| 0 |      1 | (*  Title: 	FOLP/ifol.ML
 | 
|  |      2 |     ID:         $Id$
 | 
|  |      3 |     Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
 | 
|  |      4 |     Copyright   1992  University of Cambridge
 | 
|  |      5 | 
 | 
|  |      6 | Tactics and lemmas for ifol.thy (intuitionistic first-order logic)
 | 
|  |      7 | *)
 | 
|  |      8 | 
 | 
|  |      9 | open IFOLP;
 | 
|  |     10 | 
 | 
|  |     11 | signature IFOLP_LEMMAS = 
 | 
|  |     12 |   sig
 | 
|  |     13 |   val allE: thm
 | 
|  |     14 |   val all_cong: thm
 | 
|  |     15 |   val all_dupE: thm
 | 
|  |     16 |   val all_impE: thm
 | 
|  |     17 |   val box_equals: thm
 | 
|  |     18 |   val conjE: thm
 | 
|  |     19 |   val conj_cong: thm
 | 
|  |     20 |   val conj_impE: thm
 | 
|  |     21 |   val contrapos: thm
 | 
|  |     22 |   val disj_cong: thm
 | 
|  |     23 |   val disj_impE: thm
 | 
|  |     24 |   val eq_cong: thm
 | 
|  |     25 |   val ex1I: thm
 | 
|  |     26 |   val ex1E: thm
 | 
|  |     27 |   val ex1_equalsE: thm
 | 
|  |     28 | (*  val ex1_cong: thm****)
 | 
|  |     29 |   val ex_cong: thm
 | 
|  |     30 |   val ex_impE: thm
 | 
|  |     31 |   val iffD1: thm
 | 
|  |     32 |   val iffD2: thm
 | 
|  |     33 |   val iffE: thm
 | 
|  |     34 |   val iffI: thm
 | 
|  |     35 |   val iff_cong: thm
 | 
|  |     36 |   val iff_impE: thm
 | 
|  |     37 |   val iff_refl: thm
 | 
|  |     38 |   val iff_sym: thm
 | 
|  |     39 |   val iff_trans: thm
 | 
|  |     40 |   val impE: thm
 | 
|  |     41 |   val imp_cong: thm
 | 
|  |     42 |   val imp_impE: thm
 | 
|  |     43 |   val mp_tac: int -> tactic
 | 
|  |     44 |   val notE: thm
 | 
|  |     45 |   val notI: thm
 | 
|  |     46 |   val not_cong: thm
 | 
|  |     47 |   val not_impE: thm
 | 
|  |     48 |   val not_sym: thm
 | 
|  |     49 |   val not_to_imp: thm
 | 
|  |     50 |   val pred1_cong: thm
 | 
|  |     51 |   val pred2_cong: thm
 | 
|  |     52 |   val pred3_cong: thm
 | 
|  |     53 |   val pred_congs: thm list
 | 
|  |     54 |   val refl: thm
 | 
|  |     55 |   val rev_mp: thm
 | 
|  |     56 |   val simp_equals: thm
 | 
|  |     57 |   val subst: thm
 | 
|  |     58 |   val ssubst: thm
 | 
|  |     59 |   val subst_context: thm
 | 
|  |     60 |   val subst_context2: thm
 | 
|  |     61 |   val subst_context3: thm
 | 
|  |     62 |   val sym: thm
 | 
|  |     63 |   val trans: thm
 | 
|  |     64 |   val TrueI: thm
 | 
|  |     65 |   val uniq_assume_tac: int -> tactic
 | 
|  |     66 |   val uniq_mp_tac: int -> tactic
 | 
|  |     67 |   end;
 | 
|  |     68 | 
 | 
|  |     69 | 
 | 
|  |     70 | structure IFOLP_Lemmas : IFOLP_LEMMAS =
 | 
|  |     71 | struct
 | 
|  |     72 | 
 | 
|  |     73 | val TrueI = TrueI;
 | 
|  |     74 | 
 | 
|  |     75 | (*** Sequent-style elimination rules for & --> and ALL ***)
 | 
|  |     76 | 
 | 
|  |     77 | val conjE = prove_goal IFOLP.thy 
