35247
|
1 |
(* Title: HOL/Induct/SList.thy
|
|
2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
3 |
|
|
4 |
This theory is strictly of historical interest. It illustrates how
|
|
5 |
recursive datatypes can be constructed in higher-order logic from
|
|
6 |
first principles. Isabelle's datatype package automates a
|
|
7 |
construction of this sort.
|
|
8 |
|
|
9 |
Enriched theory of lists; mutual indirect recursive data-types.
|
|
10 |
|
|
11 |
Definition of type 'a list (strict lists) by a least fixed point
|
|
12 |
|
|
13 |
We use list(A) == lfp(%Z. {NUMB(0)} <+> A <*> Z)
|
|
14 |
and not list == lfp(%Z. {NUMB(0)} <+> range(Leaf) <*> Z)
|
|
15 |
|
|
16 |
so that list can serve as a "functor" for defining other recursive types.
|
|
17 |
|
|
18 |
This enables the conservative construction of mutual recursive data-types
|
|
19 |
such as
|
|
20 |
|
|
21 |
datatype 'a m = Node 'a * ('a m) list
|
|
22 |
*)
|
|
23 |
|
|
24 |
header {* Extended List Theory (old) *}
|
|
25 |
|
|
26 |
theory SList
|
|
27 |
imports Sexp
|
|
28 |
begin
|
|
29 |
|
|
30 |
(*Hilbert_Choice is needed for the function "inv"*)
|
|
31 |
|
|
32 |
(* *********************************************************************** *)
|
|
33 |
(* *)
|
|
34 |
(* Building up data type *)
|
|
35 |
(* *)
|
|
36 |
(* *********************************************************************** *)
|
|
37 |
|
|
38 |
|
|
39 |
(* Defining the Concrete Constructors *)
|
|
40 |
definition
|
|
41 |
NIL :: "'a item" where
|
|
42 |
"NIL = In0(Numb(0))"
|
|
43 |
|
|
44 |
definition
|
|
45 |
CONS :: "['a item, 'a item] => 'a item" where
|
|
46 |
"CONS M N = In1(Scons M N)"
|
|
47 |
|
|
48 |
inductive_set
|
|
49 |
list :: "'a item set => 'a item set"
|
|
50 |
for A :: "'a item set"
|
|
51 |
where
|
|
52 |
NIL_I: "NIL: list A"
|
|
53 |
| CONS_I: "[| a: A; M: list A |] ==> CONS a M : list A"
|
|
54 |
|
|
55 |
|
|
56 |
typedef (List)
|
|
57 |
'a list = "list(range Leaf) :: 'a item set"
|
|
58 |
by (blast intro: list.NIL_I)
|
|
59 |
|
|
60 |
abbreviation "Case == Datatype.Case"
|
|
61 |
abbreviation "Split == Datatype.Split"
|
|
62 |
|
|
63 |
definition
|
|
64 |
List_case :: "['b, ['a item, 'a item]=>'b, 'a item] => 'b" where
|
|
65 |
"List_case c d = Case(%x. c)(Split(d))"
|
|
66 |
|
|
67 |
definition
|
|
68 |
List_rec :: "['a item, 'b, ['a item, 'a item, 'b]=>'b] => 'b" where
|
|
69 |
"List_rec M c d = wfrec (pred_sexp^+)
|
|
70 |
(%g. List_case c (%x y. d x y (g y))) M"
|
|
71 |
|
|
72 |
|
|
73 |
(* *********************************************************************** *)
|
|
74 |
(* *)
|
|
75 |
(* Abstracting data type *)
|
|
76 |
(* *)
|
|
77 |
