| author | berghofe | 
| Wed, 11 Jul 2007 11:52:00 +0200 | |
| changeset 23774 | 07968f8cc662 | 
| parent 23389 | aaca6a8e5414 | 
| child 23878 | bd651ecd4b8a | 
| permissions | -rw-r--r-- | 
| 21249 | 1 | (* Title: HOL/Lattices.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Tobias Nipkow | |
| 4 | *) | |
| 5 | ||
| 22454 | 6 | header {* Abstract lattices *}
 | 
| 21249 | 7 | |
| 8 | theory Lattices | |
| 9 | imports Orderings | |
| 10 | begin | |
| 11 | ||
| 12 | subsection{* Lattices *}
 | |
| 13 | ||
| 22454 | 14 | text{*
 | 
| 15 | This theory of lattices only defines binary sup and inf | |
| 22916 | 16 | operations. The extension to complete lattices is done in theory | 
| 17 |   @{text FixedPoint}.
 | |
| 22454 | 18 | *} | 
| 21249 | 19 | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 20 | class lower_semilattice = order + | 
| 21249 | 21 | fixes inf :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<sqinter>" 70) | 
| 22737 | 22 | assumes inf_le1 [simp]: "x \<sqinter> y \<sqsubseteq> x" | 
| 23 | and inf_le2 [simp]: "x \<sqinter> y \<sqsubseteq> y" | |
| 21733 | 24 | and inf_greatest: "x \<sqsubseteq> y \<Longrightarrow> x \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> y \<sqinter> z" | 
| 21249 | 25 | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 26 | class upper_semilattice = order + | 
| 21249 | 27 | fixes sup :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<squnion>" 65) | 
| 22737 | 28 | assumes sup_ge1 [simp]: "x \<sqsubseteq> x \<squnion> y" | 
| 29 | and sup_ge2 [simp]: "y \<sqsubseteq> x \<squnion> y" | |
| 21733 | 30 | and sup_least: "y \<sqsubseteq> x \<Longrightarrow> z \<sqsubseteq> x \<Longrightarrow> y \<squnion> z \<sqsubseteq> x" | 
| 21249 | 31 | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 32 | class lattice = lower_semilattice + upper_semilattice | 
| 21249 | 33 | |
| 21733 | 34 | subsubsection{* Intro and elim rules*}
 | 
| 35 | ||
| 36 | context lower_semilattice | |
| 37 | begin | |
| 21249 | 38 | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 39 | lemmas antisym_intro [intro!] = antisym | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 40 | lemmas (in -) [rule del] = antisym_intro | 
| 21249 | 41 | |
| 21734 | 42 | lemma le_infI1[intro]: "a \<sqsubseteq> x \<Longrightarrow> a \<sqinter> b \<sqsubseteq> x" | 
| 21733 | 43 | apply(subgoal_tac "a \<sqinter> b \<sqsubseteq> a") | 
| 22384 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 haftmann parents: 
22168diff
changeset | 44 | apply(blast intro: order_trans) | 
| 21733 | 45 | apply simp | 
| 46 | done | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 47 | lemmas (in -) [rule del] = le_infI1 | 
| 21249 | 48 | |
| 21734 | 49 | lemma le_infI2[intro]: "b \<sqsubseteq> x \<Longrightarrow> a \<sqinter> b \<sqsubseteq> x" | 
| 21733 | 50 | apply(subgoal_tac "a \<sqinter> b \<sqsubseteq> b") | 
| 22384 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 haftmann parents: 
