| author | haftmann | 
| Mon, 08 Feb 2010 14:22:22 +0100 | |
| changeset 35043 | 07dbdf60d5ad | 
| parent 35028 | 108662d50512 | 
| child 37765 | 26bdfb7b680b | 
| permissions | -rw-r--r-- | 
| 11355 | 1  | 
(* Title: HOL/Library/Nat_Infinity.thy  | 
| 27110 | 2  | 
Author: David von Oheimb, TU Muenchen; Florian Haftmann, TU Muenchen  | 
| 
11351
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
3  | 
*)  | 
| 
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
4  | 
|
| 14706 | 5  | 
header {* Natural numbers with infinity *}
 | 
| 
11351
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
6  | 
|
| 15131 | 7  | 
theory Nat_Infinity  | 
| 
30663
 
0b6aff7451b2
Main is (Complex_Main) base entry point in library theories
 
haftmann 
parents: 
29668 
diff
changeset
 | 
8  | 
imports Main  | 
| 15131 | 9  | 
begin  | 
| 
11351
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
10  | 
|
| 27110 | 11  | 
subsection {* Type definition *}
 | 
| 
11351
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
12  | 
|
| 
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
13  | 
text {*
 | 
| 11355 | 14  | 
We extend the standard natural numbers by a special value indicating  | 
| 27110 | 15  | 
infinity.  | 
| 
11351
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
16  | 
*}  | 
| 
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
17  | 
|
| 
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
18  | 
datatype inat = Fin nat | Infty  | 
| 
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
19  | 
|
| 21210 | 20  | 
notation (xsymbols)  | 
| 19736 | 21  | 
  Infty  ("\<infinity>")
 | 
22  | 
||
| 21210 | 23  | 
notation (HTML output)  | 
| 19736 | 24  | 
  Infty  ("\<infinity>")
 | 
25  | 
||
| 
11351
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
26  | 
|
| 31084 | 27  | 
lemma not_Infty_eq[iff]: "(x ~= Infty) = (EX i. x = Fin i)"  | 
28  | 
by (cases x) auto  | 
|
29  | 
||
30  | 
lemma not_Fin_eq [iff]: "(ALL y. x ~= Fin y) = (x = Infty)"  | 
|
| 31077 | 31  | 
by (cases x) auto  | 
32  | 
||
33  | 
||
| 27110 | 34  | 
subsection {* Constructors and numbers *}
 | 
35  | 
||
36  | 
instantiation inat :: "{zero, one, number}"
 | 
|
| 25594 | 37  | 
begin  | 
38  | 
||
39  | 
definition  | 
|
| 27110 | 40  | 
"0 = Fin 0"  | 
| 25594 | 41  | 
|
42  | 
definition  | 
|
| 
32069
 
6d28bbd33e2c
prefer code_inline over code_unfold; use code_unfold_post where appropriate
 
haftmann 
parents: 
31998 
diff
changeset
 | 
43  | 
[code_unfold]: "1 = Fin 1"  | 
| 25594 | 44  | 
|
45  | 
definition  | 
|
| 
32069
 
6d28bbd33e2c
prefer code_inline over code_unfold; use code_unfold_post where appropriate
 
haftmann 
parents: 
31998 
diff
changeset
 | 
46  | 
[code_unfold, code del]: "number_of k = Fin (number_of k)"  | 
| 
11351
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
47  | 
|
| 25594 | 48  | 
instance ..  | 
49  | 
||
50  | 
end  | 
|
51  | 
||
| 27110 | 52  | 
definition iSuc :: "inat \<Rightarrow> inat" where  | 
53  | 
"iSuc i = (case i of Fin n \<Rightarrow> Fin (Suc n) | \<infinity> \<Rightarrow> \<infinity>)"  | 
|
| 
11351
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
54  | 
|
| 
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
