author | haftmann |
Fri, 19 Feb 2010 14:47:00 +0100 | |
changeset 35266 | 07a56610c00b |
parent 33995 | ebf231de0c5c |
child 36176 | 3fe7e97ccca8 |
permissions | -rw-r--r-- |
10213 | 1 |
(* Title: HOL/Sum_Type.thy |
2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
3 |
Copyright 1992 University of Cambridge |
|
4 |
*) |
|
5 |
||
15391
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset
|
6 |
header{*The Disjoint Sum of Two Types*} |
10213 | 7 |
|
15391
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset
|
8 |
theory Sum_Type |
33961 | 9 |
imports Typedef Inductive Fun |
15391
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset
|
10 |
begin |
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset
|
11 |
|
33962 | 12 |
subsection {* Construction of the sum type and its basic abstract operations *} |
10213 | 13 |
|
33962 | 14 |
definition Inl_Rep :: "'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool \<Rightarrow> bool" where |
15 |
"Inl_Rep a x y p \<longleftrightarrow> x = a \<and> p" |
|
10213 | 16 |
|
33962 | 17 |
definition Inr_Rep :: "'b \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool \<Rightarrow> bool" where |
18 |
"Inr_Rep b x y p \<longleftrightarrow> y = b \<and> \<not> p" |
|
15391
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset
|
19 |
|
10213 | 20 |
global |
21 |
||
33962 | 22 |
typedef (Sum) ('a, 'b) "+" (infixr "+" 10) = "{f. (\<exists>a. f = Inl_Rep (a::'a)) \<or> (\<exists>b. f = Inr_Rep (b::'b))}" |
15391
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset
|
23 |
by auto |
10213 | 24 |
|
25 |
local |
|
26 |
||
33962 | 27 |
lemma Inl_RepI: "Inl_Rep a \<in> Sum" |
28 |
by (auto simp add: Sum_def) |
|
15391
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset
|
29 |
|
33962 | 30 |
lemma Inr_RepI: "Inr_Rep b \<in> Sum" |
31 |
by (auto simp add: Sum_def) |
|
15391
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset
|
32 |
|
33962 | 33 |
lemma inj_on_Abs_Sum: "A \<subseteq> Sum \<Longrightarrow> inj_on Abs_Sum A" |
34 |
by (rule inj_on_inverseI, rule Abs_Sum_inverse) auto |
|
15391
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset
|
35 |
|
33962 | 36 |
lemma Inl_Rep_inject: "inj_on Inl_Rep A" |
37 |
proof (rule inj_onI) |
|
38 |
show "\<And>a c. Inl_Rep a = Inl_Rep c \<Longrightarrow> a = c" |
|
39 |
by (auto simp add: Inl_Rep_def expand_fun_eq) |
|
40 |
qed |
|
15391
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset
|
41 |
|
33962 | 42 |
lemma Inr_Rep_inject: "inj_on Inr_Rep A" |
43 |
proof (rule inj_onI) |
|
44 |
show "\<And>b d. Inr_Rep b = Inr_Rep d \<Longrightarrow> b = d" |
|
45 |
by (auto simp add: Inr_Rep_def expand_fun_eq) |
|
46 |
qed |
|
15391
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset
|
47 |
|
33962 | 48 |
lemma Inl_Rep_not_Inr_Rep: "Inl_Rep a \<noteq> Inr_Rep b" |
49 |
by (auto simp add: Inl_Rep_def Inr_Rep_def expand_fun_eq) |
|
15391
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset
|
50 |
|
33962 | 51 |
definition Inl :: "'a \<Rightarrow> 'a + 'b" where |
33995 | 52 |
"Inl = Abs_Sum \<circ> Inl_Rep" |
15391
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset
|
53 |
|
33962 | 54 |
definition Inr :: "'b \<Rightarrow> 'a + 'b" where |
33995 | 55 |
