| 2114 |      1 | (*  Title:      Provers/nat_transitive.ML
 | 
|  |      2 |     ID:         $Id$
 | 
|  |      3 |     Author:     Tobias Nipkow
 | 
|  |      4 |     Copyright   1996  TU Munich
 | 
|  |      5 | *)
 | 
|  |      6 | 
 | 
|  |      7 | (***
 | 
|  |      8 | A very simple package for inequalities over nat.
 | 
|  |      9 | It uses all premises of the form
 | 
|  |     10 | 
 | 
|  |     11 | t = u, t < u, t <= u, ~(t < u), ~(t <= u)
 | 
|  |     12 | 
 | 
|  |     13 | where t and u must be of type nat, to
 | 
| 2273 |     14 | 1. either derive a contradiction,
 | 
| 2114 |     15 |    in which case the conclusion can be any term,
 | 
|  |     16 | 2. or prove the conclusion, which must be of the same form as the premises.
 | 
|  |     17 | 
 | 
|  |     18 | The package
 | 
|  |     19 | - does not deal with the relation ~=
 | 
|  |     20 | - treats `pred', +, *, ... as atomic terms. Hence it can prove
 | 
|  |     21 |   [| x < y+z; y+z < u |] ==> Suc x < u
 | 
|  |     22 |   but not
 | 
|  |     23 |   [| x < y+z; z < u |] ==> Suc x < y+u
 | 
|  |     24 | - takes only (in)equalities which are atomic premises into account. It does
 | 
|  |     25 |   not deal with logical operators like -->, & etc. Hence it cannot prove 
 | 
|  |     26 |   [| x < y+z & y+z < u |] ==> Suc x < u
 | 
|  |     27 | 
 | 
|  |     28 | In order not to fall foul of the above limitations, the following hints are
 | 
|  |     29 | useful:
 | 
|  |     30 | 
 | 
|  |     31 | 1. You may need to run `by(safe_tac HOL_cs)' in order to bring out the atomic
 | 
|  |     32 |    premises.
 | 
|  |     33 | 
 | 
|  |     34 | 2. To get rid of ~= in the premises, it is advisable to use a rule like
 | 
|  |     35 |    nat_neqE = "[| (m::nat) ~= n; m < n ==> P; n < m ==> P |] ==> P" : thm
 | 
|  |     36 |    (the name nat_eqE is chosen in HOL), for example as follows:
 | 
|  |     37 |    by(safe_tac (HOL_cs addSEs [nat_neqE])
 | 
|  |     38 | 
 | 
|  |     39 | 3. To get rid of `pred', you may be able to do the following:
 | 
|  |     40 |    expand `pred(m)' into `case m of 0 => 0 | Suc n => n' and use split_tac
 | 
|  |     41 |    to turn the case-expressions into logical case distinctions. In HOL:
 | 
|  |     42 |    simp_tac (... addsimps [pred_def] setloop (split_tac [expand_nat_case]))
 | 
|  |     43 | 
 | 
|  |     44 | The basic tactic is `trans_tac'. In order to use `trans_tac' as a solver in
 | 
|  |     45 | the simplifier, `cut_trans_tac' is also provided, which cuts the given thms
 | 
|  |     46 | in as facts.
 | 
|  |     47 | 
 | 
|  |     48 | Notes:
 | 
|  |     49 | - It should easily be possible to adapt this package to other numeric types
 | 
|  |     50 |   like int.
 | 
|  |     51 | - There is ample scope for optimizations, which so far have not proved
 | 
|  |     52 |   necessary.
 | 
|  |     53 | - The code can be simplified by adding the negated conclusion to the
 | 
|  |     54 |   premises to derive a contradiction. However, this would restrict the
 | 
|  |     55 |   package to classical logics.
 | 
|  |     56 | ***)
 | 
|  |     57 | 
 | 
|  |     58 | (* The package works for arbitrary logics.
 | 
|  |     59 |    You just need to instantiate the following parameter structure.