55  | 
lemma Fin_0: "Fin 0 = 0"  | 
| 27110 | 56  | 
by (simp add: zero_inat_def)  | 
57  | 
||
58  | 
lemma Fin_1: "Fin 1 = 1"  | 
|
59  | 
by (simp add: one_inat_def)  | 
|
60  | 
||
61  | 
lemma Fin_number: "Fin (number_of k) = number_of k"  | 
|
62  | 
by (simp add: number_of_inat_def)  | 
|
63  | 
||
64  | 
lemma one_iSuc: "1 = iSuc 0"  | 
|
65  | 
by (simp add: zero_inat_def one_inat_def iSuc_def)  | 
|
| 
11351
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
66  | 
|
| 
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
67  | 
lemma Infty_ne_i0 [simp]: "\<infinity> \<noteq> 0"  | 
| 27110 | 68  | 
by (simp add: zero_inat_def)  | 
| 
11351
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
69  | 
|
| 
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
70  | 
lemma i0_ne_Infty [simp]: "0 \<noteq> \<infinity>"  | 
| 27110 | 71  | 
by (simp add: zero_inat_def)  | 
72  | 
||
73  | 
lemma zero_inat_eq [simp]:  | 
|
74  | 
"number_of k = (0\<Colon>inat) \<longleftrightarrow> number_of k = (0\<Colon>nat)"  | 
|
75  | 
"(0\<Colon>inat) = number_of k \<longleftrightarrow> number_of k = (0\<Colon>nat)"  | 
|
76  | 
unfolding zero_inat_def number_of_inat_def by simp_all  | 
|
77  | 
||
78  | 
lemma one_inat_eq [simp]:  | 
|
79  | 
"number_of k = (1\<Colon>inat) \<longleftrightarrow> number_of k = (1\<Colon>nat)"  | 
|
80  | 
"(1\<Colon>inat) = number_of k \<longleftrightarrow> number_of k = (1\<Colon>nat)"  | 
|
81  | 
unfolding one_inat_def number_of_inat_def by simp_all  | 
|
82  | 
||
83  | 
lemma zero_one_inat_neq [simp]:  | 
|
84  | 
"\<not> 0 = (1\<Colon>inat)"  | 
|
85  | 
"\<not> 1 = (0\<Colon>inat)"  | 
|
86  | 
unfolding zero_inat_def one_inat_def by simp_all  | 
|
| 
11351
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
87  | 
|
| 27110 | 88  | 
lemma Infty_ne_i1 [simp]: "\<infinity> \<noteq> 1"  | 
89  | 
by (simp add: one_inat_def)  | 
|
90  | 
||
91  | 
lemma i1_ne_Infty [simp]: "1 \<noteq> \<infinity>"  | 
|
92  | 
by (simp add: one_inat_def)  | 
|
93  | 
||
94  | 
lemma Infty_ne_number [simp]: "\<infinity> \<noteq> number_of k"  | 
|
95  | 
by (simp add: number_of_inat_def)  | 
|
96  | 
||
97  | 
lemma number_ne_Infty [simp]: "number_of k \<noteq> \<infinity>"  | 
|
98  | 
by (simp add: number_of_inat_def)  | 
|
99  | 
||
100  | 
lemma iSuc_Fin: "iSuc (Fin n) = Fin (Suc n)"  | 
|
101  | 
by (simp add: iSuc_def)  | 
|
102  | 
||
103  | 
lemma iSuc_number_of: "iSuc (number_of k) = Fin (Suc (number_of k))"  | 
|
104  | 
by (simp add: iSuc_Fin number_of_inat_def)  | 
|
| 
11351
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
105  | 
|
| 
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
106  | 
lemma iSuc_Infty [simp]: "iSuc \<infinity> = \<infinity>"  | 
| 27110 | 107  | 
by (simp add: iSuc_def)  | 
| 
11351
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
108  | 
|
| 
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
109  | 
lemma iSuc_ne_0 [simp]: "iSuc n \<noteq> 0"  | 
| 27110 | 110  | 
by (simp add: iSuc_def zero_inat_def split: inat.splits)  | 
111  | 
||
112  | 
lemma zero_ne_iSuc [simp]: "0 \<noteq> iSuc n"  | 
|
113  | 
by (rule iSuc_ne_0 [symmetric])  | 
|
| 
11351
