma absolutely_integrable_on_trans[simp]: fixes f::"'n::ordered_euclidean_space \<Rightarrow> real" shows  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4777  | 
"(vec1 o f) absolutely_integrable_on s \<longleftrightarrow> f absolutely_integrable_on s"  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4778  | 
unfolding absolutely_integrable_on_def o_def by auto*)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4779  | 
|
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4780  | 
lemma integral_norm_bound_integral: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4781  | 
assumes "f integrable_on s" "g integrable_on s" "\<forall>x\<in>s. norm(f x) \<le> g x"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4782  | 
shows "norm(integral s f) \<le> (integral s g)"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4783  | 
proof- have *:"\<And>x y. (\<forall>e::real. 0 < e \<longrightarrow> x < y + e) \<longrightarrow> x \<le> y" apply(safe,rule ccontr)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4784  | 
apply(erule_tac x="x - y" in allE) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4785  | 
have "\<And>e sg dsa dia ig. norm(sg) \<le> dsa \<longrightarrow> abs(dsa - dia) < e / 2 \<longrightarrow> norm(sg - ig) < e / 2  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4786  | 
\<longrightarrow> norm(ig) < dia + e"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4787  | 
proof safe case goal1 show ?case apply(rule le_less_trans[OF norm_triangle_sub[of ig sg]])  | 
| 36844 | 4788  | 
apply(subst real_sum_of_halves[of e,THEN sym]) unfolding add_assoc[symmetric]  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4789  | 
apply(rule add_le_less_mono) defer apply(subst norm_minus_commute,rule goal1)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4790  | 
apply(rule order_trans[OF goal1(1)]) using goal1(2) by arith  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4791  | 
qed note norm=this[rule_format]  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4792  | 
  have lem:"\<And>f::'n::ordered_euclidean_space \<Rightarrow> 'a. \<And> g a b. f integrable_on {a..b} \<Longrightarrow> g integrable_on {a..b} \<Longrightarrow>
 | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4793  | 
    \<forall>x\<in>{a..b}. norm(f x) \<le> (g x) \<Longrightarrow> norm(integral({a..b}) f) \<le> (integral({a..b}) g)"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4794  | 
proof(rule *[rule_format]) case goal1 hence *:"e/2>0" by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4795  | 
from integrable_integral[OF goal1(1),unfolded has_integral[of f],rule_format,OF *]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4796  | 
guess d1 .. note d1 = conjunctD2[OF this,rule_format]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4797  | 
from integrable_integral[OF goal1(2),unfolded has_integral[of g],rule_format,OF *]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4798  | 
guess d2 .. note d2 = conjunctD2[OF this,rule_format]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4799  | 
note gauge_inter[OF d1(1) d2(1)]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4800  | 
from fine_division_exists[OF this, of a b] guess p . note p=this  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4801  | 
show ?case apply(rule norm) defer  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4802  | 
apply(rule d2(2)[OF conjI[OF p(1)],unfolded real_norm_def]) defer  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4803  | 
apply(rule d1(2)[OF conjI[OF p(1)]]) defer apply(rule setsum_norm_le)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4804  | 
proof safe fix x k assume "(x,k)\<in>p" note as = tagged_division_ofD(2-4)[OF p(1) this]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4805  | 
from this(3) guess u v apply-by(erule exE)+ note uv=this  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4806  | 
show "norm (content k *\<^sub>R f x) \<le> content k *\<^sub>R g x" unfolding uv norm_scaleR  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4807  | 
unfolding abs_of_nonneg[OF content_pos_le] real_scaleR_def  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4808  | 
apply(rule mult_left_mono) using goal1(3) as by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4809  | 
qed(insert p[unfolded fine_inter],auto) qed  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4810  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4811  | 
  { presume "\<And>e. 0 < e \<Longrightarrow> norm (integral s f) < integral s g + e" 
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4812  | 
thus ?thesis apply-apply(rule *[rule_format]) by auto }  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4813  | 
fix e::real assume "e>0" hence e:"e/2 > 0" by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4814  | 
note assms(1)[unfolded integrable_alt[of f]] note f=this[THEN conjunct1,rule_format]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4815  | 
note assms(2)[unfolded integrable_alt[of g]] note g=this[THEN conjunct1,rule_format]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4816  | 
from integrable_integral[OF assms(1),unfolded has_integral'[of f],rule_format,OF e]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4817  | 
guess B1 .. note B1=conjunctD2[OF this[rule_format],rule_format]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4818  | 
from integrable_integral[OF assms(2),unfolded has_integral'[of g],rule_format,OF e]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4819  | 
guess B2 .. note B2=conjunctD2[OF this[rule_format],rule_format]  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4820  | 
from bounded_subset_closed_interval[OF bounded_ball, of "0::'n::ordered_euclidean_space" "max B1 B2"]  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4821  | 
guess a b apply-by(erule exE)+ note ab=this[unfolded ball_max_Un]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4822  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4823  | 
  have "ball 0 B1 \<subseteq> {a..b}" using ab by auto
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4824  | 
from B1(2)[OF this] guess z .. note z=conjunctD2[OF this]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4825  | 
  have "ball 0 B2 \<subseteq> {a..b}" using ab by auto
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4826  | 
from B2(2)[OF this] guess w .. note w=conjunctD2[OF this]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4827  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4828  | 
show "norm (integral s f) < integral s g + e" apply(rule norm)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4829  | 
apply(rule lem[OF f g, of a b]) unfolding integral_unique[OF z(1)] integral_unique[OF w(1)]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4830  | 
defer apply(rule w(2)[unfolded real_norm_def],rule z(2))  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4831  | 
apply safe apply(case_tac "x\<in>s") unfolding if_P apply(rule assms(3)[rule_format]) by auto qed  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4832  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4833  | 
lemma integral_norm_bound_integral_component: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4834  | 
fixes g::"'n => 'b::ordered_euclidean_space"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4835  | 
assumes "f integrable_on s" "g integrable_on s" "\<forall>x\<in>s. norm(f x) \<le> (g x)$$k"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4836  | 
shows "norm(integral s f) \<le> (integral s g)$$k"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4837  | 
proof- have "norm (integral s f) \<le> integral s ((\<lambda>x. x $$ k) o g)"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4838  | 
apply(rule integral_norm_bound_integral[OF assms(1)])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4839  | 
apply(rule integrable_linear[OF assms(2)],rule)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4840  | 
unfolding o_def by(rule assms)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4841  | 
thus ?thesis unfolding o_def integral_component_eq[OF assms(2)] . qed  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4842  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4843  | 
lemma has_integral_norm_bound_integral_component: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4844  | 
fixes g::"'n => 'b::ordered_euclidean_space"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4845  | 
assumes "(f has_integral i) s" "(g has_integral j) s" "\<forall>x\<in>s. norm(f x) \<le> (g x)$$k"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4846  | 
shows "norm(i) \<le> j$$k" using integral_norm_bound_integral_component[of f s g k]  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4847  | 
unfolding integral_unique[OF assms(1)] integral_unique[OF assms(2)]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4848  | 
using assms by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4849  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4850  | 
lemma absolutely_integrable_le: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4851  | 
assumes "f absolutely_integrable_on s"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4852  | 
shows "norm(integral s f) \<le> integral s (\<lambda>x. norm(f x))"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4853  | 
apply(rule integral_norm_bound_integral) using assms by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4854  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4855  | 
lemma absolutely_integrable_0[intro]: "(\<lambda>x. 0) absolutely_integrable_on s"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4856  | 
unfolding absolutely_integrable_on_def by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4857  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4858  | 
lemma absolutely_integrable_cmul[intro]:  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4859  | 
"f absolutely_integrable_on s \<Longrightarrow> (\<lambda>x. c *\<^sub>R f x) absolutely_integrable_on s"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4860  | 
unfolding absolutely_integrable_on_def using integrable_cmul[of f s c]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4861  | 
using integrable_cmul[of "\<lambda>x. norm (f x)" s "abs c"] by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4862  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4863  | 
lemma absolutely_integrable_neg[intro]:  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4864  | 
"f absolutely_integrable_on s \<Longrightarrow> (\<lambda>x. -f(x)) absolutely_integrable_on s"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4865  | 
apply(drule absolutely_integrable_cmul[where c="-1"]) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4866  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4867  | 
lemma absolutely_integrable_norm[intro]:  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4868  | 
"f absolutely_integrable_on s \<Longrightarrow> (\<lambda>x. norm(f x)) absolutely_integrable_on s"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4869  | 
unfolding absolutely_integrable_on_def by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4870  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4871  | 
lemma absolutely_integrable_abs[intro]:  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4872  | 
"f absolutely_integrable_on s \<Longrightarrow> (\<lambda>x. abs(f x::real)) absolutely_integrable_on s"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4873  | 
apply(drule absolutely_integrable_norm) unfolding real_norm_def .  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4874  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4875  | 
lemma absolutely_integrable_on_subinterval: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" shows  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4876  | 
  "f absolutely_integrable_on s \<Longrightarrow> {a..b} \<subseteq> s \<Longrightarrow> f absolutely_integrable_on {a..b}" 
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4877  | 
unfolding absolutely_integrable_on_def by(meson integrable_on_subinterval)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4878  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4879  | 
lemma absolutely_integrable_bounded_variation: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4880  | 
assumes "f absolutely_integrable_on UNIV"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4881  | 
obtains B where "\<forall>d. d division_of (\<Union>d) \<longrightarrow> setsum (\<lambda>k. norm(integral k f)) d \<le> B"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4882  | 
apply(rule that[of "integral UNIV (\<lambda>x. norm (f x))"])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4883  | 
