author | paulson |
Mon, 27 Jan 1997 15:06:21 +0100 | |
changeset 2559 | 06b6a499f8ae |
parent 2442 | 6663e0d210b0 |
child 2562 | d571d6660240 |
permissions | -rw-r--r-- |
1465 | 1 |
(* Title: HOL/HOL.ML |
923 | 2 |
ID: $Id$ |
1465 | 3 |
Author: Tobias Nipkow |
923 | 4 |
Copyright 1991 University of Cambridge |
5 |
||
1465 | 6 |
For HOL.thy |
923 | 7 |
Derived rules from Appendix of Mike Gordons HOL Report, Cambridge TR 68 |
8 |
*) |
|
9 |
||
10 |
open HOL; |
|
11 |
||
12 |
||
13 |
(** Equality **) |
|
1660 | 14 |
section "="; |
923 | 15 |
|
16 |
qed_goal "sym" HOL.thy "s=t ==> t=s" |
|
17 |
(fn prems => [cut_facts_tac prems 1, etac subst 1, rtac refl 1]); |
|
18 |
||
19 |
(*calling "standard" reduces maxidx to 0*) |
|
20 |
bind_thm ("ssubst", (sym RS subst)); |
|
21 |
||
22 |
qed_goal "trans" HOL.thy "[| r=s; s=t |] ==> r=t" |
|
23 |
(fn prems => |
|
1465 | 24 |
[rtac subst 1, resolve_tac prems 1, resolve_tac prems 1]); |
923 | 25 |
|
26 |
(*Useful with eresolve_tac for proving equalties from known equalities. |
|
1465 | 27 |
a = b |
28 |
| | |
|
29 |
c = d *) |
|
923 | 30 |
qed_goal "box_equals" HOL.thy |
31 |
"[| a=b; a=c; b=d |] ==> c=d" |
|
32 |
(fn prems=> |
|
33 |
[ (rtac trans 1), |
|
34 |
(rtac trans 1), |
|
35 |
(rtac sym 1), |
|
36 |
(REPEAT (resolve_tac prems 1)) ]); |
|
37 |
||
1660 | 38 |
|
923 | 39 |
(** Congruence rules for meta-application **) |
1660 | 40 |
section "Congruence"; |
923 | 41 |
|
42 |
(*similar to AP_THM in Gordon's HOL*) |
|
43 |
qed_goal "fun_cong" HOL.thy "(f::'a=>'b) = g ==> f(x)=g(x)" |
|
44 |
(fn [prem] => [rtac (prem RS subst) 1, rtac refl 1]); |
|
45 |
||
46 |
(*similar to AP_TERM in Gordon's HOL and FOL's subst_context*) |
|
47 |
qed_goal "arg_cong" HOL.thy "x=y ==> f(x)=f(y)" |
|
48 |
(fn [prem] => [rtac (prem RS subst) 1, rtac refl 1]); |
|
49 |
||
50 |
qed_goal "cong" HOL.thy |
|
51 |
"[| f = g; (x::'a) = y |] ==> f(x) = g(y)" |
|
52 |
(fn [prem1,prem2] => |
|
53 |
[rtac (prem1 RS subst) 1, rtac (prem2 RS subst) 1, rtac refl 1]); |
|
54 |
||
1660 | 55 |
|
923 | 56 |
(** Equality of booleans -- iff **) |
1660 | 57 |
section "iff"; |
923 | 58 |
|
59 |
qed_goal "iffI" HOL.thy |
|
60 |
"[| P ==> Q; Q ==> P |] ==> P=Q" |
|
61 |
(fn prems=> [ (REPEAT (ares_tac (prems@[impI, iff RS mp RS mp]) 1)) ]); |
|
62 |
||
63 |
qed_goal "iffD2" HOL.thy "[| P=Q; Q |] ==> P" |
|
64 |
(fn prems => |
|
1465 | 65 |
[rtac ssubst 1, resolve_tac prems 1, resolve_tac prems 1]); |
923 | 66 |
|
67 |
val iffD1 = sym RS iffD2; |
|
68 |
||
69 |
qed_goal "iffE" HOL.thy |
|
70 |
"[| P=Q; [| P --> Q; Q --> P |] ==> R |] ==> R" |