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
114  | 
|
| 27110 | 115  | 
lemma iSuc_inject [simp]: "iSuc m = iSuc n \<longleftrightarrow> m = n"  | 
116  | 
by (simp add: iSuc_def split: inat.splits)  | 
|
117  | 
||
118  | 
lemma number_of_inat_inject [simp]:  | 
|
119  | 
"(number_of k \<Colon> inat) = number_of l \<longleftrightarrow> (number_of k \<Colon> nat) = number_of l"  | 
|
120  | 
by (simp add: number_of_inat_def)  | 
|
| 
11351
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
121  | 
|
| 
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
122  | 
|
| 27110 | 123  | 
subsection {* Addition *}
 | 
124  | 
||
125  | 
instantiation inat :: comm_monoid_add  | 
|
126  | 
begin  | 
|
127  | 
||
128  | 
definition  | 
|
129  | 
[code del]: "m + n = (case m of \<infinity> \<Rightarrow> \<infinity> | Fin m \<Rightarrow> (case n of \<infinity> \<Rightarrow> \<infinity> | Fin n \<Rightarrow> Fin (m + n)))"  | 
|
| 
11351
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
130  | 
|
| 27110 | 131  | 
lemma plus_inat_simps [simp, code]:  | 
132  | 
"Fin m + Fin n = Fin (m + n)"  | 
|
133  | 
"\<infinity> + q = \<infinity>"  | 
|
134  | 
"q + \<infinity> = \<infinity>"  | 
|
135  | 
by (simp_all add: plus_inat_def split: inat.splits)  | 
|
136  | 
||
137  | 
instance proof  | 
|
138  | 
fix n m q :: inat  | 
|
139  | 
show "n + m + q = n + (m + q)"  | 
|
140  | 
by (cases n, auto, cases m, auto, cases q, auto)  | 
|
141  | 
show "n + m = m + n"  | 
|
142  | 
by (cases n, auto, cases m, auto)  | 
|
143  | 
show "0 + n = n"  | 
|
144  | 
by (cases n) (simp_all add: zero_inat_def)  | 
|
| 26089 | 145  | 
qed  | 
146  | 
||
| 27110 | 147  | 
end  | 
| 
11351
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
148  | 
|
| 27110 | 149  | 
lemma plus_inat_0 [simp]:  | 
150  | 
"0 + (q\<Colon>inat) = q"  | 
|
151  | 
"(q\<Colon>inat) + 0 = q"  | 
|
152  | 
by (simp_all add: plus_inat_def zero_inat_def split: inat.splits)  | 
|
| 
11351
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
153  | 
|
| 27110 | 154  | 
lemma plus_inat_number [simp]:  | 
| 29012 | 155  | 
"(number_of k \<Colon> inat) + number_of l = (if k < Int.Pls then number_of l  | 
156  | 
else if l < Int.Pls then number_of k else number_of (k + l))"  | 
|
| 27110 | 157  | 
unfolding number_of_inat_def plus_inat_simps nat_arith(1) if_distrib [symmetric, of _ Fin] ..  | 
| 
11351
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
158  | 
|
| 27110 | 159  | 
lemma iSuc_number [simp]:  | 
160  | 
"iSuc (number_of k) = (if neg (number_of k \<Colon> int) then 1 else number_of (Int.succ k))"  | 
|
161  | 
unfolding iSuc_number_of  | 
|
162  | 
unfolding one_inat_def number_of_inat_def Suc_nat_number_of if_distrib [symmetric] ..  | 
|
| 
11351
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
163  | 
|
| 27110 | 164  | 
lemma iSuc_plus_1:  | 
165  | 
"iSuc n = n + 1"  | 
|
166  | 
by (cases n) (simp_all add: iSuc_Fin one_inat_def)  | 
|
167  | 
||
168  | 
lemma plus_1_iSuc:  | 
|
169  | 
"1 + q = iSuc q"  | 
|
170  | 
"q + 1 = iSuc q"  | 
|
171  | 
unfolding iSuc_plus_1 by (simp_all add: add_ac)  | 
|
| 
11351
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
172  | 
|
| 
