| author | wenzelm | 
| Tue, 28 Aug 2012 20:16:11 +0200 | |
| changeset 48989 | 06c0e350782c | 
| parent 45605 | a89b4bc311a5 | 
| child 55017 | 2df6ad1dbd66 | 
| permissions | -rw-r--r-- | 
| 11376 | 1 | (* Title: HOL/NanoJava/TypeRel.thy | 
| 41589 | 2 | Author: David von Oheimb, Technische Universitaet Muenchen | 
| 11376 | 3 | *) | 
| 4 | ||
| 5 | header "Type relations" | |
| 6 | ||
| 44146 | 7 | theory TypeRel imports Decl "~~/src/HOL/Library/Wfrec" begin | 
| 11376 | 8 | |
| 44375 | 9 | text{* Direct subclass relation *}
 | 
| 10 | ||
| 11 | definition subcls1 :: "(cname \<times> cname) set" | |
| 12 | where | |
| 13 |   "subcls1 \<equiv> {(C,D). C\<noteq>Object \<and> (\<exists>c. class C = Some c \<and> super c=D)}"
 | |
| 11376 | 14 | |
| 35102 | 15 | abbreviation | 
| 16 |   subcls1_syntax :: "[cname, cname] => bool"  ("_ <=C1 _" [71,71] 70)
 | |
| 17 | where "C <=C1 D == (C,D) \<in> subcls1" | |
| 18 | abbreviation | |
| 19 |   subcls_syntax  :: "[cname, cname] => bool" ("_ <=C _"  [71,71] 70)
 | |
| 20 | where "C <=C D == (C,D) \<in> subcls1^*" | |
| 11376 | 21 | |
| 35102 | 22 | notation (xsymbols) | 
| 23 |   subcls1_syntax  ("_ \<prec>C1 _"  [71,71] 70) and
 | |
| 24 |   subcls_syntax  ("_ \<preceq>C _"   [71,71] 70)
 | |
| 11376 | 25 | |
| 26 | ||
| 11565 | 27 | subsection "Declarations and properties not used in the meta theory" | 
| 11376 | 28 | |
| 11565 | 29 | text{* Widening, viz. method invocation conversion *}
 | 
| 23755 | 30 | inductive | 
| 31 |   widen :: "ty => ty => bool"  ("_ \<preceq> _" [71,71] 70)
 | |
| 32 | where | |
| 33 | refl [intro!, simp]: "T \<preceq> T" | |
| 34 | | subcls: "C\<preceq>C D \<Longrightarrow> Class C \<preceq> Class D" | |
| 35 | | null [intro!]: "NT \<preceq> R" | |
| 11376 | 36 | |
| 37 | lemma subcls1D: | |
| 38 | "C\<prec>C1D \<Longrightarrow> C \<noteq> Object \<and> (\<exists>c. class C = Some c \<and> super c=D)" | |
| 39 | apply (unfold subcls1_def) | |
| 40 | apply auto | |
| 41 | done | |
| 42 | ||
| 43 | lemma subcls1I: "\<lbrakk>class C = Some m; super m = D; C \<noteq> Object\<rbrakk> \<Longrightarrow> C\<prec>C1D" | |
| 44 | apply (unfold subcls1_def) | |
| 45 | apply auto | |
| 46 | done | |
| 47 | ||
| 48 | lemma subcls1_def2: | |
| 14952 
47455995693d
removal of x-symbol syntax <Sigma> for dependent products
 paulson parents: 
14171diff
changeset | 49 | "subcls1 = | 
| 
47455995693d
removal of x-symbol syntax <Sigma> for dependent products
 paulson parents: 
14171diff
changeset | 50 |     (SIGMA C: {C. is_class C} . {D. C\<noteq>Object \<and> super (the (class C)) = D})"
 | 
| 11376 | 51 | apply (unfold subcls1_def is_class_def) | 
| 31166 
a90fe83f58ea
"{x. P x & x=t & Q x}" is now rewritten to "if P t & Q t then {t} else {}"
 nipkow parents: 
28524diff
changeset | 52 | apply (auto split:split_if_asm) | 
| 11376 | 53 | done | 
| 54 | ||
| 55 | lemma finite_subcls1: "finite subcls1" | |
| 56 | apply(subst subcls1_def2) | |
| 57 | apply(rule finite_SigmaI [OF finite_is_class]) | |
| 58 | apply(rule_tac B = "{super (the (class C))}" in finite_subset)
 | |
| 59 | apply auto | |
| 60 | done | |
| 61 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35102diff
changeset | 62 | definition ws_prog :: "bool" where | 
| 11376 | 63 | "ws_prog \<equiv> \<forall>(C,c)\<in>set Prog. C\<noteq>Object \<longrightarrow> | 
| 64 | is_class (super c) \<and> (super c,C)\<notin>subcls1^+" | |
| 65 | ||
| 66 | lemma ws_progD: "\<lbrakk>class C = Some c; C\<noteq>Object; ws_prog\<rbrakk> \<Longrightarrow> | |