proof safe case goal1 note d = division_ofD[OF this(2)]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4884  | 
have "(\<Sum>k\<in>d. norm (integral k f)) \<le> (\<Sum>i\<in>d. integral i (\<lambda>x. norm (f x)))"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4885  | 
apply(rule setsum_mono,rule absolutely_integrable_le) apply(drule d(4),safe)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4886  | 
apply(rule absolutely_integrable_on_subinterval[OF assms]) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4887  | 
also have "... \<le> integral (\<Union>d) (\<lambda>x. norm (f x))"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4888  | 
apply(subst integral_combine_division_topdown[OF _ goal1(2)])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4889  | 
using integrable_on_subdivision[OF goal1(2)] using assms by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4890  | 
also have "... \<le> integral UNIV (\<lambda>x. norm (f x))"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4891  | 
apply(rule integral_subset_le)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4892  | 
using integrable_on_subdivision[OF goal1(2)] using assms by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4893  | 
finally show ?case . qed  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4894  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4895  | 
lemma helplemma:  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4896  | 
assumes "setsum (\<lambda>x. norm(f x - g x)) s < e" "finite s"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4897  | 
shows "abs(setsum (\<lambda>x. norm(f x)) s - setsum (\<lambda>x. norm(g x)) s) < e"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4898  | 
unfolding setsum_subtractf[THEN sym] apply(rule le_less_trans[OF setsum_abs])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4899  | 
apply(rule le_less_trans[OF _ assms(1)]) apply(rule setsum_mono)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4900  | 
using norm_triangle_ineq3 .  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4901  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4902  | 
lemma bounded_variation_absolutely_integrable_interval:  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4903  | 
  fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space" assumes "f integrable_on {a..b}"
 | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4904  | 
  "\<forall>d. d division_of {a..b} \<longrightarrow> setsum (\<lambda>k. norm(integral k f)) d \<le> B"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4905  | 
  shows "f absolutely_integrable_on {a..b}"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4906  | 
proof- let ?S = "(\<lambda>d. setsum (\<lambda>k. norm(integral k f)) d) ` {d. d division_of {a..b} }" def i \<equiv> "Sup ?S"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4907  | 
have i:"isLub UNIV ?S i" unfolding i_def apply(rule Sup)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4908  | 
apply(rule elementary_interval) defer apply(rule_tac x=B in exI)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4909  | 
apply(rule setleI) using assms(2) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4910  | 
show ?thesis apply(rule,rule assms) apply rule apply(subst has_integral[of _ i])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4911  | 
proof safe case goal1 hence "i - e / 2 \<notin> Collect (isUb UNIV (setsum (\<lambda>k. norm (integral k f)) `  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4912  | 
        {d. d division_of {a..b}}))" using isLub_ubs[OF i,rule_format]
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4913  | 
unfolding setge_def ubs_def by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4914  | 
    hence " \<exists>y. y division_of {a..b} \<and> i - e / 2 < (\<Sum>k\<in>y. norm (integral k f))"
 | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
4915  | 
unfolding mem_Collect_eq isUb_def setle_def by(simp add:not_le) then guess d .. note d=conjunctD2[OF this]  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4916  | 
note d' = division_ofD[OF this(1)]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4917  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4918  | 
    have "\<forall>x. \<exists>e>0. \<forall>i\<in>d. x \<notin> i \<longrightarrow> ball x e \<inter> i = {}"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4919  | 
    proof case goal1 have "\<exists>da>0. \<forall>xa\<in>\<Union>{i \<in> d. x \<notin> i}. da \<le> dist x xa"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4920  | 
apply(rule separate_point_closed) apply(rule closed_Union)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4921  | 
apply(rule finite_subset[OF _ d'(1)]) apply safe apply(drule d'(4)) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4922  | 
thus ?case apply safe apply(rule_tac x=da in exI,safe)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4923  | 
apply(erule_tac x=xa in ballE) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4924  | 
qed from choice[OF this] guess k .. note k=conjunctD2[OF this[rule_format],rule_format]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4925  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4926  | 
have "e/2 > 0" using goal1 by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4927  | 
from henstock_lemma[OF assms(1) this] guess g . note g=this[rule_format]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4928  | 
let ?g = "\<lambda>x. g x \<inter> ball x (k x)"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4929  | 
show ?case apply(rule_tac x="?g" in exI) apply safe  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4930  | 
proof- show "gauge ?g" using g(1) unfolding gauge_def using k(1) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4931  | 
      fix p assume "p tagged_division_of {a..b}" "?g fine p"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4932  | 
note p = this(1) conjunctD2[OF this(2)[unfolded fine_inter]]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4933  | 
note p' = tagged_division_ofD[OF p(1)]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4934  | 
      def p' \<equiv> "{(x,k) | x k. \<exists>i l. x \<in> i \<and> i \<in> d \<and> (x,l) \<in> p \<and> k = i \<inter> l}"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4935  | 
have gp':"g fine p'" using p(2) unfolding p'_def fine_def by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4936  | 
      have p'':"p' tagged_division_of {a..b}" apply(rule tagged_division_ofI)
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4937  | 
proof- show "finite p'" apply(rule finite_subset[of _ "(\<lambda>(k,(x,l)). (x,k \<inter> l))  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4938  | 
          ` {(k,xl) | k xl. k \<in> d \<and> xl \<in> p}"]) unfolding p'_def 
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4939  | 
defer apply(rule finite_imageI,rule finite_product_dependent[OF d'(1) p'(1)])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4940  | 
apply safe unfolding image_iff apply(rule_tac x="(i,x,l)" in bexI) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4941  | 
fix x k assume "(x,k)\<in>p'"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4942  | 
hence "\<exists>i l. x \<in> i \<and> i \<in> d \<and> (x, l) \<in> p \<and> k = i \<inter> l" unfolding p'_def by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4943  | 
then guess i l apply-by(erule exE)+ note il=conjunctD4[OF this]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4944  | 
        show "x\<in>k" "k\<subseteq>{a..b}" using p'(2-3)[OF il(3)] il by auto
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4945  | 
        show "\<exists>a b. k = {a..b}" unfolding il using p'(4)[OF il(3)] d'(4)[OF il(2)]
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4946  | 
apply safe unfolding inter_interval by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4947  | 
next fix x1 k1 assume "(x1,k1)\<in>p'"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4948  | 
hence "\<exists>i l. x1 \<in> i \<and> i \<in> d \<and> (x1, l) \<in> p \<and> k1 = i \<inter> l" unfolding p'_def by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4949  | 
then guess i1 l1 apply-by(erule exE)+ note il1=conjunctD4[OF this]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4950  | 
fix x2 k2 assume "(x2,k2)\<in>p'"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4951  | 
hence "\<exists>i l. x2 \<in> i \<and> i \<in> d \<and> (x2, l) \<in> p \<and> k2 = i \<inter> l" unfolding p'_def by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4952  | 
then guess i2 l2 apply-by(erule exE)+ note il2=conjunctD4[OF this]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4953  | 
assume "(x1, k1) \<noteq> (x2, k2)"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4954  | 
        hence "interior(i1) \<inter> interior(i2) = {} \<or> interior(l1) \<inter> interior(l2) = {}"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4955  | 
using d'(5)[OF il1(2) il2(2)] p'(5)[OF il1(3) il2(3)] unfolding il1 il2 by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4956  | 
        thus "interior k1 \<inter> interior k2 = {}" unfolding il1 il2 by auto
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4957  | 
      next have *:"\<forall>(x, X) \<in> p'. X \<subseteq> {a..b}" unfolding p'_def using d' by auto
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4958  | 
        show "\<Union>{k. \<exists>x. (x, k) \<in> p'} = {a..b}" apply rule apply(rule Union_least)
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4959  | 
unfolding mem_Collect_eq apply(erule exE) apply(drule *[rule_format]) apply safe  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4960  | 
        proof- fix y assume y:"y\<in>{a..b}"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4961  | 
hence "\<exists>x l. (x, l) \<in> p \<and> y\<in>l" unfolding p'(6)[THEN sym] by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4962  | 
then guess x l apply-by(erule exE)+ note xl=conjunctD2[OF this]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4963  | 
hence "\<exists>k. k\<in>d \<and> y\<in>k" using y unfolding d'(6)[THEN sym] by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4964  | 
then guess i .. note i = conjunctD2[OF this]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4965  | 
have "x\<in>i" using fineD[OF p(3) xl(1)] using k(2)[OF i(1), of x] using i(2) xl(2) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4966  | 
          thus "y\<in>\<Union>{k. \<exists>x. (x, k) \<in> p'}" unfolding p'_def Union_iff apply(rule_tac x="i \<inter> l" in bexI)
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4967  | 
defer unfolding mem_Collect_eq apply(rule_tac x=x in exI)+ apply(rule_tac x="i\<inter>l" in exI)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4968  | 
apply safe apply(rule_tac x=i in exI) apply(rule_tac x=l in exI) using i xl by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4969  | 
qed qed  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4970  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4971  | 
hence "(\<Sum>(x, k)\<in>p'. norm (content k *\<^sub>R f x - integral k f)) < e / 2"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4972  | 
apply-apply(rule g(2)[rule_format]) unfolding tagged_division_of_def apply safe using gp' .  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4973  | 
hence **:" \<bar>(\<Sum>(x,k)\<in>p'. norm (content k *\<^sub>R f x)) - (\<Sum>(x,k)\<in>p'. norm (integral k f))\<bar> < e / 2"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4974  | 
unfolding split_def apply(rule helplemma) using p'' by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4975  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4976  | 
      have p'alt:"p' = {(x,(i \<inter> l)) | x i l. (x,l) \<in> p \<and> i \<in> d \<and> ~(i \<inter> l = {})}"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4977  | 
proof safe case goal2  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4978  | 
have "x\<in>i" using fineD[OF p(3) goal2(1)] k(2)[OF goal2(2), of x] goal2(4-) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4979  | 
hence "(x, i \<inter> l) \<in> p'" unfolding p'_def apply safe  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4980  | 
apply(rule_tac x=x in exI,rule_tac x="i\<inter>l" in exI) apply safe using goal2 by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4981  | 
thus ?case using goal2(3) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4982  | 
next fix x k assume "(x,k)\<in>p'"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4983  | 
hence "\<exists>i l. x \<in> i \<and> i \<in> d \<and> (x, l) \<in> p \<and> k = i \<inter> l" unfolding p'_def by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4984  | 