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
173  | 
|
| 29014 | 174  | 
subsection {* Multiplication *}
 | 
175  | 
||
176  | 
instantiation inat :: comm_semiring_1  | 
|
177  | 
begin  | 
|
178  | 
||
179  | 
definition  | 
|
180  | 
times_inat_def [code del]:  | 
|
181  | 
"m * n = (case m of \<infinity> \<Rightarrow> if n = 0 then 0 else \<infinity> | Fin m \<Rightarrow>  | 
|
182  | 
(case n of \<infinity> \<Rightarrow> if m = 0 then 0 else \<infinity> | Fin n \<Rightarrow> Fin (m * n)))"  | 
|
183  | 
||
184  | 
lemma times_inat_simps [simp, code]:  | 
|
185  | 
"Fin m * Fin n = Fin (m * n)"  | 
|
186  | 
"\<infinity> * \<infinity> = \<infinity>"  | 
|
187  | 
"\<infinity> * Fin n = (if n = 0 then 0 else \<infinity>)"  | 
|
188  | 
"Fin m * \<infinity> = (if m = 0 then 0 else \<infinity>)"  | 
|
189  | 
unfolding times_inat_def zero_inat_def  | 
|
190  | 
by (simp_all split: inat.split)  | 
|
191  | 
||
192  | 
instance proof  | 
|
193  | 
fix a b c :: inat  | 
|
194  | 
show "(a * b) * c = a * (b * c)"  | 
|
195  | 
unfolding times_inat_def zero_inat_def  | 
|
196  | 
by (simp split: inat.split)  | 
|
197  | 
show "a * b = b * a"  | 
|
198  | 
unfolding times_inat_def zero_inat_def  | 
|
199  | 
by (simp split: inat.split)  | 
|
200  | 
show "1 * a = a"  | 
|
201  | 
unfolding times_inat_def zero_inat_def one_inat_def  | 
|
202  | 
by (simp split: inat.split)  | 
|
203  | 
show "(a + b) * c = a * c + b * c"  | 
|
204  | 
unfolding times_inat_def zero_inat_def  | 
|
205  | 
by (simp split: inat.split add: left_distrib)  | 
|
206  | 
show "0 * a = 0"  | 
|
207  | 
unfolding times_inat_def zero_inat_def  | 
|
208  | 
by (simp split: inat.split)  | 
|
209  | 
show "a * 0 = 0"  | 
|
210  | 
unfolding times_inat_def zero_inat_def  | 
|
211  | 
by (simp split: inat.split)  | 
|
212  | 
show "(0::inat) \<noteq> 1"  | 
|
213  | 
unfolding zero_inat_def one_inat_def  | 
|
214  | 
by simp  | 
|
215  | 
qed  | 
|
216  | 
||
217  | 
end  | 
|
218  | 
||
219  | 
lemma mult_iSuc: "iSuc m * n = n + m * n"  | 
|
| 29667 | 220  | 
unfolding iSuc_plus_1 by (simp add: algebra_simps)  | 
| 29014 | 221  | 
|
222  | 
lemma mult_iSuc_right: "m * iSuc n = m + m * n"  | 
|
| 29667 | 223  | 
unfolding iSuc_plus_1 by (simp add: algebra_simps)  | 
| 29014 | 224  | 
|
| 29023 | 225  | 
lemma of_nat_eq_Fin: "of_nat n = Fin n"  | 
226  | 
apply (induct n)  | 
|
227  | 
apply (simp add: Fin_0)  | 
|
228  | 
apply (simp add: plus_1_iSuc iSuc_Fin)  | 
|
229  | 
done  | 
|
230  | 
||
231  | 
instance inat :: semiring_char_0  | 
|
232  | 
by default (simp add: of_nat_eq_Fin)  | 
|
233  | 
||
| 29014 | 234  | 
|
| 27110 | 235  | 
subsection {* Ordering *}
 | 
236  | 
||
| 
35028
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
32069 
diff
changeset
 | 
237  | 
instantiation inat :: linordered_ab_semigroup_add  | 
| 27110 | 238  | 
begin  | 
| 
11351
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
239  | 
|
| 27110 | 240  | 
definition  | 
241  | 
[code del]: "m \<le> n = (case n of Fin n1 \<Rightarrow> (case m of Fin m1 \<Rightarrow> m1 \<le> n1 | \<infinity> \<Rightarrow> False)  | 
|
242  | 
| \<infinity> \<Rightarrow> True)"  | 
|
| 
11351
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