(* *********************************************************************** *)
|
|
78 |
|
|
79 |
(*Declaring the abstract list constructors*)
|
|
80 |
|
|
81 |
no_translations
|
|
82 |
"[x, xs]" == "x#[xs]"
|
|
83 |
"[x]" == "x#[]"
|
|
84 |
no_notation
|
|
85 |
Nil ("[]") and
|
|
86 |
Cons (infixr "#" 65)
|
|
87 |
|
|
88 |
definition
|
|
89 |
Nil :: "'a list" ("[]") where
|
|
90 |
"Nil = Abs_List(NIL)"
|
|
91 |
|
|
92 |
definition
|
|
93 |
"Cons" :: "['a, 'a list] => 'a list" (infixr "#" 65) where
|
|
94 |
"x#xs = Abs_List(CONS (Leaf x)(Rep_List xs))"
|
|
95 |
|
|
96 |
definition
|
|
97 |
(* list Recursion -- the trancl is Essential; see list.ML *)
|
|
98 |
list_rec :: "['a list, 'b, ['a, 'a list, 'b]=>'b] => 'b" where
|
|
99 |
"list_rec l c d =
|
|
100 |
List_rec(Rep_List l) c (%x y r. d(inv Leaf x)(Abs_List y) r)"
|
|
101 |
|
|
102 |
definition
|
|
103 |
list_case :: "['b, ['a, 'a list]=>'b, 'a list] => 'b" where
|
|
104 |
"list_case a f xs = list_rec xs a (%x xs r. f x xs)"
|
|
105 |
|
|
106 |
(* list Enumeration *)
|
|
107 |
translations
|
|
108 |
"[x, xs]" == "x#[xs]"
|
|
109 |
"[x]" == "x#[]"
|
|
110 |
|
|
111 |
"case xs of [] => a | y#ys => b" == "CONST list_case(a, %y ys. b, xs)"
|
|
112 |
|
|
113 |
|
|
114 |
(* *********************************************************************** *)
|
|
115 |
(* *)
|
|
116 |
(* Generalized Map Functionals *)
|
|
117 |
(* *)
|
|
118 |
(* *********************************************************************** *)
|
|
119 |
|
|
120 |
|
|
121 |
(* Generalized Map Functionals *)
|
|
122 |
|
|
123 |
definition
|
|
124 |
Rep_map :: "('b => 'a item) => ('b list => 'a item)" where
|
|
125 |
"Rep_map f xs = list_rec xs NIL(%x l r. CONS(f x) r)"
|
|
126 |
|
|
127 |
definition
|
|
128 |
Abs_map :: "('a item => 'b) => 'a item => 'b list" where
|
|
129 |
"Abs_map g M = List_rec M Nil (%N L r. g(N)#r)"
|
|
130 |
|
|
131 |
|
|
132 |
definition
|
|
133 |
map :: "('a=>'b) => ('a list => 'b list)" where
|
|
134 |
"map f xs = list_rec xs [] (%x l r. f(x)#r)"
|
|
135 |
|
|
136 |
consts take :: "['a list,nat] => 'a list"
|
|
137 |
primrec
|
|
138 |
take_0: "take xs 0 = []"
|
|
139 |
take_Suc: "take xs (Suc n) = list_case [] (%x l. x # take l n) xs"
|
|
140 |
|
|
141 |
lemma ListI: "x : list (range Leaf) ==> x : List"
|
|
142 |
by (simp add: List_def)
|
|
143 |
|
|
144 |
lemma ListD: "x : List ==> x : list (range Leaf)"
|
|
145 |
by (simp add: List_def)
|
|
146 |
|
|
147 |
lemma list_unfold: "list(A) = usum {Numb(0)} (uprod A (list(A)))"
|
|
148 |
by (fast intro!: list.intros [unfolded NIL_def CONS_def]
|
|
149 |
elim: list.cases [unfolded NIL_def CONS_def])
|
|
150 |
|
|
151 |
