| author | wenzelm | 
| Thu, 20 Aug 2015 17:39:07 +0200 | |
| changeset 60986 | 077f663b6c24 | 
| parent 60758 | d8d85a8172b5 | 
| child 61799 | 4cf66f21b764 | 
| permissions | -rw-r--r-- | 
| 54552 
5d57cbec0f0f
moving 'Order_Relation' to 'HOL' (since it's a BNF dependency)
 blanchet parents: 
54551diff
changeset | 1 | (* Title: HOL/Order_Relation.thy | 
| 
5d57cbec0f0f
moving 'Order_Relation' to 'HOL' (since it's a BNF dependency)
 blanchet parents: 
54551diff
changeset | 2 | Author: Tobias Nipkow | 
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 3 | Author: Andrei Popescu, TU Muenchen | 
| 54552 
5d57cbec0f0f
moving 'Order_Relation' to 'HOL' (since it's a BNF dependency)
 blanchet parents: 
54551diff
changeset | 4 | *) | 
| 26273 | 5 | |
| 60758 | 6 | section \<open>Orders as Relations\<close> | 
| 26273 | 7 | |
| 8 | theory Order_Relation | |
| 55027 | 9 | imports Wfrec | 
| 26273 | 10 | begin | 
| 11 | ||
| 60758 | 12 | subsection\<open>Orders on a set\<close> | 
| 26295 | 13 | |
| 30198 | 14 | definition "preorder_on A r \<equiv> refl_on A r \<and> trans r" | 
| 26295 | 15 | |
| 16 | definition "partial_order_on A r \<equiv> preorder_on A r \<and> antisym r" | |
| 26273 | 17 | |
| 26295 | 18 | definition "linear_order_on A r \<equiv> partial_order_on A r \<and> total_on A r" | 
| 19 | ||
| 20 | definition "strict_linear_order_on A r \<equiv> trans r \<and> irrefl r \<and> total_on A r" | |
| 21 | ||
| 22 | definition "well_order_on A r \<equiv> linear_order_on A r \<and> wf(r - Id)" | |
| 26273 | 23 | |
| 26295 | 24 | lemmas order_on_defs = | 
| 25 | preorder_on_def partial_order_on_def linear_order_on_def | |
| 26 | strict_linear_order_on_def well_order_on_def | |
| 27 | ||
| 26273 | 28 | |
| 26295 | 29 | lemma preorder_on_empty[simp]: "preorder_on {} {}"
 | 
| 30 | by(simp add:preorder_on_def trans_def) | |
| 31 | ||
| 32 | lemma partial_order_on_empty[simp]: "partial_order_on {} {}"
 | |
| 33 | by(simp add:partial_order_on_def) | |
| 26273 | 34 | |
| 26295 | 35 | lemma lnear_order_on_empty[simp]: "linear_order_on {} {}"
 | 
| 36 | by(simp add:linear_order_on_def) | |
| 37 | ||
| 38 | lemma well_order_on_empty[simp]: "well_order_on {} {}"
 | |
| 39 | by(simp add:well_order_on_def) | |
| 40 | ||
| 26273 | 41 | |
| 26295 | 42 | lemma preorder_on_converse[simp]: "preorder_on A (r^-1) = preorder_on A r" | 
| 43 | by (simp add:preorder_on_def) | |
| 44 | ||
| 45 | lemma partial_order_on_converse[simp]: | |
| 46 | "partial_order_on A (r^-1) = partial_order_on A r" | |
| 47 | by (simp add: partial_order_on_def) | |
| 26273 | 48 | |
| 26295 | 49 | lemma linear_order_on_converse[simp]: | 
| 50 | "linear_order_on A (r^-1) = linear_order_on A r" | |
| 51 | by (simp add: linear_order_on_def) | |
| 52 | ||
| 26273 | 53 | |
| 26295 | 54 | lemma strict_linear_order_on_diff_Id: | 
| 55 | "linear_order_on A r \<Longrightarrow> strict_linear_order_on A (r-Id)" | |
| 56 | by(simp add: order_on_defs trans_diff_Id) | |
| 57 | ||
| 58 | ||
| 60758 | 59 | subsection\<open>Orders on the field\<close> | 
| 26273 | 60 | |
| 30198 | 61 | abbreviation "Refl r \<equiv> refl_on (Field r) r" | 
| 26295 | 62 | |
| 63 | abbreviation "Preorder r \<equiv> preorder_on (Field r) r" | |
| 64 | ||
| 65 | abbreviation "Partial_order r \<equiv> partial_order_on (Field r) r" | |
| 26273 | 66 | |
| 26295 | 67 | abbreviation "Total r \<equiv> total_on (Field r) r" | 
| 68 | ||
| 69 | abbreviation "Linear_order r \<equiv> linear_order_on (Field r) r" | |
| 70 | ||
| 71 | abbreviation "Well_order r \<equiv> well_order_on (Field r) r" | |
| 72 | ||
| 26273 | 73 | |
| 74 | lemma subset_Image_Image_iff: | |
| 75 | "\<lbrakk> Preorder r; A \<subseteq> Field r; B \<subseteq> Field r\<rbrakk> \<Longrightarrow> | |
| 76 | r `` A \<subseteq> r `` B \<longleftrightarrow> (\<forall>a\<in>A.\<exists>b\<in>B. (b,a):r)" | |
| 48750 | 77 | unfolding preorder_on_def refl_on_def Image_def | 
| 78 | apply (simp add: subset_eq) | |
| 79 | unfolding trans_def by fast | |
| 26273 | 80 | |
| 81 | lemma subset_Image1_Image1_iff: | |
| 82 |   "\<lbrakk> Preorder r; a : Field r; b : Field r\<rbrakk> \<Longrightarrow> r `` {a} \<subseteq> r `` {b} \<longleftrightarrow> (b,a):r"