then guess i l apply-by(erule exE)+ note il=conjunctD4[OF this]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4985  | 
        thus "\<exists>y i l. (x, k) = (y, i \<inter> l) \<and> (y, l) \<in> p \<and> i \<in> d \<and> i \<inter> l \<noteq> {}"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4986  | 
apply(rule_tac x=x in exI,rule_tac x=i in exI,rule_tac x=l in exI)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4987  | 
using p'(2)[OF il(3)] by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4988  | 
qed  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4989  | 
have sum_p':"(\<Sum>(x, k)\<in>p'. norm (integral k f)) = (\<Sum>k\<in>snd ` p'. norm (integral k f))"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4990  | 
apply(subst setsum_over_tagged_division_lemma[OF p'',of "\<lambda>k. norm (integral k f)"])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4991  | 
unfolding norm_eq_zero apply(rule integral_null,assumption) ..  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4992  | 
note snd_p = division_ofD[OF division_of_tagged_division[OF p(1)]]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4993  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4994  | 
have *:"\<And>sni sni' sf sf'. abs(sf' - sni') < e / 2 \<longrightarrow> i - e / 2 < sni \<and> sni' \<le> i \<and>  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4995  | 
sni \<le> sni' \<and> sf' = sf \<longrightarrow> abs(sf - i) < e" by arith  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4996  | 
show "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R norm (f x)) - i) < e"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4997  | 
unfolding real_norm_def apply(rule *[rule_format,OF **],safe) apply(rule d(2))  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4998  | 
proof- case goal1 show ?case unfolding sum_p'  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
4999  | 
apply(rule isLubD2[OF i]) using division_of_tagged_division[OF p''] by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5000  | 
      next case goal2 have *:"{k \<inter> l | k l. k \<in> d \<and> l \<in> snd ` p} =
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5001  | 
          (\<lambda>(k,l). k \<inter> l) ` {(k,l)|k l. k \<in> d \<and> l \<in> snd ` p}" by auto
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5002  | 
have "(\<Sum>k\<in>d. norm (integral k f)) \<le> (\<Sum>i\<in>d. \<Sum>l\<in>snd ` p. norm (integral (i \<inter> l) f))"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5003  | 
proof(rule setsum_mono) case goal1 note k=this  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5004  | 
from d'(4)[OF this] guess u v apply-by(erule exE)+ note uv=this  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5005  | 
          def d' \<equiv> "{{u..v} \<inter> l |l. l \<in> snd ` p \<and>  ~({u..v} \<inter> l = {})}" note uvab = d'(2)[OF k[unfolded uv]]
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5006  | 
          have "d' division_of {u..v}" apply(subst d'_def) apply(rule division_inter_1) 
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5007  | 
apply(rule division_of_tagged_division[OF p(1)]) using uvab .  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5008  | 
hence "norm (integral k f) \<le> setsum (\<lambda>k. norm (integral k f)) d'"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5009  | 
unfolding uv apply(subst integral_combine_division_topdown[of _ _ d'])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5010  | 
apply(rule integrable_on_subinterval[OF assms(1) uvab]) apply assumption  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5011  | 
apply(rule setsum_norm_le) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5012  | 
          also have "... = (\<Sum>k\<in>{k \<inter> l |l. l \<in> snd ` p}. norm (integral k f))"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5013  | 
apply(rule setsum_mono_zero_left) apply(subst simple_image)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5014  | 
apply(rule finite_imageI)+ apply fact unfolding d'_def uv apply blast  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5015  | 
          proof case goal1 hence "i \<in> {{u..v} \<inter> l |l. l \<in> snd ` p}" by auto
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5016  | 
from this[unfolded mem_Collect_eq] guess l .. note l=this  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5017  | 
            hence "{u..v} \<inter> l = {}" using goal1 by auto thus ?case using l by auto
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5018  | 
qed also have "... = (\<Sum>l\<in>snd ` p. norm (integral (k \<inter> l) f))" unfolding simple_image  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5019  | 
apply(rule setsum_reindex_nonzero[unfolded o_def])apply(rule finite_imageI,rule p')  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5020  | 
proof- case goal1 have "interior (k \<inter> l) \<subseteq> interior (l \<inter> y)" apply(subst(2) interior_inter)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5021  | 
apply(rule Int_greatest) defer apply(subst goal1(4)) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5022  | 
            hence *:"interior (k \<inter> l) = {}" using snd_p(5)[OF goal1(1-3)] by auto
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5023  | 
from d'(4)[OF k] snd_p(4)[OF goal1(1)] guess u1 v1 u2 v2 apply-by(erule exE)+ note uv=this  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5024  | 
show ?case using * unfolding uv inter_interval content_eq_0_interior[THEN sym] by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5025  | 
qed finally show ?case .  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5026  | 
        qed also have "... = (\<Sum>(i,l)\<in>{(i, l) |i l. i \<in> d \<and> l \<in> snd ` p}. norm (integral (i\<inter>l) f))"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5027  | 
apply(subst sum_sum_product[THEN sym],fact) using p'(1) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5028  | 
        also have "... = (\<Sum>x\<in>{(i, l) |i l. i \<in> d \<and> l \<in> snd ` p}. norm (integral (split op \<inter> x) f))"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5029  | 
unfolding split_def ..  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5030  | 
        also have "... = (\<Sum>k\<in>{i \<inter> l |i l. i \<in> d \<and> l \<in> snd ` p}. norm (integral k f))"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5031  | 
unfolding * apply(rule setsum_reindex_nonzero[THEN sym,unfolded o_def])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5032  | 
apply(rule finite_product_dependent) apply(fact,rule finite_imageI,rule p')  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5033  | 
unfolding split_paired_all mem_Collect_eq split_conv o_def  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5034  | 
proof- note * = division_ofD(4,5)[OF division_of_tagged_division,OF p(1)]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5035  | 
fix l1 l2 k1 k2 assume as:"(l1, k1) \<noteq> (l2, k2)" "l1 \<inter> k1 = l2 \<inter> k2"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5036  | 
"\<exists>i l. (l1, k1) = (i, l) \<and> i \<in> d \<and> l \<in> snd ` p"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5037  | 
"\<exists>i l. (l2, k2) = (i, l) \<and> i \<in> d \<and> l \<in> snd ` p"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5038  | 
hence "l1 \<in> d" "k1 \<in> snd ` p" by auto from d'(4)[OF this(1)] *(1)[OF this(2)]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5039  | 
guess u1 v1 u2 v2 apply-by(erule exE)+ note uv=this  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5040  | 
have "l1 \<noteq> l2 \<or> k1 \<noteq> k2" using as by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5041  | 
          hence "(interior(k1) \<inter> interior(k2) = {} \<or> interior(l1) \<inter> interior(l2) = {})" apply-
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5042  | 
apply(erule disjE) apply(rule disjI2) apply(rule d'(5)) prefer 4 apply(rule disjI1)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5043  | 
apply(rule *) using as by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5044  | 
moreover have "interior(l1 \<inter> k1) = interior(l2 \<inter> k2)" using as(2) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5045  | 
          ultimately have "interior(l1 \<inter> k1) = {}" by auto
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5046  | 
thus "norm (integral (l1 \<inter> k1) f) = 0" unfolding uv inter_interval  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5047  | 
unfolding content_eq_0_interior[THEN sym] by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5048  | 
qed also have "... = (\<Sum>(x, k)\<in>p'. norm (integral k f))" unfolding sum_p'  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5049  | 
apply(rule setsum_mono_zero_right) apply(subst *)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5050  | 
apply(rule finite_imageI[OF finite_product_dependent]) apply fact  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5051  | 
apply(rule finite_imageI[OF p'(1)]) apply safe  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5052  | 
        proof- case goal2 have "ia \<inter> b = {}" using goal2 unfolding p'alt image_iff Bex_def not_ex
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5053  | 
apply(erule_tac x="(a,ia\<inter>b)" in allE) by auto thus ?case by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5054  | 
next case goal1 thus ?case unfolding p'_def apply safe  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5055  | 
apply(rule_tac x=i in exI,rule_tac x=l in exI) unfolding snd_conv image_iff  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5056  | 
apply safe apply(rule_tac x="(a,l)" in bexI) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5057  | 
qed finally show ?case .  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5058  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5059  | 
next case goal3  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5060  | 
        let ?S = "{(x, i \<inter> l) |x i l. (x, l) \<in> p \<and> i \<in> d}"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5061  | 
        have Sigma_alt:"\<And>s t. s \<times> t = {(i, j) |i j. i \<in> s \<and> j \<in> t}" by auto
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5062  | 
        have *:"?S = (\<lambda>(xl,i). (fst xl, snd xl \<inter> i)) ` (p \<times> d)" (*{(xl,i)|xl i. xl\<in>p \<and> i\<in>d}"**)
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5063  | 
apply safe unfolding image_iff apply(rule_tac x="((x,l),i)" in bexI) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5064  | 
note pdfin = finite_cartesian_product[OF p'(1) d'(1)]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5065  | 
have "(\<Sum>(x, k)\<in>p'. norm (content k *\<^sub>R f x)) = (\<Sum>(x, k)\<in>?S. \<bar>content k\<bar> * norm (f x))"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5066  | 
unfolding norm_scaleR apply(rule setsum_mono_zero_left)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5067  | 
apply(subst *, rule finite_imageI) apply fact unfolding p'alt apply blast  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5068  | 
apply safe apply(rule_tac x=x in exI,rule_tac x=i in exI,rule_tac x=l in exI) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5069  | 
also have "... = (\<Sum>((x,l),i)\<in>p \<times> d. \<bar>content (l \<inter> i)\<bar> * norm (f x))" unfolding *  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5070  | 
apply(subst setsum_reindex_nonzero,fact) unfolding split_paired_all  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5071  | 
unfolding o_def split_def snd_conv fst_conv mem_Sigma_iff Pair_eq apply(erule_tac conjE)+  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5072  | 
proof- fix x1 l1 k1 x2 l2 k2 assume as:"(x1,l1)\<in>p" "(x2,l2)\<in>p" "k1\<in>d" "k2\<in>d"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5073  | 
"x1 = x2" "l1 \<inter> k1 = l2 \<inter> k2" "\<not> ((x1 = x2 \<and> l1 = l2) \<and> k1 = k2)"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5074  | 
from d'(4)[OF as(3)] p'(4)[OF as(1)] guess u1 v1 u2 v2 apply-by(erule exE)+ note uv=this  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5075  | 
from as have "l1 \<noteq> l2 \<or> k1 \<noteq> k2" by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5076  | 
          hence "(interior(k1) \<inter> interior(k2) = {} \<or> interior(l1) \<inter> interior(l2) = {})" 
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5077  | 
apply-apply(erule disjE) apply(rule disjI2) defer apply(rule disjI1)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5078  | 