(*This justifies using list in other recursive type definitions*)
|
|
152 |
lemma list_mono: "A<=B ==> list(A) <= list(B)"
|
|
153 |
apply (rule subsetI)
|
|
154 |
apply (erule list.induct)
|
|
155 |
apply (auto intro!: list.intros)
|
|
156 |
done
|
|
157 |
|
|
158 |
(*Type checking -- list creates well-founded sets*)
|
|
159 |
lemma list_sexp: "list(sexp) <= sexp"
|
|
160 |
apply (rule subsetI)
|
|
161 |
apply (erule list.induct)
|
|
162 |
apply (unfold NIL_def CONS_def)
|
|
163 |
apply (auto intro: sexp.intros sexp_In0I sexp_In1I)
|
|
164 |
done
|
|
165 |
|
|
166 |
(* A <= sexp ==> list(A) <= sexp *)
|
|
167 |
lemmas list_subset_sexp = subset_trans [OF list_mono list_sexp]
|
|
168 |
|
|
169 |
|
|
170 |
(*Induction for the type 'a list *)
|
|
171 |
lemma list_induct:
|
|
172 |
"[| P(Nil);
|
|
173 |
!!x xs. P(xs) ==> P(x # xs) |] ==> P(l)"
|
|
174 |
apply (unfold Nil_def Cons_def)
|
|
175 |
apply (rule Rep_List_inverse [THEN subst])
|
|
176 |
(*types force good instantiation*)
|
|
177 |
apply (rule Rep_List [unfolded List_def, THEN list.induct], simp)
|
|
178 |
apply (erule Abs_List_inverse [unfolded List_def, THEN subst], blast)
|
|
179 |
done
|
|
180 |
|
|
181 |
|
|
182 |
(*** Isomorphisms ***)
|
|
183 |
|
|
184 |
lemma inj_on_Abs_list: "inj_on Abs_List (list(range Leaf))"
|
|
185 |
apply (rule inj_on_inverseI)
|
|
186 |
apply (erule Abs_List_inverse [unfolded List_def])
|
|
187 |
done
|
|
188 |
|
|
189 |
(** Distinctness of constructors **)
|
|
190 |
|
|
191 |
lemma CONS_not_NIL [iff]: "CONS M N ~= NIL"
|
|
192 |
by (simp add: NIL_def CONS_def)
|
|
193 |
|
|
194 |
lemmas NIL_not_CONS [iff] = CONS_not_NIL [THEN not_sym]
|
|
195 |
lemmas CONS_neq_NIL = CONS_not_NIL [THEN notE, standard]
|
|
196 |
lemmas NIL_neq_CONS = sym [THEN CONS_neq_NIL]
|
|
197 |
|
|
198 |
lemma Cons_not_Nil [iff]: "x # xs ~= Nil"
|
|
199 |
apply (unfold Nil_def Cons_def)
|
|
200 |
apply (rule CONS_not_NIL [THEN inj_on_Abs_list [THEN inj_on_contraD]])
|
|
201 |
apply (simp_all add: list.intros rangeI Rep_List [unfolded List_def])
|
|
202 |
done
|
|
203 |
|
|
204 |
lemmas Nil_not_Cons [iff] = Cons_not_Nil [THEN not_sym, standard]
|
|
205 |
lemmas Cons_neq_Nil = Cons_not_Nil [THEN notE, standard]
|
|
206 |
lemmas Nil_neq_Cons = sym [THEN Cons_neq_Nil]
|
|
207 |
|
|
208 |
(** Injectiveness of CONS and Cons **)
|
|
209 |
|
|
210 |
lemma CONS_CONS_eq [iff]: "(CONS K M)=(CONS L N) = (K=L & M=N)"
|
|
211 |
by (simp add: CONS_def)
|
|
212 |
|
|
213 |
(*For reasoning about abstract list constructors*)
|
|
214 |
declare Rep_List [THEN ListD, intro] ListI [intro]
|
|
215 |
declare list.intros [intro,simp]
|
|
216 |
declare Leaf_inject [dest!]