| 67 | is_class (super c) \<and> (super c,C)\<notin>subcls1^+" | |
| 68 | apply (unfold ws_prog_def class_def) | |
| 69 | apply (drule_tac map_of_SomeD) | |
| 70 | apply auto | |
| 71 | done | |
| 72 | ||
| 73 | lemma subcls1_irrefl_lemma1: "ws_prog \<Longrightarrow> subcls1^-1 \<inter> subcls1^+ = {}"
 | |
| 74 | by (fast dest: subcls1D ws_progD) | |
| 75 | ||
| 13867 | 76 | (* irrefl_tranclI in Transitive_Closure.thy is more general *) | 
| 11376 | 77 | lemma irrefl_tranclI': "r^-1 Int r^+ = {} ==> !x. (x, x) ~: r^+"
 | 
| 13867 | 78 | by(blast elim: tranclE dest: trancl_into_rtrancl) | 
| 79 | ||
| 11376 | 80 | |
| 81 | lemmas subcls1_irrefl_lemma2 = subcls1_irrefl_lemma1 [THEN irrefl_tranclI'] | |
| 82 | ||
| 83 | lemma subcls1_irrefl: "\<lbrakk>(x, y) \<in> subcls1; ws_prog\<rbrakk> \<Longrightarrow> x \<noteq> y" | |
| 84 | apply (rule irrefl_trancl_rD) | |
| 85 | apply (rule subcls1_irrefl_lemma2) | |
| 86 | apply auto | |
| 87 | done | |
| 88 | ||
| 45605 | 89 | lemmas subcls1_acyclic = subcls1_irrefl_lemma2 [THEN acyclicI] | 
| 11376 | 90 | |
| 91 | lemma wf_subcls1: "ws_prog \<Longrightarrow> wf (subcls1\<inverse>)" | |
| 92 | by (auto intro: finite_acyclic_wf_converse finite_subcls1 subcls1_acyclic) | |
| 93 | ||
| 44146 | 94 | definition class_rec ::"cname \<Rightarrow> (class \<Rightarrow> ('a \<times> 'b) list) \<Rightarrow> ('a \<rightharpoonup> 'b)"
 | 
| 95 | where | |
| 96 | "class_rec \<equiv> wfrec (subcls1\<inverse>) (\<lambda>rec C f. | |
| 97 | case class C of None \<Rightarrow> undefined | |
| 98 | | Some m \<Rightarrow> (if C = Object then empty else rec (super m) f) ++ map_of (f m))" | |
| 11376 | 99 | |
| 100 | lemma class_rec: "\<lbrakk>class C = Some m; ws_prog\<rbrakk> \<Longrightarrow> | |
| 101 | class_rec C f = (if C = Object then empty else class_rec (super m) f) ++ | |
| 44146 | 102 | map_of (f m)" | 
| 11376 | 103 | apply (drule wf_subcls1) | 
| 44146 | 104 | apply (subst def_wfrec[OF class_rec_def], auto) | 
| 105 | apply (subst cut_apply, auto intro: subcls1I) | |
| 11376 | 106 | done | 
| 107 | ||
| 11565 | 108 | --{* Methods of a class, with inheritance and hiding *}
 | 
| 44375 | 109 | definition method :: "cname => (mname \<rightharpoonup> methd)" where | 
| 110 | "method C \<equiv> class_rec C methods" | |
| 11376 | 111 | |
| 112 | lemma method_rec: "\<lbrakk>class C = Some m; ws_prog\<rbrakk> \<Longrightarrow> | |
| 113 | method C = (if C=Object then empty else method (super m)) ++ map_of (methods m)" | |
| 114 | apply (unfold method_def) | |
| 115 | apply (erule (1) class_rec [THEN trans]); | |
| 116 | apply simp | |
| 117 | done | |
| 118 | ||
| 119 | ||
| 11565 | 120 | --{* Fields of a class, with inheritance and hiding *}
 | 
| 44375 | 121 | definition field :: "cname => (fname \<rightharpoonup> ty)" where | 
| 122 | "field C \<equiv> class_rec C flds" | |
| 11376 | 123 | |
| 12264 
9c356e2da72f
renamed "fields" to "flds" (avoid clash with new "fields" operation);
 wenzelm parents: 
11626diff
changeset | 124 | lemma flds_rec: "\<lbrakk>class C = Some m; ws_prog\<rbrakk> \<Longrightarrow> | 
| 
9c356e2da72f
renamed "fields" to "flds" (avoid clash with new "fields" operation);
 wenzelm parents: 
11626diff
changeset | 125 | field C = (if C=Object then empty else field (super m)) ++ map_of (flds m)" | 
| 11376 | 126 | apply (unfold field_def) | 
| 127 | apply (erule (1) class_rec [THEN trans]); | |
| 128 | apply simp | |
| 129 | done | |
| 130 | ||
| 131 | end |