 | 
|  |     78 |     "[| p:P&Q; !!x y.[| x:P; y:Q |] ==> f(x,y):R |] ==> ?a:R"
 | 
|  |     79 |  (fn prems=>
 | 
|  |     80 |   [ (REPEAT (resolve_tac prems 1
 | 
|  |     81 |       ORELSE (resolve_tac [conjunct1, conjunct2] 1 THEN
 | 
|  |     82 |               resolve_tac prems 1))) ]);
 | 
|  |     83 | 
 | 
|  |     84 | val impE = prove_goal IFOLP.thy 
 | 
|  |     85 |     "[| p:P-->Q;  q:P;  !!x.x:Q ==> r(x):R |] ==> ?p:R"
 | 
|  |     86 |  (fn prems=> [ (REPEAT (resolve_tac (prems@[mp]) 1)) ]);
 | 
|  |     87 | 
 | 
|  |     88 | val allE = prove_goal IFOLP.thy 
 | 
|  |     89 |     "[| p:ALL x.P(x); !!y.y:P(x) ==> q(y):R |] ==> ?p:R"
 | 
|  |     90 |  (fn prems=> [ (REPEAT (resolve_tac (prems@[spec]) 1)) ]);
 | 
|  |     91 | 
 | 
|  |     92 | (*Duplicates the quantifier; for use with eresolve_tac*)
 | 
|  |     93 | val all_dupE = prove_goal IFOLP.thy 
 | 
|  |     94 |     "[| p:ALL x.P(x);  !!y z.[| y:P(x); z:ALL x.P(x) |] ==> q(y,z):R \
 | 
|  |     95 | \    |] ==> ?p:R"
 | 
|  |     96 |  (fn prems=> [ (REPEAT (resolve_tac (prems@[spec]) 1)) ]);
 | 
|  |     97 | 
 | 
|  |     98 | 
 | 
|  |     99 | (*** Negation rules, which translate between ~P and P-->False ***)
 | 
|  |    100 | 
 | 
|  |    101 | val notI = prove_goalw IFOLP.thy [not_def]  "(!!x.x:P ==> q(x):False) ==> ?p:~P"
 | 
|  |    102 |  (fn prems=> [ (REPEAT (ares_tac (prems@[impI]) 1)) ]);
 | 
|  |    103 | 
 | 
|  |    104 | val notE = prove_goalw IFOLP.thy [not_def] "[| p:~P;  q:P |] ==> ?p:R"
 | 
|  |    105 |  (fn prems=>
 | 
|  |    106 |   [ (resolve_tac [mp RS FalseE] 1),
 | 
|  |    107 |     (REPEAT (resolve_tac prems 1)) ]);
 | 
|  |    108 | 
 | 
|  |    109 | (*This is useful with the special implication rules for each kind of P. *)
 | 
|  |    110 | val not_to_imp = prove_goal IFOLP.thy 
 | 
|  |    111 |     "[| p:~P;  !!x.x:(P-->False) ==> q(x):Q |] ==> ?p:Q"
 | 
|  |    112 |  (fn prems=> [ (REPEAT (ares_tac (prems@[impI,notE]) 1)) ]);
 | 
|  |    113 | 
 | 
|  |    114 | 
 | 
|  |    115 | (* For substitution int an assumption P, reduce Q to P-->Q, substitute into
 | 
|  |    116 |    this implication, then apply impI to move P back into the assumptions.
 | 
|  |    117 |    To specify P use something like
 | 
|  |    118 |       eres_inst_tac [ ("P","ALL y. ?S(x,y)") ] rev_mp 1   *)
 | 
|  |    119 | val rev_mp = prove_goal IFOLP.thy "[| p:P;  q:P --> Q |] ==> ?p:Q"
 | 
|  |    120 |  (fn prems=> [ (REPEAT (resolve_tac (prems@[mp]) 1)) ]);
 | 
|  |    121 | 
 | 
|  |    122 | 
 | 
|  |    123 | (*Contrapositive of an inference rule*)
 | 
|  |    124 | val contrapos = prove_goal IFOLP.thy "[| p:~Q;  !!y.y:P==>q(y):Q |] ==> ?a:~P"
 | 
|  |    125 |  (fn [major,minor]=> 
 | 
|  |    126 |   [ (rtac (major RS notE RS notI) 1), 
 | 
|  |    127 |     (etac minor 1) ]);
 | 
|  |    128 | 
 | 
|  |    129 | (** Unique assumption tactic.