|
71 |
(fn [p1,p2] => [REPEAT(ares_tac([p1 RS iffD2, p1 RS iffD1, p2, impI])1)]); |
|
72 |
||
1660 | 73 |
|
923 | 74 |
(** True **) |
1660 | 75 |
section "True"; |
923 | 76 |
|
77 |
qed_goalw "TrueI" HOL.thy [True_def] "True" |
|
78 |
(fn _ => [rtac refl 1]); |
|
79 |
||
80 |
qed_goal "eqTrueI " HOL.thy "P ==> P=True" |
|
81 |
(fn prems => [REPEAT(resolve_tac ([iffI,TrueI]@prems) 1)]); |
|
82 |
||
83 |
qed_goal "eqTrueE" HOL.thy "P=True ==> P" |
|
84 |
(fn prems => [REPEAT(resolve_tac (prems@[TrueI,iffD2]) 1)]); |
|
85 |
||
1660 | 86 |
|
923 | 87 |
(** Universal quantifier **) |
1660 | 88 |
section "!"; |
923 | 89 |
|
90 |
qed_goalw "allI" HOL.thy [All_def] "(!!x::'a. P(x)) ==> !x. P(x)" |
|
91 |
(fn prems => [resolve_tac (prems RL [eqTrueI RS ext]) 1]); |
|
92 |
||
93 |
qed_goalw "spec" HOL.thy [All_def] "! x::'a.P(x) ==> P(x)" |
|
94 |
(fn prems => [rtac eqTrueE 1, resolve_tac (prems RL [fun_cong]) 1]); |
|
95 |
||
96 |
qed_goal "allE" HOL.thy "[| !x.P(x); P(x) ==> R |] ==> R" |
|
97 |
(fn major::prems=> |
|
98 |
[ (REPEAT (resolve_tac (prems @ [major RS spec]) 1)) ]); |
|
99 |
||
100 |
qed_goal "all_dupE" HOL.thy |
|
101 |
"[| ! x.P(x); [| P(x); ! x.P(x) |] ==> R |] ==> R" |
|
102 |
(fn prems => |
|
103 |
[ (REPEAT (resolve_tac (prems @ (prems RL [spec])) 1)) ]); |
|
104 |
||
105 |
||
106 |
(** False ** Depends upon spec; it is impossible to do propositional logic |
|
107 |
before quantifiers! **) |
|
1660 | 108 |
section "False"; |
923 | 109 |
|
110 |
qed_goalw "FalseE" HOL.thy [False_def] "False ==> P" |
|
111 |
(fn [major] => [rtac (major RS spec) 1]); |
|
112 |
||
113 |
qed_goal "False_neq_True" HOL.thy "False=True ==> P" |
|
114 |
(fn [prem] => [rtac (prem RS eqTrueE RS FalseE) 1]); |
|
115 |
||
116 |
||
117 |
(** Negation **) |
|
1660 | 118 |
section "~"; |
923 | 119 |
|
120 |
qed_goalw "notI" HOL.thy [not_def] "(P ==> False) ==> ~P" |
|
121 |
(fn prems=> [rtac impI 1, eresolve_tac prems 1]); |
|
122 |
||
123 |
qed_goalw "notE" HOL.thy [not_def] "[| ~P; P |] ==> R" |
|
124 |
(fn prems => [rtac (prems MRS mp RS FalseE) 1]); |
|
125 |
||
2442 | 126 |
bind_thm ("classical2", notE RS notI); |
127 |
||
1840 | 128 |
qed_goal "rev_notE" HOL.thy "!!P R. [| P; ~P |] ==> R" |
129 |
(fn _ => [REPEAT (ares_tac [notE] 1)]); |
|
130 |
||
1660 | 131 |
|
923 | 132 |
(** Implication **) |
1660 | 133 |
section "-->"; |
923 | 134 |
|
135 |
qed_goal "impE" HOL.thy "[| P-->Q; P; Q ==> R |] ==> R" |
|
136 |
(fn prems=> [ (REPEAT (resolve_tac (prems@[mp]) 1)) ]); |
|
137 |
||
138 |
(* Reduces Q to P-->Q, allowing substitution in P. *) |