apply(rule d'(5)[OF as(3-4)],assumption) apply(rule p'(5)[OF as(1-2)]) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5079  | 
moreover have "interior(l1 \<inter> k1) = interior(l2 \<inter> k2)" unfolding as ..  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5080  | 
          ultimately have "interior (l1 \<inter> k1) = {}" by auto
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5081  | 
thus "\<bar>content (l1 \<inter> k1)\<bar> * norm (f x1) = 0" unfolding uv inter_interval  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5082  | 
unfolding content_eq_0_interior[THEN sym] by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5083  | 
qed safe also have "... = (\<Sum>(x, k)\<in>p. content k *\<^sub>R norm (f x))" unfolding Sigma_alt  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5084  | 
apply(subst sum_sum_product[THEN sym]) apply(rule p', rule,rule d')  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5085  | 
apply(rule setsum_cong2) unfolding split_paired_all split_conv  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5086  | 
proof- fix x l assume as:"(x,l)\<in>p"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5087  | 
note xl = p'(2-4)[OF this] from this(3) guess u v apply-by(erule exE)+ note uv=this  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5088  | 
          have "(\<Sum>i\<in>d. \<bar>content (l \<inter> i)\<bar>) = (\<Sum>k\<in>d. content (k \<inter> {u..v}))"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5089  | 
apply(rule setsum_cong2) apply(drule d'(4),safe) apply(subst Int_commute)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5090  | 
unfolding inter_interval uv apply(subst abs_of_nonneg) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5091  | 
          also have "... = setsum content {k\<inter>{u..v}| k. k\<in>d}" unfolding simple_image
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5092  | 
apply(rule setsum_reindex_nonzero[unfolded o_def,THEN sym]) apply(rule d')  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5093  | 
proof- case goal1 from d'(4)[OF this(1)] d'(4)[OF this(2)]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5094  | 
guess u1 v1 u2 v2 apply- by(erule exE)+ note uv=this  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5095  | 
            have "{} = interior ((k \<inter> y) \<inter> {u..v})" apply(subst interior_inter)
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5096  | 
using d'(5)[OF goal1(1-3)] by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5097  | 
            also have "... = interior (y \<inter> (k \<inter> {u..v}))" by auto
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5098  | 
            also have "... = interior (k \<inter> {u..v})" unfolding goal1(4) by auto
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5099  | 
finally show ?case unfolding uv inter_interval content_eq_0_interior ..  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5100  | 
          qed also have "... = setsum content {{u..v} \<inter> k |k. k \<in> d \<and> ~({u..v} \<inter> k = {})}"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5101  | 
apply(rule setsum_mono_zero_right) unfolding simple_image  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5102  | 
apply(rule finite_imageI,rule d') apply blast apply safe  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5103  | 
apply(rule_tac x=k in exI)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5104  | 
proof- case goal1 from d'(4)[OF this(1)] guess a b apply-by(erule exE)+ note ab=this  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5105  | 
            have "interior (k \<inter> {u..v}) \<noteq> {}" using goal1(2)
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5106  | 
unfolding ab inter_interval content_eq_0_interior by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5107  | 
            thus ?case using goal1(1) using interior_subset[of "k \<inter> {u..v}"] by auto
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5108  | 
qed finally show "(\<Sum>i\<in>d. \<bar>content (l \<inter> i)\<bar> * norm (f x)) = content l *\<^sub>R norm (f x)"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5109  | 
unfolding setsum_left_distrib[THEN sym] real_scaleR_def apply -  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5110  | 
apply(subst(asm) additive_content_division[OF division_inter_1[OF d(1)]])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5111  | 
using xl(2)[unfolded uv] unfolding uv by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5112  | 
qed finally show ?case .  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5113  | 
qed qed qed qed  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5114  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5115  | 
lemma bounded_variation_absolutely_integrable: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5116  | 
assumes "f integrable_on UNIV" "\<forall>d. d division_of (\<Union>d) \<longrightarrow> setsum (\<lambda>k. norm(integral k f)) d \<le> B"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5117  | 
shows "f absolutely_integrable_on UNIV"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5118  | 
proof(rule absolutely_integrable_onI,fact,rule)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5119  | 
  let ?S = "(\<lambda>d. setsum (\<lambda>k. norm(integral k f)) d) ` {d. d division_of  (\<Union>d)}" def i \<equiv> "Sup ?S"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5120  | 
have i:"isLub UNIV ?S i" unfolding i_def apply(rule Sup)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5121  | 
apply(rule elementary_interval) defer apply(rule_tac x=B in exI)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5122  | 
apply(rule setleI) using assms(2) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5123  | 
  have f_int:"\<And>a b. f absolutely_integrable_on {a..b}"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5124  | 
apply(rule bounded_variation_absolutely_integrable_interval[where B=B])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5125  | 
apply(rule integrable_on_subinterval[OF assms(1)]) defer apply safe  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5126  | 
apply(rule assms(2)[rule_format]) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5127  | 
show "((\<lambda>x. norm (f x)) has_integral i) UNIV" apply(subst has_integral_alt',safe)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5128  | 
proof- case goal1 show ?case using f_int[of a b] by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5129  | 
  next case goal2 have "\<exists>y\<in>setsum (\<lambda>k. norm (integral k f)) ` {d. d division_of \<Union>d}. \<not> y \<le> i - e"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5130  | 
proof(rule ccontr) case goal1 hence "i \<le> i - e" apply-  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5131  | 
apply(rule isLub_le_isUb[OF i]) apply(rule isUbI) unfolding setle_def by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5132  | 
thus False using goal2 by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5133  | 
qed then guess K .. note * = this[unfolded image_iff not_le]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5134  | 
from this(1) guess d .. note this[unfolded mem_Collect_eq]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5135  | 
note d = this(1) *(2)[unfolded this(2)] note d'=division_ofD[OF this(1)]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5136  | 
have "bounded (\<Union>d)" by(rule elementary_bounded,fact)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5137  | 
from this[unfolded bounded_pos] guess K .. note K=conjunctD2[OF this]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5138  | 
show ?case apply(rule_tac x="K + 1" in exI,safe)  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5139  | 
    proof- fix a b assume ab:"ball 0 (K + 1) \<subseteq> {a..b::'n::ordered_euclidean_space}"
 | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5140  | 
have *:"\<forall>s s1. i - e < s1 \<and> s1 \<le> s \<and> s < i + e \<longrightarrow> abs(s - i) < (e::real)" by arith  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5141  | 
      show "norm (integral {a..b} (\<lambda>x. if x \<in> UNIV then norm (f x) else 0) - i) < e"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5142  | 
unfolding real_norm_def apply(rule *[rule_format],safe) apply(rule d(2))  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5143  | 
proof- case goal1 have "(\<Sum>k\<in>d. norm (integral k f)) \<le> setsum (\<lambda>k. integral k (\<lambda>x. norm (f x))) d"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5144  | 
apply(rule setsum_mono) apply(rule absolutely_integrable_le)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5145  | 
apply(drule d'(4),safe) by(rule f_int)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5146  | 
also have "... = integral (\<Union>d) (\<lambda>x. norm(f x))"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5147  | 
apply(rule integral_combine_division_bottomup[THEN sym])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5148  | 
apply(rule d) unfolding forall_in_division[OF d(1)] using f_int by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5149  | 
        also have "... \<le> integral {a..b} (\<lambda>x. if x \<in> UNIV then norm (f x) else 0)" 
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5150  | 
        proof- case goal1 have "\<Union>d \<subseteq> {a..b}" apply rule apply(drule K(2)[rule_format]) 
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5151  | 
apply(rule ab[unfolded subset_eq,rule_format]) by(auto simp add:dist_norm)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5152  | 
thus ?case apply- apply(subst if_P,rule) apply(rule integral_subset_le) defer  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5153  | 
            apply(rule integrable_on_subdivision[of _ _ _ "{a..b}"])
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5154  | 
apply(rule d) using f_int[of a b] by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5155  | 
qed finally show ?case .  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5156  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5157  | 
next note f = absolutely_integrable_onD[OF f_int[of a b]]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5158  | 
note * = this(2)[unfolded has_integral_integral has_integral[of "\<lambda>x. norm (f x)"],rule_format]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5159  | 
have "e/2>0" using `e>0` by auto from *[OF this] guess d1 .. note d1=conjunctD2[OF this]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5160  | 
from henstock_lemma[OF f(1) `e/2>0`] guess d2 . note d2=this  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5161  | 
from fine_division_exists[OF gauge_inter[OF d1(1) d2(1)], of a b] guess p .  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5162  | 
note p=this(1) conjunctD2[OF this(2)[unfolded fine_inter]]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5163  | 
have *:"\<And>sf sf' si di. sf' = sf \<longrightarrow> si \<le> i \<longrightarrow> abs(sf - si) < e / 2  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5164  | 
\<longrightarrow> abs(sf' - di) < e / 2 \<longrightarrow> di < i + e" by arith  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5165  | 
        show "integral {a..b} (\<lambda>x. if x \<in> UNIV then norm (f x) else 0) < i + e" apply(subst if_P,rule)
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5166  | 
proof(rule *[rule_format])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5167  | 
show "\<bar>(\<Sum>(x,k)\<in>p. norm (content k *\<^sub>R f x)) - (\<Sum>(x,k)\<in>p. norm (integral k f))\<bar> < e / 2"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5168  | 
unfolding split_def apply(rule helplemma) using d2(2)[rule_format,of p]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5169  | 
using p(1,3) unfolding tagged_division_of_def split_def by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5170  | 
          show "abs ((\<Sum>(x, k)\<in>p. content k *\<^sub>R norm (f x)) - integral {a..b} (\<lambda>x. norm(f x))) < e / 2"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5171  | 
using d1(2)[rule_format,OF conjI[OF p(1,2)]] unfolding real_norm_def .  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5172  | 
show "(\<Sum>(x, k)\<in>p. content k *\<^sub>R norm (f x)) = (\<Sum>(x, k)\<in>p. norm (content k *\<^sub>R f x))"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5173  | 
apply(rule setsum_cong2) unfolding split_paired_all split_conv  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5174  | 
apply(drule tagged_division_ofD(4)[OF p(1)]) unfolding norm_scaleR  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5175  | 
apply(subst abs_of_nonneg) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5176  | 