 | 
|  |     60 | *)
 | 
|  |     61 | signature LESS_ARITH =
 | 
|  |     62 | sig
 | 
|  |     63 |   val lessI:            thm (* n < Suc n *)
 | 
|  |     64 |   val zero_less_Suc:    thm (* 0 < Suc n *)
 | 
|  |     65 |   val less_reflE:       thm (* n < n ==> P *)
 | 
|  |     66 |   val less_zeroE:       thm (* n < 0 ==> P *)
 | 
|  |     67 |   val less_incr:        thm (* m < n ==> Suc m < Suc n *)
 | 
|  |     68 |   val less_decr:        thm (* Suc m < Suc n ==> m < n *)
 | 
|  |     69 |   val less_incr_rhs:    thm (* m < n ==> m < Suc n *)
 | 
|  |     70 |   val less_decr_lhs:    thm (* Suc m < n ==> m < n *)
 | 
|  |     71 |   val less_trans_Suc:   thm (* [| i < j; j < k |] ==> Suc i < k *)
 | 
|  |     72 |   val leD:              thm (* m <= n ==> m < Suc n *)
 | 
|  |     73 |   val not_lessD:        thm (* ~(m < n) ==> n < Suc m *)
 | 
|  |     74 |   val not_leD:          thm (* ~(m <= n) ==> n < m *)
 | 
|  |     75 |   val eqD1:             thm (* m = n ==> m < Suc n *)
 | 
|  |     76 |   val eqD2:             thm (* m = n ==> m < Suc n *)
 | 
|  |     77 |   val not_lessI:        thm (* n < Suc m ==> ~(m < n) *)
 | 
|  |     78 |   val leI:              thm (* m < Suc n ==> m <= n *)
 | 
|  |     79 |   val not_leI:          thm (* n < m ==> ~(m <= n) *)
 | 
|  |     80 |   val eqI:              thm (* [| m < Suc n; n < Suc m |] ==> n = m *)
 | 
|  |     81 |   val is_zero: term -> bool
 | 
|  |     82 |   val decomp:  term -> (term * int * string * term * int)option
 | 
|  |     83 | (* decomp(`Suc^i(x) Rel Suc^j(y)') should yield (x,i,Rel,y,j)
 | 
|  |     84 |    where Rel is one of "<", "~<", "<=", "~<=" and "=" *)
 | 
|  |     85 | end;
 | 
|  |     86 | 
 | 
|  |     87 | 
 | 
|  |     88 | signature TRANS_TAC =
 | 
|  |     89 | sig
 | 
|  |     90 |   val trans_tac: int -> tactic
 | 
|  |     91 |   val cut_trans_tac: thm list -> int -> tactic
 | 
|  |     92 | end;
 | 
|  |     93 | 
 | 
|  |     94 | functor Trans_Tac_Fun(Less:LESS_ARITH):TRANS_TAC =
 | 
|  |     95 | struct
 | 
|  |     96 | 
 | 
|  |     97 | datatype proof = Asm of int
 | 
|  |     98 |                | Thm of proof list * thm
 | 
|  |     99 |                | Incr1 of proof * int (* Increment 1 side *)
 | 
|  |    100 |                | Incr2 of proof * int (* Increment 2 sides *);
 | 
|  |    101 | 
 | 
|  |    102 | 
 | 
|  |    103 | (*** Turn proof objects into thms ***)
 | 
|  |    104 | 
 | 
|  |    105 | fun incr2(th,i) = if i=0 then th else
 | 
|  |    106 |                   if i>0 then incr2(th RS Less.less_incr,i-1)
 | 
|  |    107 |                   else incr2(th RS Less.less_decr,i+1);
 | 
|  |    108 | 
 | 
|  |    109 | fun incr1(th,i) = if i=0 then th else
 | 
|  |    110 |                   if i>0 then incr1(th RS Less.less_incr_rhs,i-1)
 | 
|  |    111 |                   else incr1(th RS Less.less_decr_lhs,i+1);
 | 
|  |    112 | 
 | 
|  |    113 | fun prove asms =
 | 
|  |    114 |   let fun pr(Asm i) = nth_elem(i,asms)
 | 
|  |    115 |         | pr(Thm(prfs,thm)) = (map pr prfs) MRS thm
 | 
|  |    116 |         | pr(Incr1(p,i)) = incr1(pr p,i)
 | 
|  |    117 |         | pr(Incr2(p,i)) = incr2(pr p,i)
 | 
|  |    118 |   in pr end;
 | 
|  |    119 | 
 | 
|  |    120 | (*** Internal representation of inequalities
 | 
|  |    121 | (x,i,y,j) means x+i < y+j.