22168diff
changeset | 51 | apply(blast intro: order_trans) | 
| 21733 | 52 | apply simp | 
| 53 | done | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 54 | lemmas (in -) [rule del] = le_infI2 | 
| 21733 | 55 | |
| 21734 | 56 | lemma le_infI[intro!]: "x \<sqsubseteq> a \<Longrightarrow> x \<sqsubseteq> b \<Longrightarrow> x \<sqsubseteq> a \<sqinter> b" | 
| 21733 | 57 | by(blast intro: inf_greatest) | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 58 | lemmas (in -) [rule del] = le_infI | 
| 21249 | 59 | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 60 | lemma le_infE [elim!]: "x \<sqsubseteq> a \<sqinter> b \<Longrightarrow> (x \<sqsubseteq> a \<Longrightarrow> x \<sqsubseteq> b \<Longrightarrow> P) \<Longrightarrow> P" | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 61 | by (blast intro: order_trans) | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 62 | lemmas (in -) [rule del] = le_infE | 
| 21249 | 63 | |
| 21734 | 64 | lemma le_inf_iff [simp]: | 
| 21733 | 65 | "x \<sqsubseteq> y \<sqinter> z = (x \<sqsubseteq> y \<and> x \<sqsubseteq> z)" | 
| 66 | by blast | |
| 67 | ||
| 21734 | 68 | lemma le_iff_inf: "(x \<sqsubseteq> y) = (x \<sqinter> y = x)" | 
| 22168 | 69 | by(blast dest:eq_iff[THEN iffD1]) | 
| 21249 | 70 | |
| 21733 | 71 | end | 
| 72 | ||
| 73 | ||
| 74 | context upper_semilattice | |
| 75 | begin | |
| 21249 | 76 | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 77 | lemmas antisym_intro [intro!] = antisym | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 78 | lemmas (in -) [rule del] = antisym_intro | 
| 21249 | 79 | |
| 21734 | 80 | lemma le_supI1[intro]: "x \<sqsubseteq> a \<Longrightarrow> x \<sqsubseteq> a \<squnion> b" | 
| 21733 | 81 | apply(subgoal_tac "a \<sqsubseteq> a \<squnion> b") | 
| 22384 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 haftmann parents: 
22168diff
changeset | 82 | apply(blast intro: order_trans) | 
| 21733 | 83 | apply simp | 
| 84 | done | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 85 | lemmas (in -) [rule del] = le_supI1 | 
| 21249 | 86 | |
| 21734 | 87 | lemma le_supI2[intro]: "x \<sqsubseteq> b \<Longrightarrow> x \<sqsubseteq> a \<squnion> b" | 
| 21733 | 88 | apply(subgoal_tac "b \<sqsubseteq> a \<squnion> b") | 
| 22384 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 haftmann parents: 
22168diff
changeset | 89 | apply(blast intro: order_trans) | 
| 21733 | 90 | apply simp | 
| 91 | done | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 92 | lemmas (in -) [rule del] = le_supI2 | 
| 21733 | 93 | |
| 21734 | 94 | lemma le_supI[intro!]: "a \<sqsubseteq> x \<Longrightarrow> b \<sqsubseteq> x \<Longrightarrow> a \<squnion> b \<sqsubseteq> x" | 
| 21733 | 95 | by(blast intro: sup_least) | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 96 | lemmas (in -) [rule del] = le_supI | 
| 21249 | 97 | |