|
139 |
qed_goal "rev_mp" HOL.thy "[| P; P --> Q |] ==> Q" |
|
140 |
(fn prems=> [ (REPEAT (resolve_tac (prems@[mp]) 1)) ]); |
|
141 |
||
142 |
qed_goal "contrapos" HOL.thy "[| ~Q; P==>Q |] ==> ~P" |
|
143 |
(fn [major,minor]=> |
|
144 |
[ (rtac (major RS notE RS notI) 1), |
|
145 |
(etac minor 1) ]); |
|
146 |
||
1334 | 147 |
qed_goal "rev_contrapos" HOL.thy "[| P==>Q; ~Q |] ==> ~P" |
148 |
(fn [major,minor]=> |
|
149 |
[ (rtac (minor RS contrapos) 1), (etac major 1) ]); |
|
150 |
||
923 | 151 |
(* ~(?t = ?s) ==> ~(?s = ?t) *) |
1334 | 152 |
bind_thm("not_sym", sym COMP rev_contrapos); |
923 | 153 |
|
154 |
||
155 |
(** Existential quantifier **) |
|
1660 | 156 |
section "?"; |
923 | 157 |
|
158 |
qed_goalw "exI" HOL.thy [Ex_def] "P(x) ==> ? x::'a.P(x)" |
|
159 |
(fn prems => [rtac selectI 1, resolve_tac prems 1]); |
|
160 |
||
161 |
qed_goalw "exE" HOL.thy [Ex_def] |
|
162 |
"[| ? x::'a.P(x); !!x. P(x) ==> Q |] ==> Q" |
|
163 |
(fn prems => [REPEAT(resolve_tac prems 1)]); |
|
164 |
||
165 |
||
166 |
(** Conjunction **) |
|
1660 | 167 |
section "&"; |
923 | 168 |
|
169 |
qed_goalw "conjI" HOL.thy [and_def] "[| P; Q |] ==> P&Q" |
|
170 |
(fn prems => |
|
171 |
[REPEAT (resolve_tac (prems@[allI,impI]) 1 ORELSE etac (mp RS mp) 1)]); |
|
172 |
||
173 |
qed_goalw "conjunct1" HOL.thy [and_def] "[| P & Q |] ==> P" |
|
174 |
(fn prems => |
|
175 |
[resolve_tac (prems RL [spec] RL [mp]) 1, REPEAT(ares_tac [impI] 1)]); |
|
176 |
||
177 |
qed_goalw "conjunct2" HOL.thy [and_def] "[| P & Q |] ==> Q" |
|
178 |
(fn prems => |
|
179 |
[resolve_tac (prems RL [spec] RL [mp]) 1, REPEAT(ares_tac [impI] 1)]); |
|
180 |
||
181 |
qed_goal "conjE" HOL.thy "[| P&Q; [| P; Q |] ==> R |] ==> R" |
|
182 |
(fn prems => |
|
1465 | 183 |
[cut_facts_tac prems 1, resolve_tac prems 1, |
184 |
etac conjunct1 1, etac conjunct2 1]); |
|
923 | 185 |
|
1660 | 186 |
|
923 | 187 |
(** Disjunction *) |
1660 | 188 |
section "|"; |
923 | 189 |
|
190 |
qed_goalw "disjI1" HOL.thy [or_def] "P ==> P|Q" |
|
191 |
(fn [prem] => [REPEAT(ares_tac [allI,impI, prem RSN (2,mp)] 1)]); |
|
192 |
||
193 |
qed_goalw "disjI2" HOL.thy [or_def] "Q ==> P|Q" |
|
194 |
(fn [prem] => [REPEAT(ares_tac [allI,impI, prem RSN (2,mp)] 1)]); |
|
195 |
||
196 |
qed_goalw "disjE" HOL.thy [or_def] "[| P | Q; P ==> R; Q ==> R |] ==> R" |
|
197 |
(fn [a1,a2,a3] => |
|
1465 | 198 |
[rtac (mp RS mp) 1, rtac spec 1, rtac a1 1, |
199 |
rtac (a2 RS impI) 1, assume_tac 1, rtac (a3 RS impI) 1, assume_tac 1]); |
|
923 | 200 |
|
1660 | 201 |
|
923 | 202 |
(** CCONTR -- classical logic **) |
1660 | 203 |
