10879
|
1 |
% $Id$
|
|
2 |
The premises of introduction rules may contain universal quantifiers and
|
11173
|
3 |
monotone functions. A universal quantifier lets the rule
|
|
4 |
refer to any number of instances of
|
|
5 |
the inductively defined set. A monotone function lets the rule refer
|
|
6 |
to existing constructions (such as ``list of'') over the inductively defined
|
|
7 |
set. The examples below show how to use the additional expressiveness
|
|
8 |
and how to reason from the resulting definitions.
|
10879
|
9 |
|
|
10 |
\subsection{Universal Quantifiers in Introduction Rules}
|
|
11 |
\label{sec:gterm-datatype}
|
|
12 |
|
11411
|
13 |
\index{ground terms example|(}%
|
|
14 |
\index{quantifiers!and inductive definitions|(}%
|
10879
|
15 |
As a running example, this section develops the theory of \textbf{ground
|
|
16 |
terms}: terms constructed from constant and function
|
|
17 |
symbols but not variables. To simplify matters further, we regard a
|
|
18 |
constant as a function applied to the null argument list. Let us declare a
|
|
19 |
datatype \isa{gterm} for the type of ground terms. It is a type constructor
|
|
20 |
whose argument is a type of function symbols.
|
|
21 |
\begin{isabelle}
|
|
22 |
\isacommand{datatype}\ 'f\ gterm\ =\ Apply\ 'f\ "'f\ gterm\ list"
|
|
23 |
\end{isabelle}
|
|
24 |
To try it out, we declare a datatype of some integer operations:
|
|
25 |
integer constants, the unary minus operator and the addition
|
|
26 |
operator.
|
|
27 |
\begin{isabelle}
|
|
28 |
\isacommand{datatype}\ integer_op\ =\ Number\ int\ |\ UnaryMinus\ |\ Plus
|
|
29 |
\end{isabelle}
|
|
30 |
Now the type \isa{integer\_op gterm} denotes the ground
|
|
31 |
terms built over those symbols.
|
|
32 |
|
|
33 |
The type constructor \texttt{gterm} can be generalized to a function
|
|
34 |
over sets. It returns
|
|
35 |
the set of ground terms that can be formed over a set \isa{F} of function symbols. For
|
|
36 |
example, we could consider the set of ground terms formed from the finite
|
10889
|
37 |
set \isa{\isacharbraceleft Number 2, UnaryMinus,
|
|
38 |
Plus\isacharbraceright}.
|
10879
|
39 |
|
|
40 |
This concept is inductive. If we have a list \isa{args} of ground terms
|
|
41 |
over~\isa{F} and a function symbol \isa{f} in \isa{F}, then we
|
|
42 |
can apply \isa{f} to \isa{args} to obtain another ground term.
|
|
43 |
The only difficulty is that the argument list may be of any length. Hitherto,
|
|
44 |
each rule in an inductive definition referred to the inductively
|
|
45 |
defined set a fixed number of times, typically once or twice.
|
|
46 |
A universal quantifier in the premise of the introduction rule
|
|
47 |
expresses that every element of \isa{args} belongs
|
|
48 |
to our inductively defined set: is a ground term
|
11173
|
49 |
over~\isa{F}. The function \isa{set} denotes the set of elements in a given
|
10879
|
50 |
list.
|
|
51 |
\begin{isabelle}
|
|
52 |
\isacommand{consts}\ gterms\ ::\ "'f\ set\ \isasymRightarrow \ 'f\ gterm\ set"\isanewline
|
|
53 |
\isacommand{inductive}\ "gterms\ F"\isanewline
|
|
54 |
\isakeyword{intros}\isanewline
|
|
55 |
step[intro!]:\ "\isasymlbrakk \isasymforall t\ \isasymin \ set\ args.\ t\ \isasymin \ gterms\ F;\ \ f\ \isasymin \ F\isasymrbrakk \isanewline
|
|
56 |
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \isasymLongrightarrow \ (Apply\ f\ args)\ \isasymin \ gterms\
|
|
57 |
F"
|
|
58 |
\end{isabelle}
|
|
59 |
|
|
60 |
To demonstrate a proof from this definition, let us
|
|
61 |
show that the function \isa{gterms}
|
11173
|
62 |
is \textbf{monotone}. We shall need this concept shortly.