243  | 
|
| 27110 | 244  | 
definition  | 
245  | 
[code del]: "m < n = (case m of Fin m1 \<Rightarrow> (case n of Fin n1 \<Rightarrow> m1 < n1 | \<infinity> \<Rightarrow> True)  | 
|
246  | 
| \<infinity> \<Rightarrow> False)"  | 
|
| 
11351
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
247  | 
|
| 27110 | 248  | 
lemma inat_ord_simps [simp]:  | 
249  | 
"Fin m \<le> Fin n \<longleftrightarrow> m \<le> n"  | 
|
250  | 
"Fin m < Fin n \<longleftrightarrow> m < n"  | 
|
251  | 
"q \<le> \<infinity>"  | 
|
252  | 
"q < \<infinity> \<longleftrightarrow> q \<noteq> \<infinity>"  | 
|
253  | 
"\<infinity> \<le> q \<longleftrightarrow> q = \<infinity>"  | 
|
254  | 
"\<infinity> < q \<longleftrightarrow> False"  | 
|
255  | 
by (simp_all add: less_eq_inat_def less_inat_def split: inat.splits)  | 
|
| 
11351
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
256  | 
|
| 27110 | 257  | 
lemma inat_ord_code [code]:  | 
258  | 
"Fin m \<le> Fin n \<longleftrightarrow> m \<le> n"  | 
|
259  | 
"Fin m < Fin n \<longleftrightarrow> m < n"  | 
|
260  | 
"q \<le> \<infinity> \<longleftrightarrow> True"  | 
|
261  | 
"Fin m < \<infinity> \<longleftrightarrow> True"  | 
|
262  | 
"\<infinity> \<le> Fin n \<longleftrightarrow> False"  | 
|
263  | 
"\<infinity> < q \<longleftrightarrow> False"  | 
|
264  | 
by simp_all  | 
|
| 
11351
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
265  | 
|
| 27110 | 266  | 
instance by default  | 
267  | 
(auto simp add: less_eq_inat_def less_inat_def plus_inat_def split: inat.splits)  | 
|
| 
11351
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
268  | 
|
| 27110 | 269  | 
end  | 
270  | 
||
| 
35028
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
32069 
diff
changeset
 | 
271  | 
instance inat :: ordered_comm_semiring  | 
| 29014 | 272  | 
proof  | 
273  | 
fix a b c :: inat  | 
|
274  | 
assume "a \<le> b" and "0 \<le> c"  | 
|
275  | 
thus "c * a \<le> c * b"  | 
|
276  | 
unfolding times_inat_def less_eq_inat_def zero_inat_def  | 
|
277  | 
by (simp split: inat.splits)  | 
|
278  | 
qed  | 
|
279  | 
||
| 27110 | 280  | 
lemma inat_ord_number [simp]:  | 
281  | 
"(number_of m \<Colon> inat) \<le> number_of n \<longleftrightarrow> (number_of m \<Colon> nat) \<le> number_of n"  | 
|
282  | 
"(number_of m \<Colon> inat) < number_of n \<longleftrightarrow> (number_of m \<Colon> nat) < number_of n"  | 
|
283  | 
by (simp_all add: number_of_inat_def)  | 
|
| 
11351
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
284  | 
|
| 27110 | 285  | 
lemma i0_lb [simp]: "(0\<Colon>inat) \<le> n"  | 
286  | 
by (simp add: zero_inat_def less_eq_inat_def split: inat.splits)  | 
|
| 
11351
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
287  | 
|
| 27110 | 288  | 
lemma i0_neq [simp]: "n \<le> (0\<Colon>inat) \<longleftrightarrow> n = 0"  | 
289  | 
by (simp add: zero_inat_def less_eq_inat_def split: inat.splits)  | 
|
290  | 
||
291  | 
lemma Infty_ileE [elim!]: "\<infinity> \<le> Fin m \<Longrightarrow> R"  | 
|
292  | 
by (simp add: zero_inat_def less_eq_inat_def split: inat.splits)  | 
|
| 
11351
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
293  | 
|
| 27110 | 294  | 