 | 
|  |    130 |     Ignores proof objects.
 | 
|  |    131 |     Fails unless one assumption is equal and exactly one is unifiable 
 | 
|  |    132 | **)
 | 
|  |    133 | 
 | 
|  |    134 | local
 | 
|  |    135 |     fun discard_proof (Const("Proof",_) $ P $ _) = P;
 | 
|  |    136 | in
 | 
|  |    137 | val uniq_assume_tac =
 | 
|  |    138 |   SUBGOAL
 | 
|  |    139 |     (fn (prem,i) =>
 | 
|  |    140 |       let val hyps = map discard_proof (Logic.strip_assums_hyp prem)
 | 
|  |    141 |           and concl = discard_proof (Logic.strip_assums_concl prem)
 | 
|  |    142 |       in  
 | 
|  |    143 | 	  if exists (fn hyp => hyp aconv concl) hyps
 | 
|  |    144 | 	  then case distinct (filter (fn hyp=> could_unify(hyp,concl)) hyps) of
 | 
|  |    145 | 	           [_] => assume_tac i
 | 
|  |    146 |                  |  _  => no_tac
 | 
|  |    147 |           else no_tac
 | 
|  |    148 |       end);
 | 
|  |    149 | end;
 | 
|  |    150 | 
 | 
|  |    151 | 
 | 
|  |    152 | (*** Modus Ponens Tactics ***)
 | 
|  |    153 | 
 | 
|  |    154 | (*Finds P-->Q and P in the assumptions, replaces implication by Q *)
 | 
|  |    155 | fun mp_tac i = eresolve_tac [notE,make_elim mp] i  THEN  assume_tac i;
 | 
|  |    156 | 
 | 
|  |    157 | (*Like mp_tac but instantiates no variables*)
 | 
|  |    158 | fun uniq_mp_tac i = eresolve_tac [notE,impE] i  THEN  uniq_assume_tac i;
 | 
|  |    159 | 
 | 
|  |    160 | 
 | 
|  |    161 | (*** If-and-only-if ***)
 | 
|  |    162 | 
 | 
|  |    163 | val iffI = prove_goalw IFOLP.thy [iff_def]
 | 
|  |    164 |    "[| !!x.x:P ==> q(x):Q;  !!x.x:Q ==> r(x):P |] ==> ?p:P<->Q"
 | 
|  |    165 |  (fn prems=> [ (REPEAT (ares_tac (prems@[conjI, impI]) 1)) ]);
 | 
|  |    166 | 
 | 
|  |    167 | 
 | 
|  |    168 | (*Observe use of rewrite_rule to unfold "<->" in meta-assumptions (prems) *)
 | 
|  |    169 | val iffE = prove_goalw IFOLP.thy [iff_def]
 | 
|  |    170 |     "[| p:P <-> Q;  !!x y.[| x:P-->Q; y:Q-->P |] ==> q(x,y):R |] ==> ?p:R"
 | 
|  |    171 |  (fn prems => [ (resolve_tac [conjE] 1), (REPEAT (ares_tac prems 1)) ]);
 | 
|  |    172 | 
 | 
|  |    173 | (* Destruct rules for <-> similar to Modus Ponens *)
 | 
|  |    174 | 
 | 
|  |    175 | val iffD1 = prove_goalw IFOLP.thy [iff_def] "[| p:P <-> Q;  q:P |] ==> ?p:Q"
 | 
|  |    176 |  (fn prems => [ (rtac (conjunct1 RS mp) 1), (REPEAT (ares_tac prems 1)) ]);
 | 
|  |    177 | 
 | 
|  |    178 | val iffD2 = prove_goalw IFOLP.thy [iff_def] "[| p:P <-> Q;  q:Q |] ==> ?p:P"
 | 
|  |    179 |  (fn prems => [ (rtac (conjunct2 RS mp) 1), (REPEAT (ares_tac prems 1)) ]);
 | 
|  |    180 | 
 | 