section "classical logic"; |
923 | 204 |
|
205 |
qed_goalw "classical" HOL.thy [not_def] "(~P ==> P) ==> P" |
|
206 |
(fn [prem] => |
|
207 |
[rtac (True_or_False RS (disjE RS eqTrueE)) 1, assume_tac 1, |
|
208 |
rtac (impI RS prem RS eqTrueI) 1, |
|
209 |
etac subst 1, assume_tac 1]); |
|
210 |
||
211 |
val ccontr = FalseE RS classical; |
|
212 |
||
213 |
(*Double negation law*) |
|
214 |
qed_goal "notnotD" HOL.thy "~~P ==> P" |
|
215 |
(fn [major]=> |
|
216 |
[ (rtac classical 1), (eresolve_tac [major RS notE] 1) ]); |
|
217 |
||
1660 | 218 |
qed_goal "contrapos2" HOL.thy "[| Q; ~ P ==> ~ Q |] ==> P" (fn [p1,p2] => [ |
2031 | 219 |
rtac classical 1, |
220 |
dtac p2 1, |
|
221 |
etac notE 1, |
|
222 |
rtac p1 1]); |
|
1660 | 223 |
|
224 |
qed_goal "swap2" HOL.thy "[| P; Q ==> ~ P |] ==> ~ Q" (fn [p1,p2] => [ |
|
2031 | 225 |
rtac notI 1, |
226 |
dtac p2 1, |
|
227 |
etac notE 1, |
|
228 |
rtac p1 1]); |
|
923 | 229 |
|
230 |
(** Unique existence **) |
|
1660 | 231 |
section "?!"; |
923 | 232 |
|
233 |
qed_goalw "ex1I" HOL.thy [Ex1_def] |
|
2031 | 234 |
"[| P(a); !!x. P(x) ==> x=a |] ==> ?! x. P(x)" |
923 | 235 |
(fn prems => |
236 |
[REPEAT (ares_tac (prems@[exI,conjI,allI,impI]) 1)]); |
|
237 |
||
238 |
qed_goalw "ex1E" HOL.thy [Ex1_def] |
|
239 |
"[| ?! x.P(x); !!x. [| P(x); ! y. P(y) --> y=x |] ==> R |] ==> R" |
|
240 |
(fn major::prems => |
|
241 |
[rtac (major RS exE) 1, REPEAT (etac conjE 1 ORELSE ares_tac prems 1)]); |
|
242 |
||
243 |
||
244 |
(** Select: Hilbert's Epsilon-operator **) |
|
1660 | 245 |
section "@"; |
923 | 246 |
|
247 |
(*Easier to apply than selectI: conclusion has only one occurrence of P*) |
|
248 |
qed_goal "selectI2" HOL.thy |
|
249 |
"[| P(a); !!x. P(x) ==> Q(x) |] ==> Q(@x.P(x))" |
|
250 |
(fn prems => [ resolve_tac prems 1, |
|
1465 | 251 |
rtac selectI 1, |
252 |
resolve_tac prems 1 ]); |
|
923 | 253 |
|
254 |
qed_goal "select_equality" HOL.thy |
|
255 |
"[| P(a); !!x. P(x) ==> x=a |] ==> (@x.P(x)) = a" |
|
256 |
(fn prems => [ rtac selectI2 1, |
|
1465 | 257 |
REPEAT (ares_tac prems 1) ]); |
923 | 258 |
|
1660 | 259 |
qed_goal "select_eq_Ex" HOL.thy "P (@ x. P x) = (? x. P x)" (fn prems => [ |
260 |
rtac iffI 1, |
|
261 |
etac exI 1, |
|
262 |
etac exE 1, |
|
263 |
etac selectI 1]); |
|
264 |
||
923 | 265 |
|
266 |
(** Classical intro rules for disjunction and existential quantifiers *) |
|
1660 | 267 |
section "classical intro rules"; |
923 | 268 |
|
269 |
qed_goal "disjCI" HOL.thy "(~Q ==> P) ==> P|Q" |
|
270 |
(fn prems=> |
|
271 |
[ (rtac classical 1), |
|
272 |