|
10879
|
63 |
\begin{isabelle}
|
|
64 |
\isacommand{lemma}\ gterms_mono:\ "F\isasymsubseteq G\ \isasymLongrightarrow \ gterms\ F\ \isasymsubseteq \ gterms\ G"\isanewline
|
|
65 |
\isacommand{apply}\ clarify\isanewline
|
|
66 |
\isacommand{apply}\ (erule\ gterms.induct)\isanewline
|
|
67 |
\isacommand{apply}\ blast\isanewline
|
|
68 |
\isacommand{done}
|
|
69 |
\end{isabelle}
|
|
70 |
Intuitively, this theorem says that
|
|
71 |
enlarging the set of function symbols enlarges the set of ground
|
|
72 |
terms. The proof is a trivial rule induction.
|
|
73 |
First we use the \isa{clarify} method to assume the existence of an element of
|
11147
|
74 |
\isa{gterms~F}. (We could have used \isa{intro subsetI}.) We then
|
10879
|
75 |
apply rule induction. Here is the resulting subgoal:
|
|
76 |
\begin{isabelle}
|
|
77 |
\ 1.\ \isasymAnd x\ args\ f.\isanewline
|
|
78 |
\ \ \ \ \ \ \ \isasymlbrakk F\ \isasymsubseteq \ G;\ \isasymforall t\isasymin set\ args.\ t\ \isasymin \ gterms\ F\ \isasymand \ t\ \isasymin \ gterms\ G;\ f\ \isasymin \ F\isasymrbrakk \isanewline
|
|
79 |
\ \ \ \ \ \ \ \isasymLongrightarrow \ Apply\ f\ args\ \isasymin \ gterms\ G%
|
|
80 |
\end{isabelle}
|
|
81 |
%
|
|
82 |
The assumptions state that \isa{f} belongs
|
|
83 |
to~\isa{F}, which is included in~\isa{G}, and that every element of the list \isa{args} is
|
|
84 |
a ground term over~\isa{G}. The \isa{blast} method finds this chain of reasoning easily.
|
|
85 |
|
|
86 |
\begin{warn}
|
|
87 |
Why do we call this function \isa{gterms} instead
|
|
88 |
of {\isa{gterm}}? A constant may have the same name as a type. However,
|
|
89 |
name clashes could arise in the theorems that Isabelle generates.
|
|
90 |
Our choice of names keeps {\isa{gterms.induct}} separate from
|
|
91 |
{\isa{gterm.induct}}.
|
|
92 |
\end{warn}
|
|
93 |
|
11173
|
94 |
Call a term \textbf{well-formed} if each symbol occurring in it is applied
|
|
95 |
to the correct number of arguments. (This number is called the symbol's
|
|
96 |
\textbf{arity}.) We can express well-formedness by
|
|
97 |
generalizing the inductive definition of
|
|
98 |
\isa{gterms}.
|
|
99 |
Suppose we are given a function called \isa{arity}, specifying the arities
|
|
100 |
of all symbols. In the inductive step, we have a list \isa{args} of such
|
|
101 |
terms and a function symbol~\isa{f}. If the length of the list matches the
|
|
102 |
function's arity then applying \isa{f} to \isa{args} yields a well-formed
|
|
103 |
term.
|
10879
|
104 |
\begin{isabelle}
|
|
105 |
\isacommand{consts}\ well_formed_gterm\ ::\ "('f\ \isasymRightarrow \ nat)\ \isasymRightarrow \ 'f\ gterm\ set"\isanewline
|
|
106 |
\isacommand{inductive}\ "well_formed_gterm\ arity"\isanewline
|
|
107 |
\isakeyword{intros}\isanewline
|
|
108 |
step[intro!]:\ "\isasymlbrakk \isasymforall t\ \isasymin \ set\ args.\ t\ \isasymin \ well_formed_gterm\ arity;\ \ \isanewline
|
|
109 |
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ length\ args\ =\ arity\ f\isasymrbrakk \isanewline
|
|
110 |
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \isasymLongrightarrow \ (Apply\ f\ args)\ \isasymin \ well_formed_gterm\
|
|
111 |
arity"
|
|
112 |
\end{isabelle}
|
|
113 |
%
|
|
114 |
The inductive definition neatly captures the reasoning above.