show "(\<Sum>(x, k)\<in>p. norm (integral k f)) \<le> i"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5177  | 
apply(subst setsum_over_tagged_division_lemma[OF p(1)]) defer apply(rule isLubD2[OF i])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5178  | 
unfolding image_iff apply(rule_tac x="snd ` p" in bexI) unfolding mem_Collect_eq defer  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5179  | 
            apply(rule partial_division_of_tagged_division[of _ "{a..b}"])
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5180  | 
using p(1) unfolding tagged_division_of_def by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5181  | 
qed qed qed(insert K,auto) qed qed  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5182  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5183  | 
lemma absolutely_integrable_restrict_univ:  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5184  | 
"(\<lambda>x. if x \<in> s then f x else (0::'a::banach)) absolutely_integrable_on UNIV \<longleftrightarrow> f absolutely_integrable_on s"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5185  | 
unfolding absolutely_integrable_on_def if_distrib norm_zero integrable_restrict_univ ..  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5186  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5187  | 
lemma absolutely_integrable_add[intro]: fixes f g::"'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5188  | 
assumes "f absolutely_integrable_on s" "g absolutely_integrable_on s"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5189  | 
shows "(\<lambda>x. f(x) + g(x)) absolutely_integrable_on s"  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5190  | 
proof- let ?P = "\<And>f g::'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space. f absolutely_integrable_on UNIV \<Longrightarrow>  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5191  | 
g absolutely_integrable_on UNIV \<Longrightarrow> (\<lambda>x. f(x) + g(x)) absolutely_integrable_on UNIV"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5192  | 
  { presume as:"PROP ?P" note a = absolutely_integrable_restrict_univ[THEN sym]
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5193  | 
have *:"\<And>x. (if x \<in> s then f x else 0) + (if x \<in> s then g x else 0)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5194  | 
= (if x \<in> s then f x + g x else 0)" by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5195  | 
show ?thesis apply(subst a) using as[OF assms[unfolded a[of f] a[of g]]] unfolding * . }  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5196  | 
fix f g::"'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space" assume assms:"f absolutely_integrable_on UNIV"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5197  | 
"g absolutely_integrable_on UNIV"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5198  | 
note absolutely_integrable_bounded_variation  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5199  | 
from this[OF assms(1)] this[OF assms(2)] guess B1 B2 . note B=this[rule_format]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5200  | 
show "(\<lambda>x. f(x) + g(x)) absolutely_integrable_on UNIV"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5201  | 
apply(rule bounded_variation_absolutely_integrable[of _ "B1+B2"])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5202  | 
apply(rule integrable_add) prefer 3  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5203  | 
proof safe case goal1 have "\<And>k. k \<in> d \<Longrightarrow> f integrable_on k \<and> g integrable_on k"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5204  | 
apply(drule division_ofD(4)[OF goal1]) apply safe  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5205  | 
apply(rule_tac[!] integrable_on_subinterval[of _ UNIV]) using assms by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5206  | 
hence "(\<Sum>k\<in>d. norm (integral k (\<lambda>x. f x + g x))) \<le>  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5207  | 
(\<Sum>k\<in>d. norm (integral k f)) + (\<Sum>k\<in>d. norm (integral k g))" apply-  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5208  | 
unfolding setsum_addf[THEN sym] apply(rule setsum_mono)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5209  | 
apply(subst integral_add) prefer 3 apply(rule norm_triangle_ineq) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5210  | 
also have "... \<le> B1 + B2" using B(1)[OF goal1] B(2)[OF goal1] by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5211  | 
finally show ?case .  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5212  | 
qed(insert assms,auto) qed  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5213  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5214  | 
lemma absolutely_integrable_sub[intro]: fixes f g::"'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5215  | 
assumes "f absolutely_integrable_on s" "g absolutely_integrable_on s"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5216  | 
shows "(\<lambda>x. f(x) - g(x)) absolutely_integrable_on s"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5217  | 
using absolutely_integrable_add[OF assms(1) absolutely_integrable_neg[OF assms(2)]]  | 
| 36350 | 5218  | 
unfolding algebra_simps .  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5219  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5220  | 
lemma absolutely_integrable_linear: fixes f::"'m::ordered_euclidean_space \<Rightarrow> 'n::ordered_euclidean_space" and h::"'n::ordered_euclidean_space \<Rightarrow> 'p::ordered_euclidean_space"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5221  | 
assumes "f absolutely_integrable_on s" "bounded_linear h"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5222  | 
shows "(h o f) absolutely_integrable_on s"  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5223  | 
proof- { presume as:"\<And>f::'m::ordered_euclidean_space \<Rightarrow> 'n::ordered_euclidean_space. \<And>h::'n::ordered_euclidean_space \<Rightarrow> 'p::ordered_euclidean_space. 
 | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5224  | 
f absolutely_integrable_on UNIV \<Longrightarrow> bounded_linear h \<Longrightarrow>  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5225  | 
(h o f) absolutely_integrable_on UNIV" note a = absolutely_integrable_restrict_univ[THEN sym]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5226  | 
show ?thesis apply(subst a) using as[OF assms[unfolded a[of f] a[of g]]]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5227  | 
unfolding o_def if_distrib linear_simps[OF assms(2)] . }  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5228  | 
fix f::"'m::ordered_euclidean_space \<Rightarrow> 'n::ordered_euclidean_space" and h::"'n::ordered_euclidean_space \<Rightarrow> 'p::ordered_euclidean_space"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5229  | 
assume assms:"f absolutely_integrable_on UNIV" "bounded_linear h"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5230  | 
from absolutely_integrable_bounded_variation[OF assms(1)] guess B . note B=this  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5231  | 
from bounded_linear.pos_bounded[OF assms(2)] guess b .. note b=conjunctD2[OF this]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5232  | 
show "(h o f) absolutely_integrable_on UNIV"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5233  | 
apply(rule bounded_variation_absolutely_integrable[of _ "B * b"])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5234  | 
apply(rule integrable_linear[OF _ assms(2)])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5235  | 
proof safe case goal2  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5236  | 
have "(\<Sum>k\<in>d. norm (integral k (h \<circ> f))) \<le> setsum (\<lambda>k. norm(integral k f)) d * b"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5237  | 
unfolding setsum_left_distrib apply(rule setsum_mono)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5238  | 
proof- case goal1 from division_ofD(4)[OF goal2 this]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5239  | 
guess u v apply-by(erule exE)+ note uv=this  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5240  | 
have *:"f integrable_on k" unfolding uv apply(rule integrable_on_subinterval[of _ UNIV])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5241  | 
using assms by auto note this[unfolded has_integral_integral]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5242  | 
note has_integral_linear[OF this assms(2)] integrable_linear[OF * assms(2)]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5243  | 
note * = has_integral_unique[OF this(2)[unfolded has_integral_integral] this(1)]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5244  | 
show ?case unfolding * using b by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5245  | 
qed also have "... \<le> B * b" apply(rule mult_right_mono) using B goal2 b by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5246  | 
finally show ?case .  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5247  | 
qed(insert assms,auto) qed  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5248  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5249  | 
lemma absolutely_integrable_setsum: fixes f::"'a \<Rightarrow> 'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5250  | 
assumes "finite t" "\<And>a. a \<in> t \<Longrightarrow> (f a) absolutely_integrable_on s"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5251  | 
shows "(\<lambda>x. setsum (\<lambda>a. f a x) t) absolutely_integrable_on s"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5252  | 
using assms(1,2) apply induct defer apply(subst setsum.insert) apply assumption+ by(rule,auto)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5253  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5254  | 
lemma absolutely_integrable_vector_abs: fixes f::"'a::ordered_euclidean_space => 'b::ordered_euclidean_space"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5255  | 
assumes "f absolutely_integrable_on s"  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5256  | 
shows "(\<lambda>x. (\<chi>\<chi> i. abs(f x$$i))::'c::ordered_euclidean_space) absolutely_integrable_on s"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5257  | 
proof- have *:"\<And>x. ((\<chi>\<chi> i. abs(f x$$i))::'c::ordered_euclidean_space) = (setsum (\<lambda>i.  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5258  | 
(((\<lambda>y. (\<chi>\<chi> j. if j = i then y else 0)) o  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5259  | 
    (((\<lambda>x. (norm((\<chi>\<chi> j. if j = i then x$$i else 0)::'c::ordered_euclidean_space))) o f))) x)) {..<DIM('c)})"
 | 
| 
44282
 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 
huffman 
parents: 
44176 
diff
changeset
 | 
5260  | 
unfolding euclidean_eq[where 'a='c] euclidean_component_setsum apply safe  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5261  | 
unfolding euclidean_lambda_beta'  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5262  | 
proof- case goal1 have *:"\<And>i xa. ((if i = xa then f x $$ xa else 0) * (if i = xa then f x $$ xa else 0)) =  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5263  | 
(if i = xa then (f x $$ xa) * (f x $$ xa) else 0)" by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5264  | 
    have *:"\<And>xa. norm ((\<chi>\<chi> j. if j = xa then f x $$ xa else 0)::'c) = (if xa<DIM('c) then abs (f x $$ xa) else 0)"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5265  | 
unfolding norm_eq_sqrt_inner euclidean_inner[where 'a='c]  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5266  | 
by(auto simp add:setsum_delta[OF finite_lessThan] *)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5267  | 
    have "\<bar>f x $$ i\<bar> = (setsum (\<lambda>k. if k = i then abs ((f x)$$i) else 0) {..<DIM('c)})"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5268  | 
unfolding setsum_delta[OF finite_lessThan] using goal1 by auto  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5269  | 
    also have "... = (\<Sum>xa<DIM('c). ((\<lambda>y. (\<chi>\<chi> j. if j = xa then y else 0)::'c) \<circ>
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5270  | 
(\<lambda>x. (norm ((\<chi>\<chi> j. if j = xa then x $$ xa else 0)::'c))) \<circ> f) x $$ i)"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5271  | 
unfolding o_def * apply(rule setsum_cong2)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5272  | 
unfolding euclidean_lambda_beta'[OF goal1 ] by auto  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5273  | 
finally show ?case unfolding o_def . qed  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5274  | 