(REPEAT (ares_tac (prems@[disjI1,notI]) 1)), |
|
273 |
(REPEAT (ares_tac (prems@[disjI2,notE]) 1)) ]); |
|
274 |
||
275 |
qed_goal "excluded_middle" HOL.thy "~P | P" |
|
276 |
(fn _ => [ (REPEAT (ares_tac [disjCI] 1)) ]); |
|
277 |
||
278 |
(*For disjunctive case analysis*) |
|
279 |
fun excluded_middle_tac sP = |
|
280 |
res_inst_tac [("Q",sP)] (excluded_middle RS disjE); |
|
281 |
||
282 |
(*Classical implies (-->) elimination. *) |
|
283 |
qed_goal "impCE" HOL.thy "[| P-->Q; ~P ==> R; Q ==> R |] ==> R" |
|
284 |
(fn major::prems=> |
|
285 |
[ rtac (excluded_middle RS disjE) 1, |
|
286 |
REPEAT (DEPTH_SOLVE_1 (ares_tac (prems @ [major RS mp]) 1))]); |
|
287 |
||
288 |
(*Classical <-> elimination. *) |
|
289 |
qed_goal "iffCE" HOL.thy |
|
290 |
"[| P=Q; [| P; Q |] ==> R; [| ~P; ~Q |] ==> R |] ==> R" |
|
291 |
(fn major::prems => |
|
292 |
[ (rtac (major RS iffE) 1), |
|
293 |
(REPEAT (DEPTH_SOLVE_1 |
|
1465 | 294 |
(eresolve_tac ([asm_rl,impCE,notE]@prems) 1))) ]); |
923 | 295 |
|
296 |
qed_goal "exCI" HOL.thy "(! x. ~P(x) ==> P(a)) ==> ? x.P(x)" |
|
297 |
(fn prems=> |
|
298 |
[ (rtac ccontr 1), |
|
299 |
(REPEAT (ares_tac (prems@[exI,allI,notI,notE]) 1)) ]); |
|
300 |
||
301 |
||
302 |
(* case distinction *) |
|
303 |
||
304 |
qed_goal "case_split_thm" HOL.thy "[| P ==> Q; ~P ==> Q |] ==> Q" |
|
305 |
(fn [p1,p2] => [cut_facts_tac [excluded_middle] 1, etac disjE 1, |
|
306 |
etac p2 1, etac p1 1]); |
|
307 |
||
308 |
fun case_tac a = res_inst_tac [("P",a)] case_split_thm; |
|
309 |
||
1660 | 310 |
|
923 | 311 |
(** Standard abbreviations **) |
312 |
||
1672
2c109cd2fdd0
repaired critical proofs depending on the order inside non-confluent SimpSets,
oheimb
parents:
1668
diff
changeset
|
313 |
fun stac th = CHANGED o rtac (th RS ssubst); |
923 | 314 |
fun strip_tac i = REPEAT(resolve_tac [impI,allI] i); |
1338 | 315 |
|
1485
240cc98b94a7
Added qed_spec_mp to avoid renaming of bound vars in 'th RS spec'
nipkow
parents:
1465
diff
changeset
|
316 |
(** strip proved goal while preserving !-bound var names **) |
240cc98b94a7
Added qed_spec_mp to avoid renaming of bound vars in 'th RS spec'
nipkow
parents:
1465
diff
changeset
|
317 |
|
240cc98b94a7
Added qed_spec_mp to avoid renaming of bound vars in 'th RS spec'
nipkow
parents:
1465
diff
changeset
|
318 |
local |
240cc98b94a7
Added qed_spec_mp to avoid renaming of bound vars in 'th RS spec'
nipkow
parents:
1465
diff
changeset
|
319 |
|
1515 | 320 |
(* Use XXX to avoid forall_intr failing because of duplicate variable name *) |
1485
240cc98b94a7
Added qed_spec_mp to avoid renaming of bound vars in 'th RS spec'