"Inr = Abs_Sum \<circ> Inr_Rep" |
15391
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset
|
56 |
|
29025
8c8859c0d734
move lemmas from Numeral_Type.thy to other theories
huffman
parents:
28524
diff
changeset
|
57 |
lemma inj_Inl [simp]: "inj_on Inl A" |
33962 | 58 |
by (auto simp add: Inl_def intro!: comp_inj_on Inl_Rep_inject inj_on_Abs_Sum Inl_RepI) |
29025
8c8859c0d734
move lemmas from Numeral_Type.thy to other theories
huffman
parents:
28524
diff
changeset
|
59 |
|
33962 | 60 |
lemma Inl_inject: "Inl x = Inl y \<Longrightarrow> x = y" |
61 |
using inj_Inl by (rule injD) |
|
15391
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset
|
62 |
|
29025
8c8859c0d734
move lemmas from Numeral_Type.thy to other theories
huffman
parents:
28524
diff
changeset
|
63 |
lemma inj_Inr [simp]: "inj_on Inr A" |
33962 | 64 |
by (auto simp add: Inr_def intro!: comp_inj_on Inr_Rep_inject inj_on_Abs_Sum Inr_RepI) |
15391
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset
|
65 |
|
33962 | 66 |
lemma Inr_inject: "Inr x = Inr y \<Longrightarrow> x = y" |
67 |
using inj_Inr by (rule injD) |
|
15391
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset
|
68 |
|
33962 | 69 |
lemma Inl_not_Inr: "Inl a \<noteq> Inr b" |
70 |
proof - |
|
71 |
from Inl_RepI [of a] Inr_RepI [of b] have "{Inl_Rep a, Inr_Rep b} \<subseteq> Sum" by auto |
|
72 |
with inj_on_Abs_Sum have "inj_on Abs_Sum {Inl_Rep a, Inr_Rep b}" . |
|
73 |
with Inl_Rep_not_Inr_Rep [of a b] inj_on_contraD have "Abs_Sum (Inl_Rep a) \<noteq> Abs_Sum (Inr_Rep b)" by auto |
|
74 |
then show ?thesis by (simp add: Inl_def Inr_def) |
|
75 |
qed |
|
15391
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset
|
76 |
|
33962 | 77 |
lemma Inr_not_Inl: "Inr b \<noteq> Inl a" |
78 |
using Inl_not_Inr by (rule not_sym) |
|
15391
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset
|
79 |
|
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset
|
80 |
lemma sumE: |
33962 | 81 |
assumes "\<And>x::'a. s = Inl x \<Longrightarrow> P" |
82 |
and "\<And>y::'b. s = Inr y \<Longrightarrow> P" |
|
83 |
shows P |
|
84 |
proof (rule Abs_Sum_cases [of s]) |
|
85 |
fix f |
|
86 |
assume "s = Abs_Sum f" and "f \<in> Sum" |
|
87 |
with assms show P by (auto simp add: Sum_def Inl_def Inr_def) |
|
88 |
qed |
|
33961 | 89 |
|
90 |
rep_datatype (sum) Inl Inr |
|
91 |
proof - |
|
92 |
fix P |
|
93 |
fix s :: "'a + 'b" |
|
94 |
assume x: "\<And>x\<Colon>'a. P (Inl x)" and y: "\<And>y\<Colon>'b. P (Inr y)" |
|
95 |
then show "P s" by (auto intro: sumE [of s]) |
|
33962 | 96 |
qed (auto dest: Inl_inject Inr_inject simp add: Inl_not_Inr) |
97 |
||
33961 | 98 |
|
33962 | 99 |
subsection {* Projections *} |
100 |
||
101 |
lemma sum_case_KK [simp]: "sum_case (\<lambda>x. a) (\<lambda>x. a) = (\<lambda>x. a)" |
|
33961 | 102 |
by (rule ext) (simp split: sum.split) |
103 |
||
33962 | 104 |
lemma surjective_sum: "sum_case (\<lambda>x::'a. f (Inl x)) (\<lambda>y::'b. f (Inr y)) = f" |
105 |
proof |
|
106 |
fix s :: "'a + 'b" |
|
107 |
show "(case s of Inl (x\<Colon>'a) \<Rightarrow> f (Inl x) | Inr (y\<Colon>'b) \<Rightarrow> f (Inr y)) = f s" |
|
108 |
by (cases s) simp_all |
|
109 |
qed |
|
33961 | 110 |
|
33962 | 111 |
lemma sum_case_inject: |
112 |
assumes a: "sum_case f1 f2 = sum_case g1 g2" |