|
|
217 |
|
|
218 |
lemma Cons_Cons_eq [iff]: "(x#xs=y#ys) = (x=y & xs=ys)"
|
|
219 |
apply (simp add: Cons_def)
|
|
220 |
apply (subst Abs_List_inject)
|
|
221 |
apply (auto simp add: Rep_List_inject)
|
|
222 |
done
|
|
223 |
|
|
224 |
lemmas Cons_inject2 = Cons_Cons_eq [THEN iffD1, THEN conjE, standard]
|
|
225 |
|
|
226 |
lemma CONS_D: "CONS M N: list(A) ==> M: A & N: list(A)"
|
|
227 |
by (induct L == "CONS M N" set: list) auto
|
|
228 |
|
|
229 |
lemma sexp_CONS_D: "CONS M N: sexp ==> M: sexp & N: sexp"
|
|
230 |
apply (simp add: CONS_def In1_def)
|
|
231 |
apply (fast dest!: Scons_D)
|
|
232 |
done
|
|
233 |
|
|
234 |
|
|
235 |
(*Reasoning about constructors and their freeness*)
|
|
236 |
|
|
237 |
|
|
238 |
lemma not_CONS_self: "N: list(A) ==> !M. N ~= CONS M N"
|
|
239 |
apply (erule list.induct) apply simp_all done
|
|
240 |
|
|
241 |
lemma not_Cons_self2: "\<forall>x. l ~= x#l"
|
|
242 |
by (induct l rule: list_induct) simp_all
|
|
243 |
|
|
244 |
|
|
245 |
lemma neq_Nil_conv2: "(xs ~= []) = (\<exists>y ys. xs = y#ys)"
|
|
246 |
by (induct xs rule: list_induct) auto
|
|
247 |
|
|
248 |
(** Conversion rules for List_case: case analysis operator **)
|
|
249 |
|
|
250 |
lemma List_case_NIL [simp]: "List_case c h NIL = c"
|
|
251 |
by (simp add: List_case_def NIL_def)
|
|
252 |
|
|
253 |
lemma List_case_CONS [simp]: "List_case c h (CONS M N) = h M N"
|
|
254 |
by (simp add: List_case_def CONS_def)
|
|
255 |
|
|
256 |
|
|
257 |
(*** List_rec -- by wf recursion on pred_sexp ***)
|
|
258 |
|
|
259 |
(* The trancl(pred_sexp) is essential because pred_sexp_CONS_I1,2 would not
|
|
260 |
hold if pred_sexp^+ were changed to pred_sexp. *)
|
|
261 |
|
|
262 |
lemma List_rec_unfold_lemma:
|
|
263 |
"(%M. List_rec M c d) ==
|
|
264 |
wfrec (pred_sexp^+) (%g. List_case c (%x y. d x y (g y)))"
|
|
265 |
by (simp add: List_rec_def)
|
|
266 |
|
|
267 |
lemmas List_rec_unfold =
|
|
268 |
def_wfrec [OF List_rec_unfold_lemma wf_pred_sexp [THEN wf_trancl],
|
|
269 |
standard]
|
|
270 |
|
|
271 |
|
|
272 |
(** pred_sexp lemmas **)
|
|
273 |
|
|
274 |
lemma pred_sexp_CONS_I1:
|
|
275 |
"[| M: sexp; N: sexp |] ==> (M, CONS M N) : pred_sexp^+"
|
|
276 |
by (simp add: CONS_def In1_def)
|
|
277 |
|
|
278 |
lemma pred_sexp_CONS_I2:
|
|
279 |
"[| M: sexp; N: sexp |] ==> (N, CONS M N) : pred_sexp^+"
|
|
280 |
by (simp add: CONS_def In1_def)
|
|
281 |
|
|
282 |
lemma pred_sexp_CONS_D:
|
|
283 |