show ?thesis unfolding * apply(rule absolutely_integrable_setsum) apply(rule finite_lessThan)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5275  | 
apply(rule absolutely_integrable_linear) unfolding o_def apply(rule absolutely_integrable_norm)  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5276  | 
apply(rule absolutely_integrable_linear[OF assms,unfolded o_def]) unfolding linear_linear  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5277  | 
apply(rule_tac[!] linearI) unfolding euclidean_eq[where 'a='c]  | 
| 
44282
 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 
huffman 
parents: 
44176 
diff
changeset
 | 
5278  | 
by(auto simp:euclidean_component_scaleR[where 'a=real,unfolded real_scaleR_def])  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5279  | 
qed  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5280  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5281  | 
lemma absolutely_integrable_max: fixes f g::"'m::ordered_euclidean_space \<Rightarrow> 'n::ordered_euclidean_space"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5282  | 
assumes "f absolutely_integrable_on s" "g absolutely_integrable_on s"  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5283  | 
shows "(\<lambda>x. (\<chi>\<chi> i. max (f(x)$$i) (g(x)$$i))::'n::ordered_euclidean_space) absolutely_integrable_on s"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5284  | 
proof- have *:"\<And>x. (1 / 2) *\<^sub>R (((\<chi>\<chi> i. \<bar>(f x - g x) $$ i\<bar>)::'n) + (f x + g x)) = (\<chi>\<chi> i. max (f(x)$$i) (g(x)$$i))"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5285  | 
unfolding euclidean_eq[where 'a='n] by auto  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5286  | 
note absolutely_integrable_sub[OF assms] absolutely_integrable_add[OF assms]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5287  | 
note absolutely_integrable_vector_abs[OF this(1)] this(2)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5288  | 
note absolutely_integrable_add[OF this] note absolutely_integrable_cmul[OF this,of "1/2"]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5289  | 
thus ?thesis unfolding * . qed  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5290  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5291  | 
lemma absolutely_integrable_min: fixes f g::"'m::ordered_euclidean_space \<Rightarrow> 'n::ordered_euclidean_space"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5292  | 
assumes "f absolutely_integrable_on s" "g absolutely_integrable_on s"  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5293  | 
shows "(\<lambda>x. (\<chi>\<chi> i. min (f(x)$$i) (g(x)$$i))::'n::ordered_euclidean_space) absolutely_integrable_on s"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5294  | 
proof- have *:"\<And>x. (1 / 2) *\<^sub>R ((f x + g x) - ((\<chi>\<chi> i. \<bar>(f x - g x) $$ i\<bar>)::'n)) = (\<chi>\<chi> i. min (f(x)$$i) (g(x)$$i))"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5295  | 
unfolding euclidean_eq[where 'a='n] by auto  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5296  | 
note absolutely_integrable_add[OF assms] absolutely_integrable_sub[OF assms]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5297  | 
note this(1) absolutely_integrable_vector_abs[OF this(2)]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5298  | 
note absolutely_integrable_sub[OF this] note absolutely_integrable_cmul[OF this,of "1/2"]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5299  | 
thus ?thesis unfolding * . qed  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5300  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5301  | 
lemma absolutely_integrable_abs_eq: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5302  | 
shows "f absolutely_integrable_on s \<longleftrightarrow> f integrable_on s \<and>  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5303  | 
(\<lambda>x. (\<chi>\<chi> i. abs(f x$$i))::'m) integrable_on s" (is "?l = ?r")  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5304  | 
proof assume ?l thus ?r apply-apply rule defer  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5305  | 
apply(drule absolutely_integrable_vector_abs) by auto  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5306  | 
next assume ?r { presume lem:"\<And>f::'n \<Rightarrow> 'm. f integrable_on UNIV \<Longrightarrow>
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5307  | 
(\<lambda>x. (\<chi>\<chi> i. abs(f(x)$$i))::'m) integrable_on UNIV \<Longrightarrow> f absolutely_integrable_on UNIV"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5308  | 
have *:"\<And>x. (\<chi>\<chi> i. \<bar>(if x \<in> s then f x else 0) $$ i\<bar>) = (if x\<in>s then (\<chi>\<chi> i. \<bar>f x $$ i\<bar>) else (0::'m))"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5309  | 
unfolding euclidean_eq[where 'a='m] by auto  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5310  | 
show ?l apply(subst absolutely_integrable_restrict_univ[THEN sym]) apply(rule lem)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5311  | 
unfolding integrable_restrict_univ * using `?r` by auto }  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5312  | 
fix f::"'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space" assume assms:"f integrable_on UNIV"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5313  | 
"(\<lambda>x. (\<chi>\<chi> i. abs(f(x)$$i))::'m::ordered_euclidean_space) integrable_on UNIV"  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5314  | 
  let ?B = "setsum (\<lambda>i. integral UNIV (\<lambda>x. (\<chi>\<chi> j. abs(f x$$j)) ::'m::ordered_euclidean_space) $$ i) {..<DIM('m)}"
 | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5315  | 
show "f absolutely_integrable_on UNIV"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5316  | 
apply(rule bounded_variation_absolutely_integrable[OF assms(1), where B="?B"],safe)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5317  | 
proof- case goal1 note d=this and d'=division_ofD[OF this]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5318  | 
have "(\<Sum>k\<in>d. norm (integral k f)) \<le>  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5319  | 
      (\<Sum>k\<in>d. setsum (op $$ (integral k (\<lambda>x. (\<chi>\<chi> j. \<bar>f x $$ j\<bar>)::'m))) {..<DIM('m)})" apply(rule setsum_mono)
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5320  | 
apply(rule order_trans[OF norm_le_l1]) apply(rule setsum_mono) unfolding lessThan_iff  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5321  | 
    proof- fix k and i assume "k\<in>d" and i:"i<DIM('m)"
 | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5322  | 
from d'(4)[OF this(1)] guess a b apply-by(erule exE)+ note ab=this  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5323  | 
show "\<bar>integral k f $$ i\<bar> \<le> integral k (\<lambda>x. (\<chi>\<chi> j. \<bar>f x $$ j\<bar>)::'m) $$ i" apply(rule abs_leI)  | 
| 
44282
 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 
huffman 
parents: 
44176 
diff
changeset
 | 
5324  | 
unfolding euclidean_component_minus[THEN sym] defer apply(subst integral_neg[THEN sym])  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5325  | 
defer apply(rule_tac[1-2] integral_component_le) apply(rule integrable_neg)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5326  | 
using integrable_on_subinterval[OF assms(1),of a b]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5327  | 
integrable_on_subinterval[OF assms(2),of a b] unfolding ab by auto  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5328  | 
    qed also have "... \<le> setsum (op $$ (integral UNIV (\<lambda>x. (\<chi>\<chi> j. \<bar>f x $$ j\<bar>))::'m)) {..<DIM('m)}"
 | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5329  | 
apply(subst setsum_commute,rule setsum_mono)  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5330  | 
proof- case goal1 have *:"(\<lambda>x. (\<chi>\<chi> j. \<bar>f x $$ j\<bar>)::'m) integrable_on \<Union>d"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5331  | 
using integrable_on_subdivision[OF d assms(2)] by auto  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5332  | 
have "(\<Sum>i\<in>d. integral i (\<lambda>x. (\<chi>\<chi> j. \<bar>f x $$ j\<bar>)::'m) $$ j)  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5333  | 
= integral (\<Union>d) (\<lambda>x. (\<chi>\<chi> j. abs(f x$$j)) ::'m::ordered_euclidean_space) $$ j"  | 
| 
44282
 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 
huffman 
parents: 
44176 
diff
changeset
 | 
5334  | 
unfolding euclidean_component_setsum[THEN sym] integral_combine_division_topdown[OF * d] ..  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5335  | 
also have "... \<le> integral UNIV (\<lambda>x. (\<chi>\<chi> j. \<bar>f x $$ j\<bar>)::'m) $$ j"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5336  | 
apply(rule integral_subset_component_le) using assms * by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5337  | 
finally show ?case .  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5338  | 
qed finally show ?case . qed qed  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5339  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5340  | 
lemma nonnegative_absolutely_integrable: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space"  | 
| 38656 | 5341  | 
  assumes "\<forall>x\<in>s. \<forall>i<DIM('m). 0 \<le> f(x)$$i" "f integrable_on s"
 | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5342  | 
shows "f absolutely_integrable_on s"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5343  | 
unfolding absolutely_integrable_abs_eq apply rule defer  | 
| 38656 | 5344  | 
apply(rule integrable_eq[of _ f]) using assms apply-apply(subst euclidean_eq) by auto  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5345  | 
|
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5346  | 
lemma absolutely_integrable_integrable_bound: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5347  | 
assumes "\<forall>x\<in>s. norm(f x) \<le> g x" "f integrable_on s" "g integrable_on s"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5348  | 
shows "f absolutely_integrable_on s"  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5349  | 
proof- { presume *:"\<And>f::'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space. \<And> g. \<forall>x. norm(f x) \<le> g x \<Longrightarrow> f integrable_on UNIV
 | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5350  | 
\<Longrightarrow> g integrable_on UNIV \<Longrightarrow> f absolutely_integrable_on UNIV"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5351  | 
show ?thesis apply(subst absolutely_integrable_restrict_univ[THEN sym])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5352  | 
apply(rule *[of _ "\<lambda>x. if x\<in>s then g x else 0"])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5353  | 
using assms unfolding integrable_restrict_univ by auto }  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5354  | 
fix g and f :: "'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5355  | 
assume assms:"\<forall>x. norm(f x) \<le> g x" "f integrable_on UNIV" "g integrable_on UNIV"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5356  | 
show "f absolutely_integrable_on UNIV"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5357  | 
apply(rule bounded_variation_absolutely_integrable[OF assms(2),where B="integral UNIV g"])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5358  | 
proof safe case goal1 note d=this and d'=division_ofD[OF this]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5359  | 
have "(\<Sum>k\<in>d. norm (integral k f)) \<le> (\<Sum>k\<in>d. integral k g)"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5360  | 
apply(rule setsum_mono) apply(rule integral_norm_bound_integral) apply(drule_tac[!] d'(4),safe)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5361  | 
apply(rule_tac[1-2] integrable_on_subinterval) using assms by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5362  | 
also have "... = integral (\<Union>d) g" apply(rule integral_combine_division_bottomup[THEN sym])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5363  | 
apply(rule d,safe) apply(drule d'(4),safe)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5364  | 
apply(rule integrable_on_subinterval[OF assms(3)]) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5365  | 
also have "... \<le> integral UNIV g" apply(rule integral_subset_le) defer  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5366  | 
apply(rule integrable_on_subdivision[OF d,of _ UNIV]) prefer 4  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5367  | 
apply(rule,rule_tac y="norm (f x)" in order_trans) using assms by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5368  | 