|  |    181 | val iff_refl = prove_goal IFOLP.thy "?p:P <-> P"
 | 
|  |    182 |  (fn _ => [ (REPEAT (ares_tac [iffI] 1)) ]);
 | 
|  |    183 | 
 | 
|  |    184 | val iff_sym = prove_goal IFOLP.thy "p:Q <-> P ==> ?p:P <-> Q"
 | 
|  |    185 |  (fn [major] =>
 | 
|  |    186 |   [ (rtac (major RS iffE) 1),
 | 
|  |    187 |     (rtac iffI 1),
 | 
|  |    188 |     (REPEAT (eresolve_tac [asm_rl,mp] 1)) ]);
 | 
|  |    189 | 
 | 
|  |    190 | val iff_trans = prove_goal IFOLP.thy "[| p:P <-> Q; q:Q<-> R |] ==> ?p:P <-> R"
 | 
|  |    191 |  (fn prems =>
 | 
|  |    192 |   [ (cut_facts_tac prems 1),
 | 
|  |    193 |     (rtac iffI 1),
 | 
|  |    194 |     (REPEAT (eresolve_tac [asm_rl,iffE] 1 ORELSE mp_tac 1)) ]);
 | 
|  |    195 | 
 | 
|  |    196 | 
 | 
|  |    197 | (*** Unique existence.  NOTE THAT the following 2 quantifications
 | 
|  |    198 |    EX!x such that [EX!y such that P(x,y)]     (sequential)
 | 
|  |    199 |    EX!x,y such that P(x,y)                    (simultaneous)
 | 
|  |    200 |  do NOT mean the same thing.  The parser treats EX!x y.P(x,y) as sequential.
 | 
|  |    201 | ***)
 | 
|  |    202 | 
 | 
|  |    203 | val ex1I = prove_goalw IFOLP.thy [ex1_def]
 | 
|  |    204 |     "[| p:P(a);  !!x u.u:P(x) ==> f(u) : x=a |] ==> ?p:EX! x. P(x)"
 | 
|  |    205 |  (fn prems => [ (REPEAT (ares_tac (prems@[exI,conjI,allI,impI]) 1)) ]);
 | 
|  |    206 | 
 | 
|  |    207 | val ex1E = prove_goalw IFOLP.thy [ex1_def]
 | 
|  |    208 |     "[| p:EX! x.P(x);  \
 | 
|  |    209 | \       !!x u v. [| u:P(x);  v:ALL y. P(y) --> y=x |] ==> f(x,u,v):R |] ==>\
 | 
|  |    210 | \    ?a : R"
 | 
|  |    211 |  (fn prems =>
 | 
|  |    212 |   [ (cut_facts_tac prems 1),
 | 
|  |    213 |     (REPEAT (eresolve_tac [exE,conjE] 1 ORELSE ares_tac prems 1)) ]);
 | 
|  |    214 | 
 | 
|  |    215 | 
 | 
|  |    216 | (*** <-> congruence rules for simplification ***)
 | 
|  |    217 | 
 | 
|  |    218 | (*Use iffE on a premise.  For conj_cong, imp_cong, all_cong, ex_cong*)
 | 
|  |    219 | fun iff_tac prems i =
 | 
|  |    220 |     resolve_tac (prems RL [iffE]) i THEN
 | 
|  |    221 |     REPEAT1 (eresolve_tac [asm_rl,mp] i);
 | 
|  |    222 | 
 | 
|  |    223 | val conj_cong = prove_goal IFOLP.thy 
 | 
|  |    224 |     "[| p:P <-> P';  !!x.x:P' ==> q(x):Q <-> Q' |] ==> ?p:(P&Q) <-> (P'&Q')"
 | 
|  |    225 |  (fn prems =>
 | 
|  |    226 |   [ (cut_facts_tac prems 1),
 | 
|  |    227 |     (REPEAT  (ares_tac [iffI,conjI] 1
 | 
|  |    228 |       ORELSE  eresolve_tac [iffE,conjE,mp] 1
 | 
|  |    229 |       ORELSE  iff_tac prems 1)) ]);
 | 
|  |    230 | 
 | 
|  |    231 | val disj_cong = prove_goal IFOLP.thy 