|
113 |
assumes r: "f1 = g1 \<Longrightarrow> f2 = g2 \<Longrightarrow> P" |
|
114 |
shows P |
|
115 |
proof (rule r) |
|
116 |
show "f1 = g1" proof |
|
117 |
fix x :: 'a |
|
118 |
from a have "sum_case f1 f2 (Inl x) = sum_case g1 g2 (Inl x)" by simp |
|
119 |
then show "f1 x = g1 x" by simp |
|
120 |
qed |
|
121 |
show "f2 = g2" proof |
|
122 |
fix y :: 'b |
|
123 |
from a have "sum_case f1 f2 (Inr y) = sum_case g1 g2 (Inr y)" by simp |
|
124 |
then show "f2 y = g2 y" by simp |
|
125 |
qed |
|
126 |
qed |
|
127 |
||
128 |
lemma sum_case_weak_cong: |
|
129 |
"s = t \<Longrightarrow> sum_case f g s = sum_case f g t" |
|
33961 | 130 |
-- {* Prevents simplification of @{text f} and @{text g}: much faster. *} |
131 |
by simp |
|
132 |
||
33962 | 133 |
primrec Projl :: "'a + 'b \<Rightarrow> 'a" where |
134 |
Projl_Inl: "Projl (Inl x) = x" |
|
135 |
||
136 |
primrec Projr :: "'a + 'b \<Rightarrow> 'b" where |
|
137 |
Projr_Inr: "Projr (Inr x) = x" |
|
138 |
||
139 |
primrec Suml :: "('a \<Rightarrow> 'c) \<Rightarrow> 'a + 'b \<Rightarrow> 'c" where |
|
140 |
"Suml f (Inl x) = f x" |
|
141 |
||
142 |
primrec Sumr :: "('b \<Rightarrow> 'c) \<Rightarrow> 'a + 'b \<Rightarrow> 'c" where |
|
143 |
"Sumr f (Inr x) = f x" |
|
144 |
||
145 |
lemma Suml_inject: |
|
146 |
assumes "Suml f = Suml g" shows "f = g" |
|
147 |
proof |
|
148 |
fix x :: 'a |
|
149 |
let ?s = "Inl x \<Colon> 'a + 'b" |
|
150 |
from assms have "Suml f ?s = Suml g ?s" by simp |
|
151 |
then show "f x = g x" by simp |
|
33961 | 152 |
qed |
153 |
||
33962 | 154 |
lemma Sumr_inject: |
155 |
assumes "Sumr f = Sumr g" shows "f = g" |
|
156 |
proof |
|
157 |
fix x :: 'b |
|
158 |
let ?s = "Inr x \<Colon> 'a + 'b" |
|
159 |
from assms have "Sumr f ?s = Sumr g ?s" by simp |
|
160 |
then show "f x = g x" by simp |
|
161 |
qed |
|
33961 | 162 |
|
33995 | 163 |
|
33962 | 164 |
subsection {* The Disjoint Sum of Sets *} |
33961 | 165 |
|
33962 | 166 |
definition Plus :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a + 'b) set" (infixr "<+>" 65) where |
167 |
"A <+> B = Inl ` A \<union> Inr ` B" |
|
168 |
||
169 |
lemma InlI [intro!]: "a \<in> A \<Longrightarrow> Inl a \<in> A <+> B" |
|
170 |
by (simp add: Plus_def) |
|
33961 | 171 |
|
33962 | 172 |
lemma InrI [intro!]: "b \<in> B \<Longrightarrow> Inr b \<in> A <+> B" |
173 |
by (simp add: Plus_def) |
|
33961 | 174 |
|
33962 | 175 |
text {* Exhaustion rule for sums, a degenerate form of induction *} |
176 |
||
177 |
lemma PlusE [elim!]: |
|
178 |
"u \<in> A <+> B \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> u = Inl x \<Longrightarrow> P) \<Longrightarrow> (\<And>y. y \<in> B \<Longrightarrow> u = Inr y \<Longrightarrow> P) \<Longrightarrow> P" |
|
179 |
by (auto simp add: Plus_def) |
|
33961 | 180 |
|
33962 | 181 |
lemma Plus_eq_empty_conv [simp]: "A <+> B = {} \<longleftrightarrow> A = {} \<and> B = {}" |
182 |
by auto |
|
33961 | 183 |
|
33962 | 184 |
lemma UNIV_Plus_UNIV [simp]: "UNIV <+> UNIV = UNIV" |
185 |
proof (rule set_ext) |
|
186 |
fix u :: "'a + 'b" |
|
187 |
show "u \<in> UNIV <+> UNIV \<longleftrightarrow> u \<in> UNIV" by (cases u) auto |
|
188 |
qed |
|
33961 | 189 |
|
190 |
hide (open) const Suml Sumr Projl Projr |
|
191 |
||
10213 | 192 |
end |