|
11173
|
115 |
The universal quantification over the
|
11411
|
116 |
\isa{set} of arguments expresses that all of them are well-formed.%
|
|
117 |
\index{quantifiers!and inductive definitions|)}
|
10879
|
118 |
|
11173
|
119 |
|
11216
|
120 |
\subsection{Alternative Definition Using a Monotone Function}
|
10879
|
121 |
|
11411
|
122 |
\index{monotone functions!and inductive definitions|(}%
|
|
123 |
An inductive definition may refer to the
|
|
124 |
inductively defined set through an arbitrary monotone function. To
|
|
125 |
demonstrate this powerful feature, let us
|
10879
|
126 |
change the inductive definition above, replacing the
|
|
127 |
quantifier by a use of the function \isa{lists}. This
|
|
128 |
function, from the Isabelle theory of lists, is analogous to the
|
|
129 |
function \isa{gterms} declared above: if \isa{A} is a set then
|
|
130 |
{\isa{lists A}} is the set of lists whose elements belong to
|
|
131 |
\isa{A}.
|
|
132 |
|
|
133 |
In the inductive definition of well-formed terms, examine the one
|
|
134 |
introduction rule. The first premise states that \isa{args} belongs to
|
|
135 |
the \isa{lists} of well-formed terms. This formulation is more
|
|
136 |
direct, if more obscure, than using a universal quantifier.
|
|
137 |
\begin{isabelle}
|
|
138 |
\isacommand{consts}\ well_formed_gterm'\ ::\ "('f\ \isasymRightarrow \ nat)\ \isasymRightarrow \ 'f\ gterm\ set"\isanewline
|
|
139 |
\isacommand{inductive}\ "well_formed_gterm'\ arity"\isanewline
|
|
140 |
\isakeyword{intros}\isanewline
|
|
141 |
step[intro!]:\ "\isasymlbrakk args\ \isasymin \ lists\ (well_formed_gterm'\ arity);\ \ \isanewline
|
|
142 |
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ length\ args\ =\ arity\ f\isasymrbrakk \isanewline
|
|
143 |
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \isasymLongrightarrow \ (Apply\ f\ args)\ \isasymin \ well_formed_gterm'\ arity"\isanewline
|
|
144 |
\isakeyword{monos}\ lists_mono
|
|
145 |
\end{isabelle}
|
|
146 |
|
12333
|
147 |
We cite the theorem \isa{lists_mono} to justify
|
|
148 |
using the function \isa{lists}.%
|
|
149 |
\footnote{This particular theorem is installed by default already, but we
|
|
150 |
include the \isakeyword{monos} declaration in order to illustrate its syntax.}
|
10879
|
151 |
\begin{isabelle}
|
|
152 |
A\ \isasymsubseteq\ B\ \isasymLongrightarrow \ lists\ A\ \isasymsubseteq
|
11421
|
153 |
\ lists\ B\rulenamedx{lists_mono}
|
10879
|
154 |
\end{isabelle}
|
|
155 |
%
|
11173
|
156 |
Why must the function be monotone? An inductive definition describes
|
10879
|
157 |
an iterative construction: each element of the set is constructed by a
|
|
158 |
finite number of introduction rule applications. For example, the
|
|
159 |
elements of \isa{even} are constructed by finitely many applications of
|
|
160 |
the rules
|
|
161 |
\begin{isabelle}
|
|
162 |
0\ \isasymin \ even\isanewline
|
|
163 |
n\ \isasymin \ even\ \isasymLongrightarrow \ (Suc\ (Suc\ n))\ \isasymin
|
|
164 |
\ even
|
|
165 |
\end{isabelle}
|
|
166 |
All references to a set in its
|
|
167 |
inductive definition must be positive. Applications of an
|
|
168 |
introduction rule cannot invalidate previous applications, allowing the
|
|
169 |
construction process to converge.
|
|
170 |
The following pair of rules do not constitute an inductive definition:
|
|
171 |
\begin{isabelle}
|
|
172 |
0\ \isasymin \ even\isanewline
|
|
173 |
n\ \isasymnotin \ even\ \isasymLongrightarrow \ (Suc\ n)\ \isasymin
|
|
174 |
\ even
|
|
175 |
\end{isabelle}
|
|
176 |
%
|
|
177 |
Showing that 4 is even using these rules requires showing that 3 is not
|
|
178 |
even. It is far from trivial to show that this set of rules
|
|
179 |
characterizes the even numbers.
|
|
180 |
|
|
181 |
Even with its use of the function \isa{lists}, the premise of our
|
|
182 |
introduction rule is positive:
|
|
183 |
\begin{isabelle}
|
|
184 |
args\ \isasymin \ lists\ (well_formed_gterm'\ arity)
|
|
185 |
\end{isabelle}
|
|
186 |
To apply the rule we construct a list \isa{args} of previously
|
|
187 |
constructed well-formed terms. We obtain a
|
11173
|
188 |
new term, \isa{Apply\ f\ args}. Because \isa{lists} is monotone,
|
10879
|
189 |
applications of the rule remain valid as new terms are constructed.