 | 
|  |    232 |     "[| p:P <-> P';  q:Q <-> Q' |] ==> ?p:(P|Q) <-> (P'|Q')"
 | 
|  |    233 |  (fn prems =>
 | 
|  |    234 |   [ (cut_facts_tac prems 1),
 | 
|  |    235 |     (REPEAT  (eresolve_tac [iffE,disjE,disjI1,disjI2] 1
 | 
|  |    236 |       ORELSE  ares_tac [iffI] 1
 | 
|  |    237 |       ORELSE  mp_tac 1)) ]);
 | 
|  |    238 | 
 | 
|  |    239 | val imp_cong = prove_goal IFOLP.thy 
 | 
|  |    240 |     "[| p:P <-> P';  !!x.x:P' ==> q(x):Q <-> Q' |] ==> ?p:(P-->Q) <-> (P'-->Q')"
 | 
|  |    241 |  (fn prems =>
 | 
|  |    242 |   [ (cut_facts_tac prems 1),
 | 
|  |    243 |     (REPEAT   (ares_tac [iffI,impI] 1
 | 
|  |    244 |       ORELSE  eresolve_tac [iffE] 1
 | 
|  |    245 |       ORELSE  mp_tac 1 ORELSE iff_tac prems 1)) ]);
 | 
|  |    246 | 
 | 
|  |    247 | val iff_cong = prove_goal IFOLP.thy 
 | 
|  |    248 |     "[| p:P <-> P';  q:Q <-> Q' |] ==> ?p:(P<->Q) <-> (P'<->Q')"
 | 
|  |    249 |  (fn prems =>
 | 
|  |    250 |   [ (cut_facts_tac prems 1),
 | 
|  |    251 |     (REPEAT   (eresolve_tac [iffE] 1
 | 
|  |    252 |       ORELSE  ares_tac [iffI] 1
 | 
|  |    253 |       ORELSE  mp_tac 1)) ]);
 | 
|  |    254 | 
 | 
|  |    255 | val not_cong = prove_goal IFOLP.thy 
 | 
|  |    256 |     "p:P <-> P' ==> ?p:~P <-> ~P'"
 | 
|  |    257 |  (fn prems =>
 | 
|  |    258 |   [ (cut_facts_tac prems 1),
 | 
|  |    259 |     (REPEAT   (ares_tac [iffI,notI] 1
 | 
|  |    260 |       ORELSE  mp_tac 1
 | 
|  |    261 |       ORELSE  eresolve_tac [iffE,notE] 1)) ]);
 | 
|  |    262 | 
 | 
|  |    263 | val all_cong = prove_goal IFOLP.thy 
 | 
|  |    264 |     "(!!x.f(x):P(x) <-> Q(x)) ==> ?p:(ALL x.P(x)) <-> (ALL x.Q(x))"
 | 
|  |    265 |  (fn prems =>
 | 
|  |    266 |   [ (REPEAT   (ares_tac [iffI,allI] 1
 | 
|  |    267 |       ORELSE   mp_tac 1
 | 
|  |    268 |       ORELSE   eresolve_tac [allE] 1 ORELSE iff_tac prems 1)) ]);
 | 
|  |    269 | 
 | 
|  |    270 | val ex_cong = prove_goal IFOLP.thy 
 | 
|  |    271 |     "(!!x.f(x):P(x) <-> Q(x)) ==> ?p:(EX x.P(x)) <-> (EX x.Q(x))"
 | 
|  |    272 |  (fn prems =>
 | 
|  |    273 |   [ (REPEAT   (eresolve_tac [exE] 1 ORELSE ares_tac [iffI,exI] 1
 | 
|  |    274 |       ORELSE   mp_tac 1
 | 
|  |    275 |       ORELSE   iff_tac prems 1)) ]);
 | 
|  |    276 | 
 | 
|  |    277 | (*NOT PROVED
 | 
|  |    278 | val ex1_cong = prove_goal IFOLP.thy 
 | 
|  |    279 |     "(!!x.f(x):P(x) <-> Q(x)) ==> ?p:(EX! x.P(x)) <-> (EX! x.Q(x))"
 | 
|  |    280 |  (fn prems =>
 | 
|  |    281 |   [ (REPEAT   (eresolve_tac [ex1E, spec RS mp] 1 ORELSE ares_tac [iffI,ex1I] 1
 | 
|  |    282 |       ORELSE   mp_tac 1
 | 