lemma Infty_ilessE [elim!]: "\<infinity> < Fin m \<Longrightarrow> R"  | 
295  | 
by simp  | 
|
| 
11351
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
296  | 
|
| 27110 | 297  | 
lemma not_ilessi0 [simp]: "\<not> n < (0\<Colon>inat)"  | 
298  | 
by (simp add: zero_inat_def less_inat_def split: inat.splits)  | 
|
299  | 
||
300  | 
lemma i0_eq [simp]: "(0\<Colon>inat) < n \<longleftrightarrow> n \<noteq> 0"  | 
|
301  | 
by (simp add: zero_inat_def less_inat_def split: inat.splits)  | 
|
| 
11351
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
302  | 
|
| 27110 | 303  | 
lemma iSuc_ile_mono [simp]: "iSuc n \<le> iSuc m \<longleftrightarrow> n \<le> m"  | 
304  | 
by (simp add: iSuc_def less_eq_inat_def split: inat.splits)  | 
|
305  | 
||
306  | 
lemma iSuc_mono [simp]: "iSuc n < iSuc m \<longleftrightarrow> n < m"  | 
|
307  | 
by (simp add: iSuc_def less_inat_def split: inat.splits)  | 
|
| 
11351
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
308  | 
|
| 27110 | 309  | 
lemma ile_iSuc [simp]: "n \<le> iSuc n"  | 
310  | 
by (simp add: iSuc_def less_eq_inat_def split: inat.splits)  | 
|
| 
11351
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
311  | 
|
| 11355 | 312  | 
lemma not_iSuc_ilei0 [simp]: "\<not> iSuc n \<le> 0"  | 
| 27110 | 313  | 
by (simp add: zero_inat_def iSuc_def less_eq_inat_def split: inat.splits)  | 
314  | 
||
315  | 
lemma i0_iless_iSuc [simp]: "0 < iSuc n"  | 
|
316  | 
by (simp add: zero_inat_def iSuc_def less_inat_def split: inat.splits)  | 
|
317  | 
||
318  | 
lemma ileI1: "m < n \<Longrightarrow> iSuc m \<le> n"  | 
|
319  | 
by (simp add: iSuc_def less_eq_inat_def less_inat_def split: inat.splits)  | 
|
320  | 
||
321  | 
lemma Suc_ile_eq: "Fin (Suc m) \<le> n \<longleftrightarrow> Fin m < n"  | 
|
322  | 
by (cases n) auto  | 
|
323  | 
||
324  | 
lemma iless_Suc_eq [simp]: "Fin m < iSuc n \<longleftrightarrow> Fin m \<le> n"  | 
|
325  | 
by (auto simp add: iSuc_def less_inat_def split: inat.splits)  | 
|
| 
11351
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
326  | 
|
| 27110 | 327  | 
lemma min_inat_simps [simp]:  | 
328  | 
"min (Fin m) (Fin n) = Fin (min m n)"  | 
|
329  | 
"min q 0 = 0"  | 
|
330  | 
"min 0 q = 0"  | 
|
331  | 
"min q \<infinity> = q"  | 
|
332  | 
"min \<infinity> q = q"  | 
|
333  | 
by (auto simp add: min_def)  | 
|
| 
11351
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
334  | 
|
| 27110 | 335  | 
lemma max_inat_simps [simp]:  | 
336  | 
"max (Fin m) (Fin n) = Fin (max m n)"  | 
|
337  | 
"max q 0 = q"  | 
|
338  | 
"max 0 q = q"  | 
|
339  | 
"max q \<infinity> = \<infinity>"  | 
|
340  | 
"max \<infinity> q = \<infinity>"  | 
|
341  | 
by (simp_all add: max_def)  | 
|
342  | 
||
343  | 
lemma Fin_ile: "n \<le> Fin m \<Longrightarrow> \<exists>k. n = Fin k"  | 
|
344  | 
by (cases n) simp_all  | 
|
345  | 
||
346  | 
lemma Fin_iless: "n < Fin m \<Longrightarrow> \<exists>k. n = Fin k"  | 
|
347  | 
by (cases n) simp_all  | 
|
| 
11351
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
348  | 
|
| 
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
349  | 
lemma chain_incr: "\<forall>i. \<exists>j. Y i < Y j ==> \<exists>j. Fin k < Y j"  | 
| 
25134