|
|
190 |
Further lists of well-formed
|
11411
|
191 |
terms become available and none are taken away.%
|
|
192 |
\index{monotone functions!and inductive definitions|)}
|
10879
|
193 |
|
|
194 |
|
|
195 |
\subsection{A Proof of Equivalence}
|
|
196 |
|
|
197 |
We naturally hope that these two inductive definitions of ``well-formed''
|
|
198 |
coincide. The equality can be proved by separate inclusions in
|
|
199 |
each direction. Each is a trivial rule induction.
|
|
200 |
\begin{isabelle}
|
|
201 |
\isacommand{lemma}\ "well_formed_gterm\ arity\ \isasymsubseteq \ well_formed_gterm'\ arity"\isanewline
|
|
202 |
\isacommand{apply}\ clarify\isanewline
|
|
203 |
\isacommand{apply}\ (erule\ well_formed_gterm.induct)\isanewline
|
|
204 |
\isacommand{apply}\ auto\isanewline
|
|
205 |
\isacommand{done}
|
|
206 |
\end{isabelle}
|
|
207 |
|
|
208 |
The \isa{clarify} method gives
|
|
209 |
us an element of \isa{well_formed_gterm\ arity} on which to perform
|
|
210 |
induction. The resulting subgoal can be proved automatically:
|
|
211 |
\begin{isabelle}
|
|
212 |
{\isadigit{1}}{\isachardot}\ {\isasymAnd}x\ args\ f{\isachardot}\isanewline
|
|
213 |
\ \ \ \ \ \ {\isasymlbrakk}{\isasymforall}t{\isasymin}set\ args{\isachardot}\isanewline
|
11421
|
214 |
\ \ \ \ \ \ \ \ \ \ t\ {\isasymin}\ well\_formed\_gterm\ arity\ {\isasymand}\ t\ {\isasymin}\ well\_formed\_gterm{\isacharprime}\ arity{\isacharsemicolon}\isanewline
|
10879
|
215 |
\ \ \ \ \ \ \ length\ args\ {\isacharequal}\ arity\ f{\isasymrbrakk}\isanewline
|
11421
|
216 |
\ \ \ \ \ \ {\isasymLongrightarrow}\ Apply\ f\ args\ {\isasymin}\ well\_formed\_gterm{\isacharprime}\ arity%
|
10879
|
217 |
\end{isabelle}
|
|
218 |
%
|
|
219 |
This proof resembles the one given in
|
|
220 |
{\S}\ref{sec:gterm-datatype} above, especially in the form of the
|
|
221 |
induction hypothesis. Next, we consider the opposite inclusion:
|
|
222 |
\begin{isabelle}
|
|
223 |
\isacommand{lemma}\ "well_formed_gterm'\ arity\ \isasymsubseteq \ well_formed_gterm\ arity"\isanewline
|
|
224 |
\isacommand{apply}\ clarify\isanewline
|
|
225 |
\isacommand{apply}\ (erule\ well_formed_gterm'.induct)\isanewline
|
|
226 |
\isacommand{apply}\ auto\isanewline
|
|
227 |
\isacommand{done}
|
|
228 |
\end{isabelle}
|
|
229 |
%
|
|
230 |
The proof script is identical, but the subgoal after applying induction may
|
|
231 |
be surprising:
|
|
232 |
\begin{isabelle}
|
|
233 |
1.\ \isasymAnd x\ args\ f.\isanewline
|
|
234 |
\ \ \ \ \ \ \isasymlbrakk args\ \isasymin \ lists\ (well_formed_gterm'\ arity\ \isasyminter\isanewline
|
|
235 |
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \isacharbraceleft u.\ u\ \isasymin \ well_formed_gterm\ arity\isacharbraceright );\isanewline
|
|
236 |
\ \ \ \ \ \ \ length\ args\ =\ arity\ f\isasymrbrakk \isanewline
|
|
237 |
\ \ \ \ \ \ \isasymLongrightarrow \ Apply\ f\ args\ \isasymin \ well_formed_gterm\ arity%
|
|
238 |
\end{isabelle}
|
|
239 |
The induction hypothesis contains an application of \isa{lists}. Using a
|
11173
|
240 |
monotone function in the inductive definition always has this effect. The
|
|
241 |
subgoal may look uninviting, but fortunately
|
|
242 |
\isa{lists} distributes over intersection:
|
10879
|
243 |
\begin{isabelle}
|
|
244 |
lists\ (A\ \isasyminter \ B)\ =\ lists\ A\ \isasyminter \ lists\ B
|
|
245 |
\rulename{lists_Int_eq}
|
|
246 |
\end{isabelle}
|
|
247 |
%
|
|
248 |
Thanks to this default simplification rule, the induction hypothesis
|
|
249 |
is quickly replaced by its two parts:
|
|
250 |
\begin{isabelle}
|
|
251 |
\ \ \ \ \ \ \ args\ \isasymin \ lists\ (well_formed_gterm'\ arity)\isanewline
|
|
252 |
\ \ \ \ \ \ \ args\ \isasymin \ lists\ (well_formed_gterm\ arity)
|
|
253 |
\end{isabelle}
|
|
254 |
Invoking the rule \isa{well_formed_gterm.step} completes the proof. The
|
|
255 |
call to
|
|
256 |
\isa{auto} does all this work.