 | |
| 83 | by(simp add:subset_Image_Image_iff) | |
| 84 | ||
| 85 | lemma Refl_antisym_eq_Image1_Image1_iff: | |
| 54552 
5d57cbec0f0f
moving 'Order_Relation' to 'HOL' (since it's a BNF dependency)
 blanchet parents: 
54551diff
changeset | 86 | assumes r: "Refl r" and as: "antisym r" and abf: "a \<in> Field r" "b \<in> Field r" | 
| 
5d57cbec0f0f
moving 'Order_Relation' to 'HOL' (since it's a BNF dependency)
 blanchet parents: 
54551diff
changeset | 87 |   shows "r `` {a} = r `` {b} \<longleftrightarrow> a = b"
 | 
| 
5d57cbec0f0f
moving 'Order_Relation' to 'HOL' (since it's a BNF dependency)
 blanchet parents: 
54551diff
changeset | 88 | proof | 
| 
5d57cbec0f0f
moving 'Order_Relation' to 'HOL' (since it's a BNF dependency)
 blanchet parents: 
54551diff
changeset | 89 |   assume "r `` {a} = r `` {b}"
 | 
| 
5d57cbec0f0f
moving 'Order_Relation' to 'HOL' (since it's a BNF dependency)
 blanchet parents: 
54551diff
changeset | 90 | hence e: "\<And>x. (a, x) \<in> r \<longleftrightarrow> (b, x) \<in> r" by (simp add: set_eq_iff) | 
| 
5d57cbec0f0f
moving 'Order_Relation' to 'HOL' (since it's a BNF dependency)
 blanchet parents: 
54551diff
changeset | 91 | have "(a, a) \<in> r" "(b, b) \<in> r" using r abf by (simp_all add: refl_on_def) | 
| 
5d57cbec0f0f
moving 'Order_Relation' to 'HOL' (since it's a BNF dependency)
 blanchet parents: 
54551diff
changeset | 92 | hence "(a, b) \<in> r" "(b, a) \<in> r" using e[of a] e[of b] by simp_all | 
| 
5d57cbec0f0f
moving 'Order_Relation' to 'HOL' (since it's a BNF dependency)
 blanchet parents: 
54551diff
changeset | 93 | thus "a = b" using as[unfolded antisym_def] by blast | 
| 
5d57cbec0f0f
moving 'Order_Relation' to 'HOL' (since it's a BNF dependency)
 blanchet parents: 
54551diff
changeset | 94 | qed fast | 
| 26273 | 95 | |
| 96 | lemma Partial_order_eq_Image1_Image1_iff: | |
| 97 |   "\<lbrakk>Partial_order r; a:Field r; b:Field r\<rbrakk> \<Longrightarrow> r `` {a} = r `` {b} \<longleftrightarrow> a=b"
 | |
| 26295 | 98 | by(auto simp:order_on_defs Refl_antisym_eq_Image1_Image1_iff) | 
| 99 | ||
| 52182 | 100 | lemma Total_Id_Field: | 
| 101 | assumes TOT: "Total r" and NID: "\<not> (r <= Id)" | |
| 102 | shows "Field r = Field(r - Id)" | |
| 103 | using mono_Field[of "r - Id" r] Diff_subset[of r Id] | |
| 104 | proof(auto) | |
| 105 |   have "r \<noteq> {}" using NID by fast
 | |
| 54482 | 106 | then obtain b and c where "b \<noteq> c \<and> (b,c) \<in> r" using NID by auto | 
| 52182 | 107 |   hence 1: "b \<noteq> c \<and> {b,c} \<le> Field r" by (auto simp: Field_def)
 | 
| 54552 
5d57cbec0f0f
moving 'Order_Relation' to 'HOL' (since it's a BNF dependency)
 blanchet parents: 
54551diff
changeset | 108 | |
| 52182 | 109 | fix a assume *: "a \<in> Field r" | 
| 110 | obtain d where 2: "d \<in> Field r" and 3: "d \<noteq> a" | |
| 111 | using * 1 by auto | |
| 112 | hence "(a,d) \<in> r \<or> (d,a) \<in> r" using * TOT | |
| 113 | by (simp add: total_on_def) | |
| 114 | thus "a \<in> Field(r - Id)" using 3 unfolding Field_def by blast | |
| 115 | qed | |
| 116 | ||
| 26295 | 117 | |
| 60758 | 118 | subsection\<open>Orders on a type\<close> | 
| 26295 | 119 | |
| 120 | abbreviation "strict_linear_order \<equiv> strict_linear_order_on UNIV" | |
| 121 | ||
| 122 | abbreviation "linear_order \<equiv> linear_order_on UNIV" | |
| 123 | ||
| 54551 | 124 | abbreviation "well_order \<equiv> well_order_on UNIV" | 
| 26273 | 125 | |
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 126 | |
| 60758 | 127 | subsection \<open>Order-like relations\<close> | 
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 128 | |
| 60758 | 129 | text\<open>In this subsection, we develop basic concepts and results pertaining | 
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 130 | to order-like relations, i.e., to reflexive and/or transitive and/or symmetric and/or | 
| 60758 | 131 | total relations. We also further define upper and lower bounds operators.\<close> | 
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 132 | |
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 133 | |
