doc-src/TutorialI/Inductive/inductive.tex
author nipkow
Thu, 15 Mar 2001 10:41:32 +0100
changeset 11207 08188224c24e
parent 11147 d848c6693185
child 11216 279004936bb0
permissions -rw-r--r--
*** empty log message ***
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
10865
18927bcf7aed a new label
paulson
parents: 10762
diff changeset
     1
\chapter{Inductively Defined Sets} \label{chap:inductive}
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10225
diff changeset
     2
\index{inductive definition|(}
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10225
diff changeset
     3
\index{*inductive|(}
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10225
diff changeset
     4
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10225
diff changeset
     5
This chapter is dedicated to the most important definition principle after
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10225
diff changeset
     6
recursive functions and datatypes: inductively defined sets.
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10225
diff changeset
     7
11147
d848c6693185 *** empty log message ***
nipkow
parents: 10884
diff changeset
     8
We start with a simple example: the set of even numbers.  A slightly more
d848c6693185 *** empty log message ***
nipkow
parents: 10884
diff changeset
     9
complicated example, the reflexive transitive closure, is the subject of
d848c6693185 *** empty log message ***
nipkow
parents: 10884
diff changeset
    10
{\S}\ref{sec:rtc}. In particular, some standard induction heuristics are
d848c6693185 *** empty log message ***
nipkow
parents: 10884
diff changeset
    11
discussed. Advanced forms of inductive definitions are discussed in
d848c6693185 *** empty log message ***
nipkow
parents: 10884
diff changeset
    12
{\S}\ref{sec:adv-ind-def}. To demonstrate the versatility of inductive
d848c6693185 *** empty log message ***
nipkow
parents: 10884
diff changeset
    13
definitions, the chapter closes with a case study from the realm of
d848c6693185 *** empty log message ***
nipkow
parents: 10884
diff changeset
    14
context-free grammars. The first two sections are required reading for anybody
d848c6693185 *** empty log message ***
nipkow
parents: 10884
diff changeset
    15
interested in mathematical modelling.
10219
eb28637c72ce *** empty log message ***
nipkow
parents:
diff changeset
    16
10884
2995639c6a09 renaming of some files
paulson
parents: 10865
diff changeset
    17
\input{Inductive/even-example}
10762
cd1a2bee5549 *** empty log message ***
nipkow
parents: 10520
diff changeset
    18
\input{Inductive/document/Mutual}
10225
b9fd52525b69 *** empty log message ***
nipkow
parents: 10219
diff changeset
    19
\input{Inductive/document/Star}
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10225
diff changeset
    20
10371
4015fdd0bcf0 the section command will belong to the new file
paulson
parents: 10327
diff changeset
    21
\section{Advanced inductive definitions}
11147
d848c6693185 *** empty log message ***
nipkow
parents: 10884
diff changeset
    22
\label{sec:adv-ind-def}
10884
2995639c6a09 renaming of some files
paulson
parents: 10865
diff changeset
    23
\input{Inductive/advanced-examples}
10371
4015fdd0bcf0 the section command will belong to the new file
paulson
parents: 10327
diff changeset
    24
10520
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10468
diff changeset
    25
\input{Inductive/document/AB}
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10468
diff changeset
    26
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10225
diff changeset
    27
\index{inductive definition|)}
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10225
diff changeset
    28
\index{*inductive|)}