|
|
257 |
|
11411
|
258 |
This example is typical of how monotone functions
|
|
259 |
\index{monotone functions} can be used. In particular, many of them
|
|
260 |
distribute over intersection. Monotonicity implies one direction of
|
|
261 |
this set equality; we have this theorem:
|
10879
|
262 |
\begin{isabelle}
|
|
263 |
mono\ f\ \isasymLongrightarrow \ f\ (A\ \isasyminter \ B)\ \isasymsubseteq \
|
|
264 |
f\ A\ \isasyminter \ f\ B%
|
|
265 |
\rulename{mono_Int}
|
|
266 |
\end{isabelle}
|
|
267 |
|
|
268 |
|
11173
|
269 |
\subsection{Another Example of Rule Inversion}
|
|
270 |
|
11411
|
271 |
\index{rule inversion|(}%
|
11173
|
272 |
Does \isa{gterms} distribute over intersection? We have proved that this
|
|
273 |
function is monotone, so \isa{mono_Int} gives one of the inclusions. The
|
|
274 |
opposite inclusion asserts that if \isa{t} is a ground term over both of the
|
|
275 |
sets
|
|
276 |
\isa{F} and~\isa{G} then it is also a ground term over their intersection,
|
|
277 |
\isa{F\isasyminter G}.
|
11261
|
278 |
\begin{isabelle}
|
|
279 |
\isacommand{lemma}\ gterms_IntI:\isanewline
|
|
280 |
\ \ \ \ \ "t\ \isasymin \ gterms\ F\ \isasymLongrightarrow \ t\ \isasymin \ gterms\ G\ \isasymlongrightarrow \ t\ \isasymin \ gterms\ (F\isasyminter
|
|
281 |
G)"
|
|
282 |
\end{isabelle}
|
11173
|
283 |
Attempting this proof, we get the assumption
|
11261
|
284 |
\isa{Apply\ f\ args\ \isasymin\ gterms\ G}, which cannot be broken down.
|
11173
|
285 |
It looks like a job for rule inversion:
|
|
286 |
\begin{isabelle}
|
11411
|
287 |
\commdx{inductive\protect\_cases}\ gterm_Apply_elim\ [elim!]:\ "Apply\ f\ args\
|
11173
|
288 |
\isasymin\ gterms\ F"
|
|
289 |
\end{isabelle}
|
|
290 |
%
|
|
291 |
Here is the result.
|
|
292 |
\begin{isabelle}
|
|
293 |
\isasymlbrakk Apply\ f\ args\ \isasymin \ gterms\ F;\isanewline
|
|
294 |
\ \isasymlbrakk
|
|
295 |
\isasymforall t\isasymin set\ args.\ t\ \isasymin \ gterms\ F;\ f\ \isasymin
|
|
296 |
\ F\isasymrbrakk \ \isasymLongrightarrow \ P\isasymrbrakk\isanewline
|
|
297 |
\isasymLongrightarrow \ P%
|
|
298 |
\rulename{gterm_Apply_elim}
|
|
299 |
\end{isabelle}
|
|
300 |
This rule replaces an assumption about \isa{Apply\ f\ args} by
|
|
301 |
assumptions about \isa{f} and~\isa{args}.