| 60758 | 134 | subsubsection \<open>Auxiliaries\<close> | 
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 135 | |
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 136 | lemma refl_on_domain: | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 137 | "\<lbrakk>refl_on A r; (a,b) : r\<rbrakk> \<Longrightarrow> a \<in> A \<and> b \<in> A" | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 138 | by(auto simp add: refl_on_def) | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 139 | |
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 140 | corollary well_order_on_domain: | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 141 | "\<lbrakk>well_order_on A r; (a,b) \<in> r\<rbrakk> \<Longrightarrow> a \<in> A \<and> b \<in> A" | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 142 | by (auto simp add: refl_on_domain order_on_defs) | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 143 | |
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 144 | lemma well_order_on_Field: | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 145 | "well_order_on A r \<Longrightarrow> A = Field r" | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 146 | by(auto simp add: refl_on_def Field_def order_on_defs) | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 147 | |
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 148 | lemma well_order_on_Well_order: | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 149 | "well_order_on A r \<Longrightarrow> A = Field r \<and> Well_order r" | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 150 | using well_order_on_Field by auto | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 151 | |
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 152 | lemma Total_subset_Id: | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 153 | assumes TOT: "Total r" and SUB: "r \<le> Id" | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 154 | shows "r = {} \<or> (\<exists>a. r = {(a,a)})"
 | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 155 | proof- | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 156 |   {assume "r \<noteq> {}"
 | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 157 | then obtain a b where 1: "(a,b) \<in> r" by fast | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 158 | hence "a = b" using SUB by blast | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 159 | hence 2: "(a,a) \<in> r" using 1 by simp | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 160 |    {fix c d assume "(c,d) \<in> r"
 | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 161 |     hence "{a,c,d} \<le> Field r" using 1 unfolding Field_def by blast
 | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 162 | hence "((a,c) \<in> r \<or> (c,a) \<in> r \<or> a = c) \<and> | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 163 | ((a,d) \<in> r \<or> (d,a) \<in> r \<or> a = d)" | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 164 | using TOT unfolding total_on_def by blast | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 165 | hence "a = c \<and> a = d" using SUB by blast | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 166 | } | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 167 |    hence "r \<le> {(a,a)}" by auto
 | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 168 |    with 2 have "\<exists>a. r = {(a,a)}" by blast
 | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 169 | } | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 170 | thus ?thesis by blast | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 171 | qed | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 172 | |
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 173 | lemma Linear_order_in_diff_Id: | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 174 | assumes LI: "Linear_order r" and | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 175 | IN1: "a \<in> Field r" and IN2: "b \<in> Field r" | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 176 | shows "((a,b) \<in> r) = ((b,a) \<notin> r - Id)" | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 177 | using assms unfolding order_on_defs total_on_def antisym_def Id_def refl_on_def by force | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 178 | |