|  |    283 |       ORELSE   iff_tac prems 1)) ]);
 | 
|  |    284 | *)
 | 
|  |    285 | 
 | 
|  |    286 | (*** Equality rules ***)
 | 
|  |    287 | 
 | 
|  |    288 | val refl = ieqI;
 | 
|  |    289 | 
 | 
|  |    290 | val subst = prove_goal IFOLP.thy "[| p:a=b;  q:P(a) |] ==> ?p : P(b)"
 | 
|  |    291 |  (fn [prem1,prem2] => [ rtac (prem2 RS rev_mp) 1, (rtac (prem1 RS ieqE) 1), 
 | 
|  |    292 |                         rtac impI 1, atac 1 ]);
 | 
|  |    293 | 
 | 
|  |    294 | val sym = prove_goal IFOLP.thy "q:a=b ==> ?c:b=a"
 | 
|  |    295 |  (fn [major] => [ (rtac (major RS subst) 1), (rtac refl 1) ]);
 | 
|  |    296 | 
 | 
|  |    297 | val trans = prove_goal IFOLP.thy "[| p:a=b;  q:b=c |] ==> ?d:a=c"
 | 
|  |    298 |  (fn [prem1,prem2] => [ (rtac (prem2 RS subst) 1), (rtac prem1 1) ]);
 | 
|  |    299 | 
 | 
|  |    300 | (** ~ b=a ==> ~ a=b **)
 | 
|  |    301 | val not_sym = prove_goal IFOLP.thy "p:~ b=a ==> ?q:~ a=b"
 | 
|  |    302 |  (fn [prem] => [ (rtac (prem RS contrapos) 1), (etac sym 1) ]);
 | 
|  |    303 | 
 | 
|  |    304 | (*calling "standard" reduces maxidx to 0*)
 | 
|  |    305 | val ssubst = standard (sym RS subst);
 | 
|  |    306 | 
 | 
|  |    307 | (*A special case of ex1E that would otherwise need quantifier expansion*)
 | 
|  |    308 | val ex1_equalsE = prove_goal IFOLP.thy
 | 
|  |    309 |     "[| p:EX! x.P(x);  q:P(a);  r:P(b) |] ==> ?d:a=b"
 | 
|  |    310 |  (fn prems =>
 | 
|  |    311 |   [ (cut_facts_tac prems 1),
 | 
|  |    312 |     (etac ex1E 1),
 | 
|  |    313 |     (rtac trans 1),
 | 
|  |    314 |     (rtac sym 2),
 | 
|  |    315 |     (REPEAT (eresolve_tac [asm_rl, spec RS mp] 1)) ]);
 | 
|  |    316 | 
 | 
|  |    317 | (** Polymorphic congruence rules **)
 | 
|  |    318 | 
 | 
|  |    319 | val subst_context = prove_goal IFOLP.thy 
 | 
|  |    320 |    "[| p:a=b |]  ==>  ?d:t(a)=t(b)"
 | 
|  |    321 |  (fn prems=>
 | 
|  |    322 |   [ (resolve_tac (prems RL [ssubst]) 1),
 | 
|  |    323 |     (resolve_tac [refl] 1) ]);
 | 
|  |    324 | 
 | 
|  |    325 | val subst_context2 = prove_goal IFOLP.thy 
 | 
|  |    326 |    "[| p:a=b;  q:c=d |]  ==>  ?p:t(a,c)=t(b,d)"
 | 
|  |    327 |  (fn prems=>
 | 
|  |    328 |   [ (EVERY1 (map rtac ((prems RL [ssubst]) @ [refl]))) ]);
 | 
|  |    329 | 
 | 
|  |    330 | val subst_context3 = prove_goal IFOLP.thy 
 | 
|  |    331 |    "[| p:a=b;  q:c=d;  r:e=f |]  ==>  ?p:t(a,c,e)=t(b,d,f)"
 | 
|  |    332 |  (fn prems=>
 | 
|  |    333 |   [ (EVERY1 (map rtac ((prems RL [ssubst]) @ [refl]))) ]);
 | 
|  |    334 | 
 | 
|  |    335 | (*Useful with eresolve_tac for proving equalties from known equalities.