| 21734 | 98 | lemma le_supE[elim!]: "a \<squnion> b \<sqsubseteq> x \<Longrightarrow> (a \<sqsubseteq> x \<Longrightarrow> b \<sqsubseteq> x \<Longrightarrow> P) \<Longrightarrow> P" | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 99 | by (blast intro: order_trans) | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 100 | lemmas (in -) [rule del] = le_supE | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 101 | |
| 21249 | 102 | |
| 21734 | 103 | lemma ge_sup_conv[simp]: | 
| 21733 | 104 | "x \<squnion> y \<sqsubseteq> z = (x \<sqsubseteq> z \<and> y \<sqsubseteq> z)" | 
| 105 | by blast | |
| 106 | ||
| 21734 | 107 | lemma le_iff_sup: "(x \<sqsubseteq> y) = (x \<squnion> y = y)" | 
| 22168 | 108 | by(blast dest:eq_iff[THEN iffD1]) | 
| 21734 | 109 | |
| 21733 | 110 | end | 
| 111 | ||
| 112 | ||
| 113 | subsubsection{* Equational laws *}
 | |
| 21249 | 114 | |
| 115 | ||
| 21733 | 116 | context lower_semilattice | 
| 117 | begin | |
| 118 | ||
| 119 | lemma inf_commute: "(x \<sqinter> y) = (y \<sqinter> x)" | |
| 120 | by blast | |
| 121 | ||
| 122 | lemma inf_assoc: "(x \<sqinter> y) \<sqinter> z = x \<sqinter> (y \<sqinter> z)" | |
| 123 | by blast | |
| 124 | ||
| 125 | lemma inf_idem[simp]: "x \<sqinter> x = x" | |
| 126 | by blast | |
| 127 | ||
| 128 | lemma inf_left_idem[simp]: "x \<sqinter> (x \<sqinter> y) = x \<sqinter> y" | |
| 129 | by blast | |
| 130 | ||
| 131 | lemma inf_absorb1: "x \<sqsubseteq> y \<Longrightarrow> x \<sqinter> y = x" | |
| 132 | by blast | |
| 133 | ||
| 134 | lemma inf_absorb2: "y \<sqsubseteq> x \<Longrightarrow> x \<sqinter> y = y" | |
| 135 | by blast | |
| 136 | ||
| 137 | lemma inf_left_commute: "x \<sqinter> (y \<sqinter> z) = y \<sqinter> (x \<sqinter> z)" | |
| 138 | by blast | |
| 139 | ||
| 140 | lemmas inf_ACI = inf_commute inf_assoc inf_left_commute inf_left_idem | |
| 141 | ||
| 142 | end | |
| 143 | ||
| 144 | ||
| 145 | context upper_semilattice | |
| 146 | begin | |
| 21249 | 147 | |
| 21733 | 148 | lemma sup_commute: "(x \<squnion> y) = (y \<squnion> x)" | 
| 149 | by blast | |
| 150 | ||
| 151 | lemma sup_assoc: "(x \<squnion> y) \<squnion> z = x \<squnion> (y \<squnion> z)" | |
| 152 | by blast | |
| 153 | ||
| 154 | lemma sup_idem[simp]: "x \<squnion> x = x" | |
| 155 | by blast | |
| 156 | ||
| 157 | lemma sup_left_idem[simp]: "x \<squnion> (x \<squnion> y) = x \<squnion> y" | |
| 158 | by blast | |
| 159 | ||
| 160 | lemma sup_absorb1: "y \<sqsubseteq> x \<Longrightarrow> x \<squnion> y = x" | |
| 161 | by blast | |
| 162 | ||
| 163 | lemma sup_absorb2: "x \<sqsubseteq> y \<Longrightarrow> x \<squnion> y = y" | |
| 164 | by blast | |
| 21249 | 165 | |
| 21733 | 166 | lemma sup_left_commute: "x \<squnion> (y \<squnion> z) = y \<squnion> (x \<squnion> z)" | 
| 167 | by blast | |
| 168 | ||
| 169 | lemmas sup_ACI = sup_commute sup_assoc sup_left_commute sup_left_idem | |
| 170 | ||
| 171 | end | |
| 21249 | 172 | |
| 21733 | 173 | context lattice | 