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 179 | |
| 60758 | 180 | subsubsection \<open>The upper and lower bounds operators\<close> | 
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 181 | |
| 60758 | 182 | text\<open>Here we define upper (``above") and lower (``below") bounds operators. | 
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 183 | We think of @{text "r"} as a {\em non-strict} relation.  The suffix ``S"
 | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 184 | at the names of some operators indicates that the bounds are strict -- e.g., | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 185 | @{text "underS a"} is the set of all strict lower bounds of @{text "a"} (w.r.t. @{text "r"}).
 | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 186 | Capitalization of the first letter in the name reminds that the operator acts on sets, rather | 
| 60758 | 187 | than on individual elements.\<close> | 
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 188 | |
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 189 | definition under::"'a rel \<Rightarrow> 'a \<Rightarrow> 'a set" | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 190 | where "under r a \<equiv> {b. (b,a) \<in> r}"
 | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 191 | |
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 192 | definition underS::"'a rel \<Rightarrow> 'a \<Rightarrow> 'a set" | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 193 | where "underS r a \<equiv> {b. b \<noteq> a \<and> (b,a) \<in> r}"
 | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 194 | |
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 195 | definition Under::"'a rel \<Rightarrow> 'a set \<Rightarrow> 'a set" | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 196 | where "Under r A \<equiv> {b \<in> Field r. \<forall>a \<in> A. (b,a) \<in> r}"
 | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 197 | |
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 198 | definition UnderS::"'a rel \<Rightarrow> 'a set \<Rightarrow> 'a set" | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 199 | where "UnderS r A \<equiv> {b \<in> Field r. \<forall>a \<in> A. b \<noteq> a \<and> (b,a) \<in> r}"
 | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 200 | |
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 201 | definition above::"'a rel \<Rightarrow> 'a \<Rightarrow> 'a set" | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 202 | where "above r a \<equiv> {b. (a,b) \<in> r}"
 | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 203 | |
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 204 | definition aboveS::"'a rel \<Rightarrow> 'a \<Rightarrow> 'a set" | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 205 | where "aboveS r a \<equiv> {b. b \<noteq> a \<and> (a,b) \<in> r}"
 | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 206 | |
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 207 | definition Above::"'a rel \<Rightarrow> 'a set \<Rightarrow> 'a set" | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 208 | where "Above r A \<equiv> {b \<in> Field r. \<forall>a \<in> A. (a,b) \<in> r}"
 | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 209 | |
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 210 | definition AboveS::"'a rel \<Rightarrow> 'a set \<Rightarrow> 'a set" | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 211 | where "AboveS r A \<equiv> {b \<in> Field r. \<forall>a \<in> A. b \<noteq> a \<and> (a,b) \<in> r}"
 | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 212 | |
| 55173 | 213 | definition ofilter :: "'a rel \<Rightarrow> 'a set \<Rightarrow> bool" | 
| 214 | where "ofilter r A \<equiv> (A \<le> Field r) \<and> (\<forall>a \<in> A. under r a \<le> A)" | |
| 215 | ||
| 60758 | 216 | text\<open>Note:  In the definitions of @{text "Above[S]"} and @{text "Under[S]"},
 | 
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 217 |   we bounded comprehension by @{text "Field r"} in order to properly cover