nipkow
parents:
1465
diff
changeset
|
321 |
val myspec = read_instantiate [("P","?XXX")] spec; |
240cc98b94a7
Added qed_spec_mp to avoid renaming of bound vars in 'th RS spec'
nipkow
parents:
1465
diff
changeset
|
322 |
val _ $ (_ $ (vx as Var(_,vxT))) = concl_of myspec; |
240cc98b94a7
Added qed_spec_mp to avoid renaming of bound vars in 'th RS spec'
nipkow
parents:
1465
diff
changeset
|
323 |
val cvx = cterm_of (#sign(rep_thm myspec)) vx; |
240cc98b94a7
Added qed_spec_mp to avoid renaming of bound vars in 'th RS spec'
nipkow
parents:
1465
diff
changeset
|
324 |
val aspec = forall_intr cvx myspec; |
240cc98b94a7
Added qed_spec_mp to avoid renaming of bound vars in 'th RS spec'
nipkow
parents:
1465
diff
changeset
|
325 |
|
240cc98b94a7
Added qed_spec_mp to avoid renaming of bound vars in 'th RS spec'
nipkow
parents:
1465
diff
changeset
|
326 |
in |
240cc98b94a7
Added qed_spec_mp to avoid renaming of bound vars in 'th RS spec'
nipkow
parents:
1465
diff
changeset
|
327 |
|
1515 | 328 |
fun RSspec th = |
329 |
(case concl_of th of |
|
330 |
_ $ (Const("All",_) $ Abs(a,_,_)) => |
|
331 |
let val ca = cterm_of (#sign(rep_thm th)) (Var((a,0),vxT)) |
|
332 |
in th RS forall_elim ca aspec end |
|
333 |
| _ => raise THM("RSspec",0,[th])); |
|
334 |
||
335 |
fun RSmp th = |
|
336 |
(case concl_of th of |
|
337 |
_ $ (Const("op -->",_)$_$_) => th RS mp |
|
338 |
| _ => raise THM("RSmp",0,[th])); |
|
339 |
||
340 |
fun normalize_thm funs = |
|
341 |
let fun trans [] th = th |
|
342 |
| trans (f::fs) th = (trans funs (f th)) handle THM _ => trans fs th |
|
343 |
in trans funs end; |
|
344 |
||
345 |
fun qed_spec_mp name = |
|
346 |
let val thm = normalize_thm [RSspec,RSmp] (result()) |
|
347 |
in bind_thm(name, thm) end; |
|
1485
240cc98b94a7
Added qed_spec_mp to avoid renaming of bound vars in 'th RS spec'
nipkow
parents:
1465
diff
changeset
|
348 |
|
2442 | 349 |
fun qed_goal_spec_mp name thy s p = |
350 |
bind_thm (name, normalize_thm [RSspec,RSmp] (prove_goal thy s p)); |
|
351 |
||
352 |
fun qed_goalw_spec_mp name thy defs s p = |
|
353 |
bind_thm (name, normalize_thm [RSspec,RSmp] (prove_goalw thy defs s p)); |
|
354 |
||
1485
240cc98b94a7
Added qed_spec_mp to avoid renaming of bound vars in 'th RS spec'
nipkow
parents:
1465
diff
changeset
|
355 |
end; |
1338 | 356 |
|
1660 | 357 |
|
1980 | 358 |
(*Thus, assignments to the references claset and simpset are recorded |
359 |
with theory "HOL". These files cannot be loaded directly in ROOT.ML.*) |
|
360 |
use "hologic.ML"; |
|
361 |
use "cladata.ML"; |
|
362 |
use "simpdata.ML"; |