 | 
|  |    122 | Leads to simpler case distinctions than the normalized x < y+k
 | 
|  |    123 | ***)
 | 
|  |    124 | type less = term * int * term * int * proof;
 | 
|  |    125 | 
 | 
|  |    126 | (*** raised when contradiction is found ***)
 | 
|  |    127 | exception Contr of proof;
 | 
|  |    128 | 
 | 
|  |    129 | (*** raised when goal can't be proved ***)
 | 
|  |    130 | exception Cant;
 | 
|  |    131 | 
 | 
|  |    132 | infix subsumes;
 | 
|  |    133 | 
 | 
|  |    134 | fun (x,i,y,j:int,_) subsumes (x',i',y',j',_) =
 | 
|  |    135 |   x=x' andalso y=y' andalso j-i<=j'-i';
 | 
|  |    136 | 
 | 
|  |    137 | fun trivial(x,i:int,y,j,_)  =  (x=y orelse Less.is_zero(x)) andalso i<j;
 | 
|  |    138 | 
 | 
|  |    139 | (*** transitive closure ***)
 | 
|  |    140 | 
 | 
|  |    141 | (* Very naive: computes all consequences of a set of less-statements. *)
 | 
|  |    142 | (* In the worst case very expensive not just in time but also space *)
 | 
|  |    143 | (* Could easily be optimized but there are ususally only a few < asms *)
 | 
|  |    144 | 
 | 
|  |    145 | fun add new =
 | 
|  |    146 |   let fun adds([],news) = new::news
 | 
|  |    147 |         | adds(old::olds,news) = if new subsumes old then adds(olds,news)
 | 
|  |    148 |                                  else adds(olds,old::news)
 | 
|  |    149 |   in adds end;
 | 
|  |    150 | 
 | 
|  |    151 | fun ctest(less as (x,i,y,j,p)) =
 | 
|  |    152 |   if x=y andalso i>=j
 | 
|  |    153 |   then raise Contr(Thm([Incr1(Incr2(p,~j),j-i)],Less.less_reflE)) else
 | 
|  |    154 |   if Less.is_zero(y) andalso i>=j
 | 
|  |    155 |   then raise Contr(Thm([Incr2(p,~j)],Less.less_zeroE))
 | 
|  |    156 |   else less;
 | 
|  |    157 | 
 | 
|  |    158 | fun mktrans((x,i,_,j,p):less,(_,k,z,l,q)) =
 | 
|  |    159 |   ctest(if j >= k
 | 
|  |    160 |         then (x,i+1,z,l+(j-k),Thm([p,Incr2(q,j-k)],Less.less_trans_Suc))
 | 
|  |    161 |         else (x,i+(k-j)+1,z,l,Thm([Incr2(p,k-j),q],Less.less_trans_Suc)));
 | 
|  |    162 | 
 | 
|  |    163 | fun trans (new as (x,i,y,j,p)) olds =
 | 
|  |    164 |   let fun tr(news, old as (x1,i1,y1,j1,p1):less) =
 | 
|  |    165 |            if y1=x then mktrans(old,new)::news else
 | 
|  |    166 |            if x1=y then mktrans(new,old)::news else news
 | 
|  |    167 |   in foldl tr ([],olds) end;
 | 
|  |    168 | 
 | 
|  |    169 | fun close1(olds: less list)(new:less):less list =
 | 
|  |    170 |       if trivial new orelse exists (fn old => old subsumes new) olds then olds
 | 
|  |    171 |       else let val news = trans new olds
 | 
|  |    172 |            in  close (add new (olds,[])) news end
 | 
|  |    173 | and close (olds: less list) ([]:less list) = olds
 | 
|  |    174 |   | close olds ((new:less)::news) = close (close1 olds (ctest new)) news;
 | 
|  |    175 | 
 | 
|  |    176 | (*** end of transitive closure ***)
 | 
|  |    177 | 
 | 
|  |    178 | (* recognize and solve trivial goal *)
 | 
|  |    179 | fun triv_sol(x,i,y,j,_) =
 | 
|  |    180 |   if x=y andalso i<j
 | 
| 2920 |    181 |   then Some(Incr1(Incr2(Thm([],Less.lessI),i),j-i-1)) else
 | 
| 2114 |    182 |   if Less.is_zero(x) andalso i<j
 | 
|  |    183 |   then Some(Incr1(Incr2(Thm([],Less.zero_less_Suc),i),j-i-1))
 | 
|  |    184 |   else None;
 | 
|  |    185 | 
 | 
|  |    186 | (* solve less starting from facts *)
 | 
|  |    187 | fun solve facts (less as (x,i,y,j,_)) =
 | 
|  |    188 |   case triv_sol less of
 | 
|  |    189 |     None => (case find_first (fn fact => fact subsumes less) facts of
 | 
|  |    190 |                None => raise Cant
 | 