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
350  | 
apply (induct_tac k)  | 
| 
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
351  | 
apply (simp (no_asm) only: Fin_0)  | 
| 27110 | 352  | 
apply (fast intro: le_less_trans [OF i0_lb])  | 
| 
25134
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
353  | 
apply (erule exE)  | 
| 
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
354  | 
apply (drule spec)  | 
| 
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
355  | 
apply (erule exE)  | 
| 
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
356  | 
apply (drule ileI1)  | 
| 
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
357  | 
apply (rule iSuc_Fin [THEN subst])  | 
| 
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
358  | 
apply (rule exI)  | 
| 27110 | 359  | 
apply (erule (1) le_less_trans)  | 
| 
25134
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
360  | 
done  | 
| 
11351
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
361  | 
|
| 29337 | 362  | 
instantiation inat :: "{bot, top}"
 | 
363  | 
begin  | 
|
364  | 
||
365  | 
definition bot_inat :: inat where  | 
|
366  | 
"bot_inat = 0"  | 
|
367  | 
||
368  | 
definition top_inat :: inat where  | 
|
369  | 
"top_inat = \<infinity>"  | 
|
370  | 
||
371  | 
instance proof  | 
|
372  | 
qed (simp_all add: bot_inat_def top_inat_def)  | 
|
373  | 
||
374  | 
end  | 
|
375  | 
||
| 26089 | 376  | 
|
| 27110 | 377  | 
subsection {* Well-ordering *}
 | 
| 26089 | 378  | 
|
379  | 
lemma less_FinE:  | 
|
380  | 
"[| n < Fin m; !!k. n = Fin k ==> k < m ==> P |] ==> P"  | 
|
381  | 
by (induct n) auto  | 
|
382  | 
||
383  | 
lemma less_InftyE:  | 
|
384  | 
"[| n < Infty; !!k. n = Fin k ==> P |] ==> P"  | 
|
385  | 
by (induct n) auto  | 
|
386  | 
||
387  | 
lemma inat_less_induct:  | 
|
388  | 
assumes prem: "!!n. \<forall>m::inat. m < n --> P m ==> P n" shows "P n"  | 
|
389  | 
proof -  | 
|
390  | 
have P_Fin: "!!k. P (Fin k)"  | 
|
391  | 
apply (rule nat_less_induct)  | 
|
392  | 
apply (rule prem, clarify)  | 
|
393  | 
apply (erule less_FinE, simp)  | 
|
394  | 
done  | 
|
395  | 
show ?thesis  | 
|
396  | 
proof (induct n)  | 
|
397  | 
fix nat  | 
|
398  | 
show "P (Fin nat)" by (rule P_Fin)  | 
|
399  | 
next  | 
|
400  | 
show "P Infty"  | 
|
401  | 
apply (rule prem, clarify)  | 
|
402  | 
apply (erule less_InftyE)  | 
|
403  | 
apply (simp add: P_Fin)  | 
|
404  | 
done  | 
|
405  | 
qed  | 
|
406  | 
qed  | 
|
407  | 
||
408  | 
instance inat :: wellorder  | 
|
409  | 
proof  | 
|
| 27823 | 410  | 
fix P and n  | 
411  | 
assume hyp: "(\<And>n\<Colon>inat. (\<And>m\<Colon>inat. m < n \<Longrightarrow> P m) \<Longrightarrow> P n)"  | 
|
412  | 
show "P n" by (blast intro: inat_less_induct hyp)  | 
|
| 26089 | 413  | 
qed  | 
414  | 
||
| 27110 | 415  | 
|
416  | 
subsection {* Traditional theorem names *}
 | 
|
417  | 
||
418  | 
lemmas inat_defs = zero_inat_def one_inat_def number_of_inat_def iSuc_def  | 
|
419  | 
plus_inat_def less_eq_inat_def less_inat_def  | 
|
420  | 
||
421  | 
lemmas inat_splits = inat.splits  | 
|
422  | 
||
| 
11351
 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 
oheimb 
parents:  
diff
changeset
 | 
423  | 
end  |