| 174 | begin | |
| 175 | ||
| 176 | lemma inf_sup_absorb: "x \<sqinter> (x \<squnion> y) = x" | |
| 177 | by(blast intro: antisym inf_le1 inf_greatest sup_ge1) | |
| 178 | ||
| 179 | lemma sup_inf_absorb: "x \<squnion> (x \<sqinter> y) = x" | |
| 180 | by(blast intro: antisym sup_ge1 sup_least inf_le1) | |
| 181 | ||
| 21734 | 182 | lemmas ACI = inf_ACI sup_ACI | 
| 183 | ||
| 22454 | 184 | lemmas inf_sup_ord = inf_le1 inf_le2 sup_ge1 sup_ge2 | 
| 185 | ||
| 21734 | 186 | text{* Towards distributivity *}
 | 
| 21249 | 187 | |
| 21734 | 188 | lemma distrib_sup_le: "x \<squnion> (y \<sqinter> z) \<sqsubseteq> (x \<squnion> y) \<sqinter> (x \<squnion> z)" | 
| 189 | by blast | |
| 190 | ||
| 191 | lemma distrib_inf_le: "(x \<sqinter> y) \<squnion> (x \<sqinter> z) \<sqsubseteq> x \<sqinter> (y \<squnion> z)" | |
| 192 | by blast | |
| 193 | ||
| 194 | ||
| 195 | text{* If you have one of them, you have them all. *}
 | |
| 21249 | 196 | |
| 21733 | 197 | lemma distrib_imp1: | 
| 21249 | 198 | assumes D: "!!x y z. x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" | 
| 199 | shows "x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)" | |
| 200 | proof- | |
| 201 | have "x \<squnion> (y \<sqinter> z) = (x \<squnion> (x \<sqinter> z)) \<squnion> (y \<sqinter> z)" by(simp add:sup_inf_absorb) | |
| 202 | also have "\<dots> = x \<squnion> (z \<sqinter> (x \<squnion> y))" by(simp add:D inf_commute sup_assoc) | |
| 203 | also have "\<dots> = ((x \<squnion> y) \<sqinter> x) \<squnion> ((x \<squnion> y) \<sqinter> z)" | |
| 204 | by(simp add:inf_sup_absorb inf_commute) | |
| 205 | also have "\<dots> = (x \<squnion> y) \<sqinter> (x \<squnion> z)" by(simp add:D) | |
| 206 | finally show ?thesis . | |
| 207 | qed | |
| 208 | ||
| 21733 | 209 | lemma distrib_imp2: | 
| 21249 | 210 | assumes D: "!!x y z. x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)" | 
| 211 | shows "x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" | |
| 212 | proof- | |
| 213 | have "x \<sqinter> (y \<squnion> z) = (x \<sqinter> (x \<squnion> z)) \<sqinter> (y \<squnion> z)" by(simp add:inf_sup_absorb) | |
| 214 | also have "\<dots> = x \<sqinter> (z \<squnion> (x \<sqinter> y))" by(simp add:D sup_commute inf_assoc) | |
| 215 | also have "\<dots> = ((x \<sqinter> y) \<squnion> x) \<sqinter> ((x \<sqinter> y) \<squnion> z)" | |
| 216 | by(simp add:sup_inf_absorb sup_commute) | |
| 217 | also have "\<dots> = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" by(simp add:D) | |
| 218 | finally show ?thesis . | |
| 219 | qed | |
| 220 | ||
| 21734 | 221 | (* seems unused *) | 
| 222 | lemma modular_le: "x \<sqsubseteq> z \<Longrightarrow> x \<squnion> (y \<sqinter> z) \<sqsubseteq> (x \<squnion> y) \<sqinter> z" | |
| 223 | by blast | |
| 224 | ||
| 21733 | 225 | end | 
| 21249 | 226 | |
| 227 | ||
| 228 | subsection{* Distributive lattices *}
 | |
| 229 | ||
| 22454 | 230 | class distrib_lattice = lattice + | 