 | 
| 60758 | 218 |   the case of @{text "A"} being empty.\<close>
 | 
| 55026 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 219 | |
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 220 | lemma underS_subset_under: "underS r a \<le> under r a" | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 221 | by(auto simp add: underS_def under_def) | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 222 | |
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 223 | lemma underS_notIn: "a \<notin> underS r a" | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 224 | by(simp add: underS_def) | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 225 | |
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 226 | lemma Refl_under_in: "\<lbrakk>Refl r; a \<in> Field r\<rbrakk> \<Longrightarrow> a \<in> under r a" | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 227 | by(simp add: refl_on_def under_def) | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 228 | |
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 229 | lemma AboveS_disjoint: "A Int (AboveS r A) = {}"
 | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 230 | by(auto simp add: AboveS_def) | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 231 | |
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 232 | lemma in_AboveS_underS: "a \<in> Field r \<Longrightarrow> a \<in> AboveS r (underS r a)" | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 233 | by(auto simp add: AboveS_def underS_def) | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 234 | |
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 235 | lemma Refl_under_underS: | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 236 | assumes "Refl r" "a \<in> Field r" | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 237 |   shows "under r a = underS r a \<union> {a}"
 | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 238 | unfolding under_def underS_def | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 239 | using assms refl_on_def[of _ r] by fastforce | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 240 | |
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 241 | lemma underS_empty: "a \<notin> Field r \<Longrightarrow> underS r a = {}"
 | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 242 | by (auto simp: Field_def underS_def) | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 243 | |
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 244 | lemma under_Field: "under r a \<le> Field r" | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 245 | by(unfold under_def Field_def, auto) | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 246 | |
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 247 | lemma underS_Field: "underS r a \<le> Field r" | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 248 | by(unfold underS_def Field_def, auto) | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 249 | |
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 250 | lemma underS_Field2: | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 251 | "a \<in> Field r \<Longrightarrow> underS r a < Field r" | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 252 | using underS_notIn underS_Field by fast | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 253 | |
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 254 | lemma underS_Field3: | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 255 | "Field r \<noteq> {} \<Longrightarrow> underS r a < Field r"
 | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 256 | by(cases "a \<in> Field r", simp add: underS_Field2, auto simp add: underS_empty) | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 257 | |
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 258 | lemma AboveS_Field: "AboveS r A \<le> Field r" | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 259 | by(unfold AboveS_def Field_def, auto) | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 260 | |