finally show ?case . qed qed  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5369  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5370  | 
lemma absolutely_integrable_integrable_bound_real: fixes f::"'n::ordered_euclidean_space \<Rightarrow> real"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5371  | 
assumes "\<forall>x\<in>s. norm(f x) \<le> g x" "f integrable_on s" "g integrable_on s"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5372  | 
shows "f absolutely_integrable_on s"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5373  | 
apply(rule absolutely_integrable_integrable_bound[where g=g])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5374  | 
using assms unfolding o_def by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5375  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5376  | 
lemma absolutely_integrable_absolutely_integrable_bound:  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5377  | 
fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space" and g::"'n::ordered_euclidean_space \<Rightarrow> 'p::ordered_euclidean_space"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5378  | 
assumes "\<forall>x\<in>s. norm(f x) \<le> norm(g x)" "f integrable_on s" "g absolutely_integrable_on s"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5379  | 
shows "f absolutely_integrable_on s"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5380  | 
apply(rule absolutely_integrable_integrable_bound[of s f "\<lambda>x. norm (g x)"])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5381  | 
using assms by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5382  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5383  | 
lemma absolutely_integrable_inf_real:  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5384  | 
  assumes "finite k" "k \<noteq> {}"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5385  | 
"\<forall>i\<in>k. (\<lambda>x. (fs x i)::real) absolutely_integrable_on s"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5386  | 
shows "(\<lambda>x. (Inf ((fs x) ` k))) absolutely_integrable_on s" using assms  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5387  | 
proof induct case (insert a k) let ?P = " (\<lambda>x. if fs x ` k = {} then fs x a
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5388  | 
else min (fs x a) (Inf (fs x ` k))) absolutely_integrable_on s"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5389  | 
show ?case unfolding image_insert  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5390  | 
apply(subst Inf_insert_finite) apply(rule finite_imageI[OF insert(1)])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5391  | 
  proof(cases "k={}") case True
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5392  | 
thus ?P apply(subst if_P) defer apply(rule insert(5)[rule_format]) by auto  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5393  | 
next case False thus ?P apply(subst if_not_P) defer  | 
| 
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5394  | 
apply(rule absolutely_integrable_min[where 'n=real,unfolded Eucl_real_simps])  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5395  | 
defer apply(rule insert(3)[OF False]) using insert(5) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5396  | 
qed qed auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5397  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5398  | 
lemma absolutely_integrable_sup_real:  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5399  | 
  assumes "finite k" "k \<noteq> {}"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5400  | 
"\<forall>i\<in>k. (\<lambda>x. (fs x i)::real) absolutely_integrable_on s"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5401  | 
shows "(\<lambda>x. (Sup ((fs x) ` k))) absolutely_integrable_on s" using assms  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5402  | 
proof induct case (insert a k) let ?P = " (\<lambda>x. if fs x ` k = {} then fs x a
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5403  | 
else max (fs x a) (Sup (fs x ` k))) absolutely_integrable_on s"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5404  | 
show ?case unfolding image_insert  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5405  | 
apply(subst Sup_insert_finite) apply(rule finite_imageI[OF insert(1)])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5406  | 
  proof(cases "k={}") case True
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5407  | 
thus ?P apply(subst if_P) defer apply(rule insert(5)[rule_format]) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5408  | 
next case False thus ?P apply(subst if_not_P) defer  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5409  | 
apply(rule absolutely_integrable_max[where 'n=real,unfolded Eucl_real_simps])  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5410  | 
defer apply(rule insert(3)[OF False]) using insert(5) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5411  | 
qed qed auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5412  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5413  | 
subsection {* Dominated convergence. *}
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5414  | 
|
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5415  | 
lemma dominated_convergence: fixes f::"nat \<Rightarrow> 'n::ordered_euclidean_space \<Rightarrow> real"  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5416  | 
assumes "\<And>k. (f k) integrable_on s" "h integrable_on s"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5417  | 
"\<And>k. \<forall>x \<in> s. norm(f k x) \<le> (h x)"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5418  | 
"\<forall>x \<in> s. ((\<lambda>k. f k x) ---> g x) sequentially"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5419  | 
shows "g integrable_on s" "((\<lambda>k. integral s (f k)) ---> integral s g) sequentially"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5420  | 
proof- have "\<And>m. (\<lambda>x. Inf {f j x |j. m \<le> j}) integrable_on s \<and>
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5421  | 
    ((\<lambda>k. integral s (\<lambda>x. Inf {f j x |j. j \<in> {m..m + k}})) --->
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5422  | 
    integral s (\<lambda>x. Inf {f j x |j. m \<le> j}))sequentially"
 | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5423  | 
proof(rule monotone_convergence_decreasing,safe) fix m::nat  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5424  | 
    show "bounded {integral s (\<lambda>x. Inf {f j x |j. j \<in> {m..m + k}}) |k. True}"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5425  | 
unfolding bounded_iff apply(rule_tac x="integral s h" in exI)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5426  | 
proof safe fix k::nat  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5427  | 
      show "norm (integral s (\<lambda>x. Inf {f j x |j. j \<in> {m..m + k}})) \<le> integral s h"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5428  | 
apply(rule integral_norm_bound_integral) unfolding simple_image  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5429  | 
apply(rule absolutely_integrable_onD) apply(rule absolutely_integrable_inf_real)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5430  | 
prefer 5 unfolding real_norm_def apply(rule) apply(rule Inf_abs_ge)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5431  | 
prefer 5 apply rule apply(rule_tac g=h in absolutely_integrable_integrable_bound_real)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5432  | 
using assms unfolding real_norm_def by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5433  | 
    qed fix k::nat show "(\<lambda>x. Inf {f j x |j. j \<in> {m..m + k}}) integrable_on s"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5434  | 
unfolding simple_image apply(rule absolutely_integrable_onD)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5435  | 
apply(rule absolutely_integrable_inf_real) prefer 3  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5436  | 
using absolutely_integrable_integrable_bound_real[OF assms(3,1,2)] by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5437  | 
    fix x assume x:"x\<in>s" show "Inf {f j x |j. j \<in> {m..m + Suc k}}
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5438  | 
      \<le> Inf {f j x |j. j \<in> {m..m + k}}" apply(rule Inf_ge) unfolding setge_def
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5439  | 
defer apply rule apply(subst Inf_finite_le_iff) prefer 3  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5440  | 
apply(rule_tac x=xa in bexI) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5441  | 
    let ?S = "{f j x| j.  m \<le> j}" def i \<equiv> "Inf ?S"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5442  | 
    show "((\<lambda>k. Inf {f j x |j. j \<in> {m..m + k}}) ---> i) sequentially"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5443  | 
unfolding Lim_sequentially  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5444  | 
proof safe case goal1 note e=this have i:"isGlb UNIV ?S i" unfolding i_def apply(rule Inf)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5445  | 
defer apply(rule_tac x="- h x - 1" in exI) unfolding setge_def  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5446  | 
proof safe case goal1 thus ?case using assms(3)[rule_format,OF x, of j] by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5447  | 
qed auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5448  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5449  | 
have "\<exists>y\<in>?S. \<not> y \<ge> i + e"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5450  | 
proof(rule ccontr) case goal1 hence "i \<ge> i + e" apply-  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5451  | 
apply(rule isGlb_le_isLb[OF i]) apply(rule isLbI) unfolding setge_def by fastsimp+  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5452  | 
thus False using e by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5453  | 
qed then guess y .. note y=this[unfolded not_le]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5454  | 
from this(1)[unfolded mem_Collect_eq] guess N .. note N=conjunctD2[OF this]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5455  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5456  | 
show ?case apply(rule_tac x=N in exI)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5457  | 
proof safe case goal1  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5458  | 
have *:"\<And>y ix. y < i + e \<longrightarrow> i \<le> ix \<longrightarrow> ix \<le> y \<longrightarrow> abs(ix - i) < e" by arith  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5459  | 
show ?case unfolding dist_real_def apply(rule *[rule_format,OF y(2)])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5460  | 
unfolding i_def apply(rule real_le_inf_subset) prefer 3  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5461  | 
apply(rule,rule isGlbD1[OF i]) prefer 3 apply(subst Inf_finite_le_iff)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5462  | 
prefer 3 apply(rule_tac x=y in bexI) using N goal1 by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5463  | 
qed qed qed note dec1 = conjunctD2[OF this]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5464  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5465  | 
  have "\<And>m. (\<lambda>x. Sup {f j x |j. m \<le> j}) integrable_on s \<and>
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5466  | 
    ((\<lambda>k. integral s (\<lambda>x. Sup {f j x |j. j \<in> {m..m + k}})) --->
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5467  | 
    integral s (\<lambda>x. Sup {f j x |j. m \<le> j})) sequentially"
 | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5468  | 
proof(rule monotone_convergence_increasing,safe) fix m::nat  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5469  | 
    show "bounded {integral s (\<lambda>x. Sup {f j x |j. j \<in> {m..m + k}}) |k. True}"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5470  | 
unfolding bounded_iff apply(rule_tac x="integral s h" in exI)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5471  | 
proof safe fix k::nat  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5472  | 
      show "norm (integral s (\<lambda>x. Sup {f j x |j. j \<in> {m..m + k}})) \<le> integral s h"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5473  | 
apply(rule integral_norm_bound_integral) unfolding simple_image  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5474  | 
apply(rule absolutely_integrable_onD) apply(rule absolutely_integrable_sup_real)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5475  | 
prefer 5 unfolding real_norm_def apply(rule) apply(rule Sup_abs_le)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5476  | 