|
|
302 |
No cases are discarded (there was only one to begin
|
|
303 |
with) but the rule applies specifically to the pattern \isa{Apply\ f\ args}.
|
|
304 |
It can be applied repeatedly as an elimination rule without looping, so we
|
|
305 |
have given the
|
|
306 |
\isa{elim!}\ attribute.
|
10879
|
307 |
|
11173
|
308 |
Now we can prove the other half of that distributive law.
|
|
309 |
\begin{isabelle}
|
|
310 |
\isacommand{lemma}\ gterms_IntI\ [rule_format,\ intro!]:\isanewline
|
|
311 |
\ \ \ \ \ "t\ \isasymin \ gterms\ F\ \isasymLongrightarrow \ t\ \isasymin \ gterms\ G\ \isasymlongrightarrow \ t\ \isasymin \ gterms\ (F\isasyminter G)"\isanewline
|
|
312 |
\isacommand{apply}\ (erule\ gterms.induct)\isanewline
|
|
313 |
\isacommand{apply}\ blast\isanewline
|
|
314 |
\isacommand{done}
|
|
315 |
\end{isabelle}
|
|
316 |
%
|
|
317 |
The proof begins with rule induction over the definition of
|
|
318 |
\isa{gterms}, which leaves a single subgoal:
|
|
319 |
\begin{isabelle}
|
|
320 |
1.\ \isasymAnd args\ f.\isanewline
|
|
321 |
\ \ \ \ \ \ \isasymlbrakk \isasymforall t\isasymin set\ args.\ t\ \isasymin \ gterms\ F\ \isasymand\isanewline
|
|
322 |
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (t\ \isasymin \ gterms\ G\ \isasymlongrightarrow \ t\ \isasymin \ gterms\ (F\ \isasyminter \ G));\isanewline
|
|
323 |
\ \ \ \ \ \ \ f\ \isasymin \ F\isasymrbrakk \isanewline
|
|
324 |
\ \ \ \ \ \ \isasymLongrightarrow \ Apply\ f\ args\ \isasymin \ gterms\ G\ \isasymlongrightarrow \ Apply\ f\ args\ \isasymin \ gterms\ (F\ \isasyminter \ G)
|
|
325 |
\end{isabelle}
|
|
326 |
%
|
|
327 |
To prove this, we assume \isa{Apply\ f\ args\ \isasymin \
|
|
328 |
gterms\ G}. Rule inversion, in the form of \isa{gterm_Apply_elim}, infers
|
|
329 |
that every element of \isa{args} belongs to
|
|
330 |
\isa{gterms~G}; hence (by the induction hypothesis) it belongs
|
|
331 |
to \isa{gterms\ (F\ \isasyminter \ G)}. Rule inversion also yields
|
|
332 |
\isa{f\ \isasymin\ G} and hence \isa{f\ \isasymin \ F\ \isasyminter \ G}.
|
|
333 |
All of this reasoning is done by \isa{blast}.
|
|
334 |
|
|
335 |
\smallskip
|
|
336 |
Our distributive law is a trivial consequence of previously-proved results:
|
|
337 |
\begin{isabelle}
|
|
338 |
\isacommand{theorem}\ gterms_Int_eq\ [simp]:\isanewline
|
|
339 |
\ \ \ \ \ "gterms\ (F\isasyminter G)\ =\ gterms\ F\ \isasyminter \ gterms\ G"\isanewline
|
|
340 |
\isacommand{by}\ (blast\ intro!:\ mono_Int\ monoI\ gterms_mono)
|
|
341 |
\end{isabelle}
|
11411
|
342 |
\index{rule inversion|)}%
|
|
343 |
\index{ground terms example|)}
|
10879
|
344 |
|
|
345 |
|
|
346 |
\begin{exercise}
|
|
347 |
A function mapping function symbols to their
|
|
348 |
types is called a \textbf{signature}. Given a type
|
|
349 |
ranging over type symbols, we can represent a function's type by a
|
|
350 |
list of argument types paired with the result type.
|
|
351 |
Complete this inductive definition:
|
|
352 |
\begin{isabelle}
|
|
353 |
\isacommand{consts}\ well_typed_gterm::\ "('f\ \isasymRightarrow \ 't\ list\ *\ 't)\ \isasymRightarrow \ ('f\ gterm\ *\ 't)set"\isanewline
|
|
354 |
\isacommand{inductive}\ "well_typed_gterm\ sig"\isanewline
|
|
355 |
\end{isabelle}
|
|
356 |
\end{exercise}
|