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 261 | lemma under_incr: | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 262 | assumes TRANS: "trans r" and REL: "(a,b) \<in> r" | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 263 | shows "under r a \<le> under r b" | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 264 | proof(unfold under_def, auto) | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 265 | fix x assume "(x,a) \<in> r" | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 266 | with REL TRANS trans_def[of r] | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 267 | show "(x,b) \<in> r" by blast | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 268 | qed | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 269 | |
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 270 | lemma underS_incr: | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 271 | assumes TRANS: "trans r" and ANTISYM: "antisym r" and | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 272 | REL: "(a,b) \<in> r" | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 273 | shows "underS r a \<le> underS r b" | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 274 | proof(unfold underS_def, auto) | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 275 | assume *: "b \<noteq> a" and **: "(b,a) \<in> r" | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 276 | with ANTISYM antisym_def[of r] REL | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 277 | show False by blast | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 278 | next | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 279 | fix x assume "x \<noteq> a" "(x,a) \<in> r" | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 280 | with REL TRANS trans_def[of r] | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 281 | show "(x,b) \<in> r" by blast | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 282 | qed | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 283 | |
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 284 | lemma underS_incl_iff: | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 285 | assumes LO: "Linear_order r" and | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 286 | INa: "a \<in> Field r" and INb: "b \<in> Field r" | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 287 | shows "(underS r a \<le> underS r b) = ((a,b) \<in> r)" | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 288 | proof | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 289 | assume "(a,b) \<in> r" | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 290 | thus "underS r a \<le> underS r b" using LO | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 291 | by (simp add: order_on_defs underS_incr) | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 292 | next | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 293 | assume *: "underS r a \<le> underS r b" | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 294 |   {assume "a = b"
 | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 295 | hence "(a,b) \<in> r" using assms | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 296 | by (simp add: order_on_defs refl_on_def) | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 297 | } | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 298 | moreover | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 299 |   {assume "a \<noteq> b \<and> (b,a) \<in> r"
 | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 300 | hence "b \<in> underS r a" unfolding underS_def by blast | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 301 | hence "b \<in> underS r b" using * by blast | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 302 | hence False by (simp add: underS_notIn) | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 303 | } | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 304 | ultimately | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 305 | show "(a,b) \<in> r" using assms | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 306 | order_on_defs[of "Field r" r] total_on_def[of "Field r" r] by blast | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 307 | qed | 
| 
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