 | 
|  |    336 | 	a = b
 | 
|  |    337 | 	|   |
 | 
|  |    338 | 	c = d	*)
 | 
|  |    339 | val box_equals = prove_goal IFOLP.thy
 | 
|  |    340 |     "[| p:a=b;  q:a=c;  r:b=d |] ==> ?p:c=d"  
 | 
|  |    341 |  (fn prems=>
 | 
|  |    342 |   [ (resolve_tac [trans] 1),
 | 
|  |    343 |     (resolve_tac [trans] 1),
 | 
|  |    344 |     (resolve_tac [sym] 1),
 | 
|  |    345 |     (REPEAT (resolve_tac prems 1)) ]);
 | 
|  |    346 | 
 | 
|  |    347 | (*Dual of box_equals: for proving equalities backwards*)
 | 
|  |    348 | val simp_equals = prove_goal IFOLP.thy
 | 
|  |    349 |     "[| p:a=c;  q:b=d;  r:c=d |] ==> ?p:a=b"  
 | 
|  |    350 |  (fn prems=>
 | 
|  |    351 |   [ (resolve_tac [trans] 1),
 | 
|  |    352 |     (resolve_tac [trans] 1),
 | 
|  |    353 |     (REPEAT (resolve_tac (prems @ (prems RL [sym])) 1)) ]);
 | 
|  |    354 | 
 | 
|  |    355 | (** Congruence rules for predicate letters **)
 | 
|  |    356 | 
 | 
|  |    357 | val pred1_cong = prove_goal IFOLP.thy
 | 
|  |    358 |     "p:a=a' ==> ?p:P(a) <-> P(a')"
 | 
|  |    359 |  (fn prems =>
 | 
|  |    360 |   [ (cut_facts_tac prems 1),
 | 
|  |    361 |     (rtac iffI 1),
 | 
|  |    362 |     (DEPTH_SOLVE (eresolve_tac [asm_rl, subst, ssubst] 1)) ]);
 | 
|  |    363 | 
 | 
|  |    364 | val pred2_cong = prove_goal IFOLP.thy
 | 
|  |    365 |     "[| p:a=a';  q:b=b' |] ==> ?p:P(a,b) <-> P(a',b')"
 | 
|  |    366 |  (fn prems =>
 | 
|  |    367 |   [ (cut_facts_tac prems 1),
 | 
|  |    368 |     (rtac iffI 1),
 | 
|  |    369 |     (DEPTH_SOLVE (eresolve_tac [asm_rl, subst, ssubst] 1)) ]);
 | 
|  |    370 | 
 | 
|  |    371 | val pred3_cong = prove_goal IFOLP.thy
 | 
|  |    372 |     "[| p:a=a';  q:b=b';  r:c=c' |] ==> ?p:P(a,b,c) <-> P(a',b',c')"
 | 
|  |    373 |  (fn prems =>
 | 
|  |    374 |   [ (cut_facts_tac prems 1),
 | 
|  |    375 |     (rtac iffI 1),
 | 
|  |    376 |     (DEPTH_SOLVE (eresolve_tac [asm_rl, subst, ssubst] 1)) ]);
 | 
|  |    377 | 
 | 
|  |    378 | (*special cases for free variables P, Q, R, S -- up to 3 arguments*)
 | 
|  |    379 | 
 | 
|  |    380 | val pred_congs = 
 | 
|  |    381 |     flat (map (fn c => 
 | 
|  |    382 | 	       map (fn th => read_instantiate [("P",c)] th)
 | 
|  |    383 | 		   [pred1_cong,pred2_cong,pred3_cong])
 | 
|  |    384 | 	       (explode"PQRS"));
 | 
|  |    385 | 
 | 
|  |    386 | (*special case for the equality predicate!*)
 | 
|  |    387 | val eq_cong = read_instantiate [("P","op =")] pred2_cong;
 | 
|  |    388 | 
 | 
|  |    389 | 
 | 
|  |    390 | (*** Simplifications of assumed implications.