prefer 5 apply rule apply(rule_tac g=h in absolutely_integrable_integrable_bound_real)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5477  | 
using assms unfolding real_norm_def by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5478  | 
    qed fix k::nat show "(\<lambda>x. Sup {f j x |j. j \<in> {m..m + k}}) integrable_on s"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5479  | 
unfolding simple_image apply(rule absolutely_integrable_onD)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5480  | 
apply(rule absolutely_integrable_sup_real) prefer 3  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5481  | 
using absolutely_integrable_integrable_bound_real[OF assms(3,1,2)] by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5482  | 
    fix x assume x:"x\<in>s" show "Sup {f j x |j. j \<in> {m..m + Suc k}}
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5483  | 
      \<ge> Sup {f j x |j. j \<in> {m..m + k}}" apply(rule Sup_le) unfolding setle_def
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5484  | 
defer apply rule apply(subst Sup_finite_ge_iff) prefer 3 apply(rule_tac x=y in bexI) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5485  | 
    let ?S = "{f j x| j.  m \<le> j}" def i \<equiv> "Sup ?S"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5486  | 
    show "((\<lambda>k. Sup {f j x |j. j \<in> {m..m + k}}) ---> i) sequentially"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5487  | 
unfolding Lim_sequentially  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5488  | 
proof safe case goal1 note e=this have i:"isLub UNIV ?S i" unfolding i_def apply(rule Sup)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5489  | 
defer apply(rule_tac x="h x" in exI) unfolding setle_def  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5490  | 
proof safe case goal1 thus ?case using assms(3)[rule_format,OF x, of j] by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5491  | 
qed auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5492  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5493  | 
have "\<exists>y\<in>?S. \<not> y \<le> i - e"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5494  | 
proof(rule ccontr) case goal1 hence "i \<le> i - e" apply-  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5495  | 
apply(rule isLub_le_isUb[OF i]) apply(rule isUbI) unfolding setle_def by fastsimp+  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5496  | 
thus False using e by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5497  | 
qed then guess y .. note y=this[unfolded not_le]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5498  | 
from this(1)[unfolded mem_Collect_eq] guess N .. note N=conjunctD2[OF this]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5499  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5500  | 
show ?case apply(rule_tac x=N in exI)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5501  | 
proof safe case goal1  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5502  | 
have *:"\<And>y ix. i - e < y \<longrightarrow> ix \<le> i \<longrightarrow> y \<le> ix \<longrightarrow> abs(ix - i) < e" by arith  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5503  | 
show ?case unfolding dist_real_def apply(rule *[rule_format,OF y(2)])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5504  | 
unfolding i_def apply(rule real_ge_sup_subset) prefer 3  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5505  | 
apply(rule,rule isLubD1[OF i]) prefer 3 apply(subst Sup_finite_ge_iff)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5506  | 
prefer 3 apply(rule_tac x=y in bexI) using N goal1 by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5507  | 
qed qed qed note inc1 = conjunctD2[OF this]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5508  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5509  | 
  have "g integrable_on s \<and> ((\<lambda>k. integral s (\<lambda>x. Inf {f j x |j. k \<le> j})) ---> integral s g) sequentially"
 | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5510  | 
apply(rule monotone_convergence_increasing,safe) apply fact  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5511  | 
  proof- show "bounded {integral s (\<lambda>x. Inf {f j x |j. k \<le> j}) |k. True}"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5512  | 
unfolding bounded_iff apply(rule_tac x="integral s h" in exI)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5513  | 
proof safe fix k::nat  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5514  | 
      show "norm (integral s (\<lambda>x. Inf {f j x |j. k \<le> j})) \<le> integral s h"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5515  | 
apply(rule integral_norm_bound_integral) apply fact+  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5516  | 
unfolding real_norm_def apply(rule) apply(rule Inf_abs_ge) using assms(3) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5517  | 
qed fix k::nat and x assume x:"x\<in>s"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5518  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5519  | 
have *:"\<And>x y::real. x \<ge> - y \<Longrightarrow> - x \<le> y" by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5520  | 
    show "Inf {f j x |j. k \<le> j} \<le> Inf {f j x |j. Suc k \<le> j}" apply-
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5521  | 
apply(rule real_le_inf_subset) prefer 3 unfolding setge_def  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5522  | 
apply(rule_tac x="- h x" in exI) apply safe apply(rule *)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5523  | 
using assms(3)[rule_format,OF x] unfolding real_norm_def abs_le_iff by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5524  | 
    show "((\<lambda>k. Inf {f j x |j. k \<le> j}) ---> g x) sequentially" unfolding Lim_sequentially
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5525  | 
proof safe case goal1 hence "0<e/2" by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5526  | 
from assms(4)[unfolded Lim_sequentially,rule_format,OF x this] guess N .. note N=this  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5527  | 
show ?case apply(rule_tac x=N in exI,safe) unfolding dist_real_def  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5528  | 
apply(rule le_less_trans[of _ "e/2"]) apply(rule Inf_asclose) apply safe  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5529  | 
defer apply(rule less_imp_le) using N goal1 unfolding dist_real_def by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5530  | 
qed qed note inc2 = conjunctD2[OF this]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5531  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5532  | 
  have "g integrable_on s \<and> ((\<lambda>k. integral s (\<lambda>x. Sup {f j x |j. k \<le> j})) ---> integral s g) sequentially"
 | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36899 
diff
changeset
 | 
5533  | 
apply(rule monotone_convergence_decreasing,safe) apply fact  | 
| 
36243
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5534  | 
  proof- show "bounded {integral s (\<lambda>x. Sup {f j x |j. k \<le> j}) |k. True}"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5535  | 
unfolding bounded_iff apply(rule_tac x="integral s h" in exI)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5536  | 
proof safe fix k::nat  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5537  | 
      show "norm (integral s (\<lambda>x. Sup {f j x |j. k \<le> j})) \<le> integral s h"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5538  | 
apply(rule integral_norm_bound_integral) apply fact+  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5539  | 
unfolding real_norm_def apply(rule) apply(rule Sup_abs_le) using assms(3) by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5540  | 
qed fix k::nat and x assume x:"x\<in>s"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5541  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5542  | 
    show "Sup {f j x |j. k \<le> j} \<ge> Sup {f j x |j. Suc k \<le> j}" apply-
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5543  | 
apply(rule real_ge_sup_subset) prefer 3 unfolding setle_def  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5544  | 
apply(rule_tac x="h x" in exI) apply safe  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5545  | 
using assms(3)[rule_format,OF x] unfolding real_norm_def abs_le_iff by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5546  | 
    show "((\<lambda>k. Sup {f j x |j. k \<le> j}) ---> g x) sequentially" unfolding Lim_sequentially
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5547  | 
proof safe case goal1 hence "0<e/2" by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5548  | 
from assms(4)[unfolded Lim_sequentially,rule_format,OF x this] guess N .. note N=this  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5549  | 
show ?case apply(rule_tac x=N in exI,safe) unfolding dist_real_def  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5550  | 
apply(rule le_less_trans[of _ "e/2"]) apply(rule Sup_asclose) apply safe  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5551  | 
defer apply(rule less_imp_le) using N goal1 unfolding dist_real_def by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5552  | 
qed qed note dec2 = conjunctD2[OF this]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5553  | 
|
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5554  | 
show "g integrable_on s" by fact  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5555  | 
show "((\<lambda>k. integral s (f k)) ---> integral s g) sequentially" unfolding Lim_sequentially  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5556  | 
proof safe case goal1  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5557  | 
from inc2(2)[unfolded Lim_sequentially,rule_format,OF goal1] guess N1 .. note N1=this[unfolded dist_real_def]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5558  | 
from dec2(2)[unfolded Lim_sequentially,rule_format,OF goal1] guess N2 .. note N2=this[unfolded dist_real_def]  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5559  | 
show ?case apply(rule_tac x="N1+N2" in exI,safe)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5560  | 
proof- fix n assume n:"n \<ge> N1 + N2"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5561  | 
have *:"\<And>i0 i i1 g. \<bar>i0 - g\<bar> < e \<longrightarrow> \<bar>i1 - g\<bar> < e \<longrightarrow> i0 \<le> i \<longrightarrow> i \<le> i1 \<longrightarrow> \<bar>i - g\<bar> < e" by arith  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5562  | 
show "dist (integral s (f n)) (integral s g) < e" unfolding dist_real_def  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5563  | 
apply(rule *[rule_format,OF N1[rule_format] N2[rule_format], of n n])  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5564  | 
      proof- show "integral s (\<lambda>x. Inf {f j x |j. n \<le> j}) \<le> integral s (f n)"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5565  | 
proof(rule integral_le[OF dec1(1) assms(1)],safe)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5566  | 
fix x assume x:"x \<in> s" have *:"\<And>x y::real. x \<ge> - y \<Longrightarrow> - x \<le> y" by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5567  | 
          show "Inf {f j x |j. n \<le> j} \<le> f n x" apply(rule Inf_lower[where z="- h x"]) defer
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5568  | 
apply(rule *) using assms(3)[rule_format,OF x] unfolding real_norm_def abs_le_iff by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5569  | 
        qed show "integral s (f n) \<le> integral s (\<lambda>x. Sup {f j x |j. n \<le> j})"
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5570  | 
proof(rule integral_le[OF assms(1) inc1(1)],safe)  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5571  | 
fix x assume x:"x \<in> s"  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5572  | 
          show "f n x \<le> Sup {f j x |j. n \<le> j}" apply(rule Sup_upper[where z="h x"]) defer
 | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5573  | 
using assms(3)[rule_format,OF x] unfolding real_norm_def abs_le_iff by auto  | 
| 
 
027ae62681be
Translated remaining theorems about integration from HOL light.
 
himmelma 
parents: 
36081 
diff
changeset
 | 
5574  | 
qed qed(insert n,auto) qed qed qed  | 
| 35752 | 5575  | 
|
5576  | 
declare [[smt_certificates=""]]  | 
|
| 
36244
 
009b0ee1b838
Only use provided SMT-certificates in HOL-Multivariate_Analysis.
 
hoelzl 
parents: 
36243 
diff
changeset
 | 
5577  | 
declare [[smt_fixed=false]]  | 
| 35752 | 5578  | 
|
| 
35173
 
9b24bfca8044
Renamed Multivariate-Analysis/Integration to Multivariate-Analysis/Integration_MV to avoid name clash with Integration.
 
hoelzl 
parents: 
35172 
diff
changeset
 | 
5579  | 
end  |