 blanchet parents: 
54552diff
changeset | 308 | |
| 55027 | 309 | |
| 60758 | 310 | subsection \<open>Variations on Well-Founded Relations\<close> | 
| 55027 | 311 | |
| 60758 | 312 | text \<open> | 
| 55027 | 313 | This subsection contains some variations of the results from @{theory Wellfounded}:
 | 
| 314 | \begin{itemize}
 | |
| 315 | \item means for slightly more direct definitions by well-founded recursion; | |
| 316 | \item variations of well-founded induction; | |
| 317 | \item means for proving a linear order to be a well-order. | |
| 318 | \end{itemize}
 | |
| 60758 | 319 | \<close> | 
| 55027 | 320 | |
| 321 | ||
| 60758 | 322 | subsubsection \<open>Characterizations of well-foundedness\<close> | 
| 55027 | 323 | |
| 60758 | 324 | text \<open>A transitive relation is well-founded iff it is ``locally'' well-founded, | 
| 325 | i.e., iff its restriction to the lower bounds of of any element is well-founded.\<close> | |
| 55027 | 326 | |
| 327 | lemma trans_wf_iff: | |
| 328 | assumes "trans r" | |
| 329 | shows "wf r = (\<forall>a. wf(r Int (r^-1``{a} \<times> r^-1``{a})))"
 | |
| 330 | proof- | |
| 331 |   obtain R where R_def: "R = (\<lambda> a. r Int (r^-1``{a} \<times> r^-1``{a}))" by blast
 | |
| 332 |   {assume *: "wf r"
 | |
| 333 |    {fix a
 | |
| 334 | have "wf(R a)" | |
| 335 | using * R_def wf_subset[of r "R a"] by auto | |
| 336 | } | |
| 337 | } | |
| 338 | (* *) | |
| 339 | moreover | |
| 340 |   {assume *: "\<forall>a. wf(R a)"
 | |
| 341 | have "wf r" | |
| 342 | proof(unfold wf_def, clarify) | |
| 343 | fix phi a | |
| 344 | assume **: "\<forall>a. (\<forall>b. (b,a) \<in> r \<longrightarrow> phi b) \<longrightarrow> phi a" | |
| 345 | obtain chi where chi_def: "chi = (\<lambda>b. (b,a) \<in> r \<longrightarrow> phi b)" by blast | |
| 346 | with * have "wf (R a)" by auto | |
| 347 | hence "(\<forall>b. (\<forall>c. (c,b) \<in> R a \<longrightarrow> chi c) \<longrightarrow> chi b) \<longrightarrow> (\<forall>b. chi b)" | |
| 348 | unfolding wf_def by blast | |
| 349 | moreover | |
| 350 | have "\<forall>b. (\<forall>c. (c,b) \<in> R a \<longrightarrow> chi c) \<longrightarrow> chi b" | |
| 351 | proof(auto simp add: chi_def R_def) | |
| 352 | fix b | |
| 353 | assume 1: "(b,a) \<in> r" and 2: "\<forall>c. (c, b) \<in> r \<and> (c, a) \<in> r \<longrightarrow> phi c" | |
| 354 | hence "\<forall>c. (c, b) \<in> r \<longrightarrow> phi c" | |
| 355 | using assms trans_def[of r] by blast | |
| 356 | thus "phi b" using ** by blast | |
| 357 | qed | |
| 358 | ultimately have "\<forall>b. chi b" by (rule mp) | |
| 359 | with ** chi_def show "phi a" by blast | |
| 360 | qed | |
| 361 | } | |
| 362 | ultimately show ?thesis using R_def by blast | |
| 363 | qed | |
| 364 | ||
| 60758 | 365 | text \<open>The next lemma is a variation of @{text "wf_eq_minimal"} from Wellfounded,
 | 
| 366 | allowing one to assume the set included in the field.\<close> | |
| 55027 | 367 | |
| 368 | lemma wf_eq_minimal2: | |
| 369 | "wf r = (\<forall>A. A <= Field r \<and> A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. \<not> (a',a) \<in> r))"
 | |
| 370 | proof- | |
| 371 |   let ?phi = "\<lambda> A. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. \<not> (a',a) \<in> r)"
 | |
| 372 | have "wf r = (\<forall>A. ?phi A)" | |
| 373 | by (auto simp: ex_in_conv [THEN sym], erule wfE_min, assumption, blast) | |
| 374 | (rule wfI_min, fast) | |
| 375 | (* *) | |
| 376 | also have "(\<forall>A. ?phi A) = (\<forall>B \<le> Field r. ?phi B)" | |
| 377 | proof | |
| 378 | assume "\<forall>A. ?phi A" | |
| 379 | thus "\<forall>B \<le> Field r. ?phi B" by simp | |
| 380 | next | |
| 381 | assume *: "\<forall>B \<le> Field r. ?phi B" | |
| 382 | show "\<forall>A. ?phi A" | |
| 383 | proof(clarify) | |
| 384 |       fix A::"'a set" assume **: "A \<noteq> {}"
 | |
| 385 | obtain B where B_def: "B = A Int (Field r)" by blast | |
| 386 | show "\<exists>a \<in> A. \<forall>a' \<in> A. (a',a) \<notin> r" | |
| 387 |       proof(cases "B = {}")
 | |
| 388 |         assume Case1: "B = {}"
 | |
| 389 | obtain a where 1: "a \<in> A \<and> a \<notin> Field r" | |
| 390 | using ** Case1 unfolding B_def by blast | |