| 21249 | 231 | assumes sup_inf_distrib1: "x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)" | 
| 232 | ||
| 21733 | 233 | context distrib_lattice | 
| 234 | begin | |
| 235 | ||
| 236 | lemma sup_inf_distrib2: | |
| 21249 | 237 | "(y \<sqinter> z) \<squnion> x = (y \<squnion> x) \<sqinter> (z \<squnion> x)" | 
| 238 | by(simp add:ACI sup_inf_distrib1) | |
| 239 | ||
| 21733 | 240 | lemma inf_sup_distrib1: | 
| 21249 | 241 | "x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" | 
| 242 | by(rule distrib_imp2[OF sup_inf_distrib1]) | |
| 243 | ||
| 21733 | 244 | lemma inf_sup_distrib2: | 
| 21249 | 245 | "(y \<squnion> z) \<sqinter> x = (y \<sqinter> x) \<squnion> (z \<sqinter> x)" | 
| 246 | by(simp add:ACI inf_sup_distrib1) | |
| 247 | ||
| 21733 | 248 | lemmas distrib = | 
| 21249 | 249 | sup_inf_distrib1 sup_inf_distrib2 inf_sup_distrib1 inf_sup_distrib2 | 
| 250 | ||
| 21733 | 251 | end | 
| 252 | ||
| 21249 | 253 | |
| 22454 | 254 | subsection {* Uniqueness of inf and sup *}
 | 
| 255 | ||
| 22737 | 256 | lemma (in lower_semilattice) inf_unique: | 
| 22454 | 257 | fixes f (infixl "\<triangle>" 70) | 
| 22737 | 258 | assumes le1: "\<And>x y. x \<triangle> y \<^loc>\<le> x" and le2: "\<And>x y. x \<triangle> y \<^loc>\<le> y" | 
| 259 | and greatest: "\<And>x y z. x \<^loc>\<le> y \<Longrightarrow> x \<^loc>\<le> z \<Longrightarrow> x \<^loc>\<le> y \<triangle> z" | |
| 260 | shows "x \<sqinter> y = x \<triangle> y" | |
| 22454 | 261 | proof (rule antisym) | 
| 23389 | 262 | show "x \<triangle> y \<^loc>\<le> x \<sqinter> y" by (rule le_infI) (rule le1, rule le2) | 
| 22454 | 263 | next | 
| 22737 | 264 | have leI: "\<And>x y z. x \<^loc>\<le> y \<Longrightarrow> x \<^loc>\<le> z \<Longrightarrow> x \<^loc>\<le> y \<triangle> z" by (blast intro: greatest) | 
| 265 | show "x \<sqinter> y \<^loc>\<le> x \<triangle> y" by (rule leI) simp_all | |
| 22454 | 266 | qed | 
| 267 | ||
| 22737 | 268 | lemma (in upper_semilattice) sup_unique: | 
| 22454 | 269 | fixes f (infixl "\<nabla>" 70) | 
| 22737 | 270 | assumes ge1 [simp]: "\<And>x y. x \<^loc>\<le> x \<nabla> y" and ge2: "\<And>x y. y \<^loc>\<le> x \<nabla> y" | 
| 271 | and least: "\<And>x y z. y \<^loc>\<le> x \<Longrightarrow> z \<^loc>\<le> x \<Longrightarrow> y \<nabla> z \<^loc>\<le> x" | |
| 272 | shows "x \<squnion> y = x \<nabla> y" | |
| 22454 | 273 | proof (rule antisym) | 
| 23389 | 274 | show "x \<squnion> y \<^loc>\<le> x \<nabla> y" by (rule le_supI) (rule ge1, rule ge2) | 
| 22454 | 275 | next | 
| 22737 | 276 | have leI: "\<And>x y z. x \<^loc>\<le> z \<Longrightarrow> y \<^loc>\<le> z \<Longrightarrow> x \<nabla> y \<^loc>\<le> z" by (blast intro: least) | 
| 277 | show "x \<nabla> y \<^loc>\<le> x \<squnion> y" by (rule leI) simp_all | |
| 22454 | 278 | qed | 
| 279 | ||
| 280 | ||
| 22916 | 281 | subsection {* @{const min}/@{const max} on linear orders as
 | 
| 282 |   special case of @{const inf}/@{const sup} *}