|  |    191 |              | Some(a,m,b,n,p) => Incr1(Incr2(p,j-n),n+i-m-j))
 | 
|  |    192 |   | Some prf => prf;
 | 
|  |    193 | 
 | 
|  |    194 | (* turn term into a less-tuple *)
 | 
|  |    195 | fun mkasm(t,n) =
 | 
|  |    196 |   case Less.decomp(t) of
 | 
|  |    197 |     Some(x,i,rel,y,j) => (case rel of
 | 
|  |    198 |       "<"   => [(x,i,y,j,Asm n)]
 | 
|  |    199 |     | "~<"  => [(y,j,x,i+1,Thm([Asm n],Less.not_lessD))]
 | 
|  |    200 |     | "<="  => [(x,i,y,j+1,Thm([Asm n],Less.leD))]
 | 
|  |    201 |     | "~<=" => [(y,j,x,i,Thm([Asm n],Less.not_leD))]
 | 
|  |    202 |     | "="   => [(x,i,y,j+1,Thm([Asm n],Less.eqD1)),
 | 
|  |    203 |                 (y,j,x,i+1,Thm([Asm n],Less.eqD2))]
 | 
|  |    204 |     | "~="  => []
 | 
|  |    205 |     | _     => error("trans_tac/decomp: unknown relation " ^ rel))
 | 
|  |    206 |   | None => [];
 | 
|  |    207 | 
 | 
|  |    208 | (* mkconcl t returns a pair (goals,proof) where goals is a list of *)
 | 
|  |    209 | (* less-subgoals to solve, and proof the validation which proves the concl t *)
 | 
|  |    210 | (* from the subgoals. Asm ~1 is dummy *)
 | 
|  |    211 | fun mkconcl t =
 | 
|  |    212 |   case Less.decomp(t) of
 | 
|  |    213 |     Some(x,i,rel,y,j) => (case rel of
 | 
|  |    214 |       "<"   => ([(x,i,y,j,Asm ~1)],Asm 0)
 | 
|  |    215 |     | "~<"  => ([(y,j,x,i+1,Asm ~1)],Thm([Asm 0],Less.not_lessI))
 | 
|  |    216 |     | "<="  => ([(x,i,y,j+1,Asm ~1)],Thm([Asm 0],Less.leI))
 | 
|  |    217 |     | "~<=" => ([(y,j,x,i,Asm ~1)],Thm([Asm 0],Less.not_leI))
 | 
|  |    218 |     | "="   => ([(x,i,y,j+1,Asm ~1),(y,j,x,i+1,Asm ~1)],
 | 
|  |    219 |                 Thm([Asm 0,Asm 1],Less.eqI))
 | 
|  |    220 |     | "~="  => raise Cant
 | 
|  |    221 |     | _     => error("trans_tac/decomp: unknown relation " ^ rel))
 | 
|  |    222 |   | None => raise Cant;
 | 
|  |    223 | 
 | 
|  |    224 | 
 | 
|  |    225 | val trans_tac = SUBGOAL (fn (A,n) =>
 | 
|  |    226 |   let val Hs = Logic.strip_assums_hyp A
 | 
|  |    227 |       val C = Logic.strip_assums_concl A
 | 
| 2273 |    228 |       val lesss = flat(ListPair.map mkasm (Hs, 0 upto (length Hs - 1)))
 | 
| 2114 |    229 |       val clesss = close [] lesss
 | 
|  |    230 |       val (subgoals,prf) = mkconcl C
 | 
|  |    231 |       val prfs = map (solve clesss) subgoals
 | 
|  |    232 |   in METAHYPS (fn asms => let val thms = map (prove asms) prfs
 | 
|  |    233 |                           in rtac (prove thms prf) 1 end) n
 | 
|  |    234 |   end
 | 
|  |    235 |   handle Contr(p) => METAHYPS (fn asms => rtac (prove asms p) 1) n
 | 
|  |    236 |        | Cant => no_tac);
 | 
|  |    237 | 
 | 
|  |    238 | fun cut_trans_tac thms = cut_facts_tac thms THEN' trans_tac;
 | 
|  |    239 | 
 | 
|  |    240 | end;
 | 
|  |    241 | 
 | 
|  |    242 | (*** Tests
 | 
|  |    243 | fun test s = prove_goal Nat.thy ("!!m::nat." ^ s) (fn _ => [trans_tac 1]);
 | 
|  |    244 | 
 | 
|  |    245 | test "[| i<j; j<=k; ~(l < Suc k); ~(m <= l) |] ==> Suc(Suc i) < m";
 | 
|  |    246 | test "[| i<j; j<=k; ~(l < Suc k); ~(m <= l) |] ==> Suc(Suc(Suc i)) <= m";
 | 
|  |    247 | test "[| i<j; j<=k; ~(l < Suc k); ~(m <= l) |] ==> ~ m <= Suc(Suc i)";
 | 
|  |    248 | test "[| i<j; j<=k; ~(l < Suc k); ~(m <= l) |] ==> ~ m < Suc(Suc(Suc i))";
 | 
|  |    249 | test "[| i<j; j<=k; ~(l < Suc k); ~(m <= l); m <= Suc(Suc(Suc i)) |] \
 | 
|  |    250 | \     ==> m = Suc(Suc(Suc i))";
 | 
|  |    251 | test "[| i<j; j<=k; ~(l < Suc k); ~(m <= l); m=n; n <= Suc(Suc(Suc i)) |] \
 | 
|  |    252 | \     ==> m = Suc(Suc(Suc i))";
 | 
|  |    253 | ***)
 |