 | 
|  |    391 |      Roy Dyckhoff has proved that conj_impE, disj_impE, and imp_impE
 | 
|  |    392 |      used with mp_tac (restricted to atomic formulae) is COMPLETE for 
 | 
|  |    393 |      intuitionistic propositional logic.  See
 | 
|  |    394 |    R. Dyckhoff, Contraction-free sequent calculi for intuitionistic logic
 | 
|  |    395 |     (preprint, University of St Andrews, 1991)  ***)
 | 
|  |    396 | 
 | 
|  |    397 | val conj_impE = prove_goal IFOLP.thy 
 | 
|  |    398 |     "[| p:(P&Q)-->S;  !!x.x:P-->(Q-->S) ==> q(x):R |] ==> ?p:R"
 | 
|  |    399 |  (fn major::prems=>
 | 
|  |    400 |   [ (REPEAT (ares_tac ([conjI, impI, major RS mp]@prems) 1)) ]);
 | 
|  |    401 | 
 | 
|  |    402 | val disj_impE = prove_goal IFOLP.thy 
 | 
|  |    403 |     "[| p:(P|Q)-->S;  !!x y.[| x:P-->S; y:Q-->S |] ==> q(x,y):R |] ==> ?p:R"
 | 
|  |    404 |  (fn major::prems=>
 | 
|  |    405 |   [ (DEPTH_SOLVE (ares_tac ([disjI1, disjI2, impI, major RS mp]@prems) 1)) ]);
 | 
|  |    406 | 
 | 
|  |    407 | (*Simplifies the implication.  Classical version is stronger. 
 | 
|  |    408 |   Still UNSAFE since Q must be provable -- backtracking needed.  *)
 | 
|  |    409 | val imp_impE = prove_goal IFOLP.thy 
 | 
|  |    410 |     "[| p:(P-->Q)-->S;  !!x y.[| x:P; y:Q-->S |] ==> q(x,y):Q;  !!x.x:S ==> r(x):R |] ==> \
 | 
|  |    411 | \    ?p:R"
 | 
|  |    412 |  (fn major::prems=>
 | 
|  |    413 |   [ (REPEAT (ares_tac ([impI, major RS mp]@prems) 1)) ]);
 | 
|  |    414 | 
 | 
|  |    415 | (*Simplifies the implication.  Classical version is stronger. 
 | 
|  |    416 |   Still UNSAFE since ~P must be provable -- backtracking needed.  *)
 | 
|  |    417 | val not_impE = prove_goal IFOLP.thy
 | 
|  |    418 |     "[| p:~P --> S;  !!y.y:P ==> q(y):False;  !!y.y:S ==> r(y):R |] ==> ?p:R"
 | 
|  |    419 |  (fn major::prems=>
 | 
|  |    420 |   [ (REPEAT (ares_tac ([notI, impI, major RS mp]@prems) 1)) ]);
 | 
|  |    421 | 
 | 
|  |    422 | (*Simplifies the implication.   UNSAFE.  *)
 | 
|  |    423 | val iff_impE = prove_goal IFOLP.thy 
 | 
|  |    424 |     "[| p:(P<->Q)-->S;  !!x y.[| x:P; y:Q-->S |] ==> q(x,y):Q;  \
 | 
|  |    425 | \       !!x y.[| x:Q; y:P-->S |] ==> r(x,y):P;  !!x.x:S ==> s(x):R |] ==> ?p:R"
 | 
|  |    426 |  (fn major::prems=>
 | 
|  |    427 |   [ (REPEAT (ares_tac ([iffI, impI, major RS mp]@prems) 1)) ]);
 | 
|  |    428 | 
 | 
|  |    429 | (*What if (ALL x.~~P(x)) --> ~~(ALL x.P(x)) is an assumption? UNSAFE*)
 | 
|  |    430 | val all_impE = prove_goal IFOLP.thy 
 | 
|  |    431 |     "[| p:(ALL x.P(x))-->S;  !!x.q:P(x);  !!y.y:S ==> r(y):R |] ==> ?p:R"
 | 
|  |    432 |  (fn major::prems=>
 | 
|  |    433 |   [ (REPEAT (ares_tac ([allI, impI, major RS mp]@prems) 1)) ]);
 | 
|  |    434 | 
 | 
|  |    435 | (*Unsafe: (EX x.P(x))-->S  is equivalent to  ALL x.P(x)-->S.  *)
 | 
|  |    436 | val ex_impE = prove_goal IFOLP.thy 
 | 
|  |    437 |     "[| p:(EX x.P(x))-->S;  !!y.y:P(a)-->S ==> q(y):R |] ==> ?p:R"
 | 
|  |    438 |  (fn major::prems=>
 | 
|  |    439 |   [ (REPEAT (ares_tac ([exI, impI, major RS mp]@prems) 1)) ]);
 | 
|  |    440 | 
 | 
|  |    441 | end;
 | 
|  |    442 | 
 | 
|  |    443 | open IFOLP_Lemmas;
 | 
|  |    444 | 
 |