 | |
| 283 | ||
| 284 | lemma (in linorder) distrib_lattice_min_max: | |
| 23018 
1d29bc31b0cb
no special treatment in naming of locale predicates stemming form classes
 haftmann parents: 
22916diff
changeset | 285 | "distrib_lattice (op \<^loc>\<le>) (op \<^loc><) min max" | 
| 22916 | 286 | proof unfold_locales | 
| 287 | have aux: "\<And>x y \<Colon> 'a. x \<^loc>< y \<Longrightarrow> y \<^loc>\<le> x \<Longrightarrow> x = y" | |
| 288 | by (auto simp add: less_le antisym) | |
| 289 | fix x y z | |
| 290 | show "max x (min y z) = min (max x y) (max x z)" | |
| 291 | unfolding min_def max_def | |
| 292 | by (auto simp add: intro: antisym, unfold not_le, | |
| 293 | auto intro: less_trans le_less_trans aux) | |
| 294 | qed (auto simp add: min_def max_def not_le less_imp_le) | |
| 21249 | 295 | |
| 296 | interpretation min_max: | |
| 22454 | 297 | distrib_lattice ["op \<le> \<Colon> 'a\<Colon>linorder \<Rightarrow> 'a \<Rightarrow> bool" "op <" min max] | 
| 23087 | 298 | by (rule distrib_lattice_min_max [folded ord_class.min ord_class.max]) | 
| 21249 | 299 | |
| 22454 | 300 | lemma inf_min: "inf = (min \<Colon> 'a\<Colon>{lower_semilattice, linorder} \<Rightarrow> 'a \<Rightarrow> 'a)"
 | 
| 301 | by (rule ext)+ auto | |
| 21733 | 302 | |
| 22454 | 303 | lemma sup_max: "sup = (max \<Colon> 'a\<Colon>{upper_semilattice, linorder} \<Rightarrow> 'a \<Rightarrow> 'a)"
 | 
| 304 | by (rule ext)+ auto | |
| 21733 | 305 | |
| 21249 | 306 | lemmas le_maxI1 = min_max.sup_ge1 | 
| 307 | lemmas le_maxI2 = min_max.sup_ge2 | |
| 21381 | 308 | |
| 21249 | 309 | lemmas max_ac = min_max.sup_assoc min_max.sup_commute | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 310 | mk_left_commute [of max, OF min_max.sup_assoc min_max.sup_commute] | 
| 21249 | 311 | |
| 312 | lemmas min_ac = min_max.inf_assoc min_max.inf_commute | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 313 | mk_left_commute [of min, OF min_max.inf_assoc min_max.inf_commute] | 
| 21249 | 314 | |
| 22454 | 315 | text {*
 | 
| 316 | Now we have inherited antisymmetry as an intro-rule on all | |
| 317 | linear orders. This is a problem because it applies to bool, which is | |
| 318 | undesirable. | |
| 319 | *} | |
| 320 | ||
| 321 | lemmas [rule del] = min_max.antisym_intro min_max.le_infI min_max.le_supI | |
| 322 | min_max.le_supE min_max.le_infE min_max.le_supI1 min_max.le_supI2 | |
| 323 | min_max.le_infI1 min_max.le_infI2 | |
| 324 | ||
| 325 | ||
| 326 | subsection {* Bool as lattice *}
 | |
| 327 | ||
| 328 | instance bool :: distrib_lattice | |
| 329 | inf_bool_eq: "inf P Q \<equiv> P \<and> Q" | |
| 330 | sup_bool_eq: "sup P Q \<equiv> P \<or> Q" | |
| 331 | by intro_classes (auto simp add: inf_bool_eq sup_bool_eq le_bool_def) | |
| 332 | ||
| 333 | ||
| 334 | text {* duplicates *}
 | |
| 335 | ||
| 336 | lemmas inf_aci = inf_ACI | |
| 337 | lemmas sup_aci = sup_ACI | |
| 338 | ||
| 21249 | 339 | end |