| 391 | hence "\<forall>a' \<in> A. (a',a) \<notin> r" using 1 unfolding Field_def by blast | |
| 392 | thus ?thesis using 1 by blast | |
| 393 | next | |
| 394 |         assume Case2: "B \<noteq> {}" have 1: "B \<le> Field r" unfolding B_def by blast
 | |
| 395 | obtain a where 2: "a \<in> B \<and> (\<forall>a' \<in> B. (a',a) \<notin> r)" | |
| 396 | using Case2 1 * by blast | |
| 397 | have "\<forall>a' \<in> A. (a',a) \<notin> r" | |
| 398 | proof(clarify) | |
| 399 | fix a' assume "a' \<in> A" and **: "(a',a) \<in> r" | |
| 400 | hence "a' \<in> B" unfolding B_def Field_def by blast | |
| 401 | thus False using 2 ** by blast | |
| 402 | qed | |
| 403 | thus ?thesis using 2 unfolding B_def by blast | |
| 404 | qed | |
| 405 | qed | |
| 406 | qed | |
| 407 | finally show ?thesis by blast | |
| 408 | qed | |
| 409 | ||
| 410 | ||
| 60758 | 411 | subsubsection \<open>Characterizations of well-foundedness\<close> | 
| 55027 | 412 | |
| 60758 | 413 | text \<open>The next lemma and its corollary enable one to prove that | 
| 55027 | 414 | a linear order is a well-order in a way which is more standard than | 
| 60758 | 415 | via well-foundedness of the strict version of the relation.\<close> | 
| 55027 | 416 | |
| 417 | lemma Linear_order_wf_diff_Id: | |
| 418 | assumes LI: "Linear_order r" | |
| 419 | shows "wf(r - Id) = (\<forall>A \<le> Field r. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a,a') \<in> r))"
 | |
| 420 | proof(cases "r \<le> Id") | |
| 421 | assume Case1: "r \<le> Id" | |
| 422 |   hence temp: "r - Id = {}" by blast
 | |
| 423 | hence "wf(r - Id)" by (simp add: temp) | |
| 424 | moreover | |
| 425 |   {fix A assume *: "A \<le> Field r" and **: "A \<noteq> {}"
 | |
| 426 |    obtain a where 1: "r = {} \<or> r = {(a,a)}" using LI
 | |
| 427 | unfolding order_on_defs using Case1 Total_subset_Id by auto | |
| 428 |    hence "A = {a} \<and> r = {(a,a)}" using * ** unfolding Field_def by blast
 | |
| 429 | hence "\<exists>a \<in> A. \<forall>a' \<in> A. (a,a') \<in> r" using 1 by blast | |
| 430 | } | |
| 431 | ultimately show ?thesis by blast | |
| 432 | next | |
| 433 | assume Case2: "\<not> r \<le> Id" | |
| 434 | hence 1: "Field r = Field(r - Id)" using Total_Id_Field LI | |
| 435 | unfolding order_on_defs by blast | |
| 436 | show ?thesis | |
| 437 | proof | |
| 438 | assume *: "wf(r - Id)" | |
| 439 |     show "\<forall>A \<le> Field r. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a,a') \<in> r)"
 | |
| 440 | proof(clarify) | |
| 441 |       fix A assume **: "A \<le> Field r" and ***: "A \<noteq> {}"
 | |
| 442 | hence "\<exists>a \<in> A. \<forall>a' \<in> A. (a',a) \<notin> r - Id" | |
| 443 | using 1 * unfolding wf_eq_minimal2 by simp | |
| 444 | moreover have "\<forall>a \<in> A. \<forall>a' \<in> A. ((a,a') \<in> r) = ((a',a) \<notin> r - Id)" | |
| 445 | using Linear_order_in_diff_Id[of r] ** LI by blast | |
| 446 | ultimately show "\<exists>a \<in> A. \<forall>a' \<in> A. (a,a') \<in> r" by blast | |
| 447 | qed | |
| 448 | next | |
| 449 |     assume *: "\<forall>A \<le> Field r. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a,a') \<in> r)"
 | |
| 450 | show "wf(r - Id)" | |
| 451 | proof(unfold wf_eq_minimal2, clarify) | |
| 452 |       fix A assume **: "A \<le> Field(r - Id)" and ***: "A \<noteq> {}"
 | |
| 453 | hence "\<exists>a \<in> A. \<forall>a' \<in> A. (a,a') \<in> r" | |
| 454 | using 1 * by simp | |
| 455 | moreover have "\<forall>a \<in> A. \<forall>a' \<in> A. ((a,a') \<in> r) = ((a',a) \<notin> r - Id)" | |
| 456 | using Linear_order_in_diff_Id[of r] ** LI mono_Field[of "r - Id" r] by blast | |
| 457 | ultimately show "\<exists>a \<in> A. \<forall>a' \<in> A. (a',a) \<notin> r - Id" by blast | |
| 458 | qed | |
| 459 | qed | |
| 460 | qed | |
| 461 | ||
| 462 | corollary Linear_order_Well_order_iff: | |
| 463 | assumes "Linear_order r" | |
| 464 | shows "Well_order r = (\<forall>A \<le> Field r. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a,a') \<in> r))"
 | |
| 465 | using assms unfolding well_order_on_def using Linear_order_wf_diff_Id[of r] by blast | |
| 466 | ||
| 26273 | 467 | end |