"(CONS M1 M2, N) : pred_sexp^+ ==>
|
|
284 |
(M1,N) : pred_sexp^+ & (M2,N) : pred_sexp^+"
|
|
285 |
apply (frule pred_sexp_subset_Sigma [THEN trancl_subset_Sigma, THEN subsetD])
|
|
286 |
apply (blast dest!: sexp_CONS_D intro: pred_sexp_CONS_I1 pred_sexp_CONS_I2
|
|
287 |
trans_trancl [THEN transD])
|
|
288 |
done
|
|
289 |
|
|
290 |
|
|
291 |
(** Conversion rules for List_rec **)
|
|
292 |
|
|
293 |
lemma List_rec_NIL [simp]: "List_rec NIL c h = c"
|
|
294 |
apply (rule List_rec_unfold [THEN trans])
|
|
295 |
apply (simp add: List_case_NIL)
|
|
296 |
done
|
|
297 |
|
|
298 |
lemma List_rec_CONS [simp]:
|
|
299 |
"[| M: sexp; N: sexp |]
|
|
300 |
==> List_rec (CONS M N) c h = h M N (List_rec N c h)"
|
|
301 |
apply (rule List_rec_unfold [THEN trans])
|
|
302 |
apply (simp add: pred_sexp_CONS_I2)
|
|
303 |
done
|
|
304 |
|
|
305 |
|
|
306 |
(*** list_rec -- by List_rec ***)
|
|
307 |
|
|
308 |
lemmas Rep_List_in_sexp =
|
|
309 |
subsetD [OF range_Leaf_subset_sexp [THEN list_subset_sexp]
|
|
310 |
Rep_List [THEN ListD]]
|
|
311 |
|
|
312 |
|
|
313 |
lemma list_rec_Nil [simp]: "list_rec Nil c h = c"
|
|
314 |
by (simp add: list_rec_def ListI [THEN Abs_List_inverse] Nil_def)
|
|
315 |
|
|
316 |
|
|
317 |
lemma list_rec_Cons [simp]: "list_rec (a#l) c h = h a l (list_rec l c h)"
|
|
318 |
by (simp add: list_rec_def ListI [THEN Abs_List_inverse] Cons_def
|
|
319 |
Rep_List_inverse Rep_List [THEN ListD] inj_Leaf Rep_List_in_sexp)
|
|
320 |
|
|
321 |
|
|
322 |
(*Type checking. Useful?*)
|
|
323 |
lemma List_rec_type:
|
|
324 |
"[| M: list(A);
|
|
325 |
A<=sexp;
|
|
326 |
c: C(NIL);
|
|
327 |
!!x y r. [| x: A; y: list(A); r: C(y) |] ==> h x y r: C(CONS x y)
|
|
328 |
|] ==> List_rec M c h : C(M :: 'a item)"
|
|
329 |
apply (erule list.induct, simp)
|
|
330 |
apply (insert list_subset_sexp)
|
|
331 |
apply (subst List_rec_CONS, blast+)
|
|
332 |
done
|
|
333 |
|
|
334 |
|
|
335 |
|
|
336 |
(** Generalized map functionals **)
|
|
337 |
|
|
338 |
lemma Rep_map_Nil [simp]: "Rep_map f Nil = NIL"
|
|
339 |
by (simp add: Rep_map_def)
|
|
340 |
|
|
341 |
lemma Rep_map_Cons [simp]:
|
|
342 |
"Rep_map f(x#xs) = CONS(f x)(Rep_map f xs)"
|
|
343 |
by (simp add: Rep_map_def)
|
|
344 |
|
|
345 |
lemma Rep_map_type: "(!!x. f(x): A) ==> Rep_map f xs: list(A)"
|
|
346 |
apply (simp add: Rep_map_def)
|
|
347 |
apply (rule list_induct, auto)
|
|
348 |
done
|
|
349 |
|
|
350 |
lemma Abs_map_NIL [simp]: "Abs_map g NIL = Nil"
|
|
351 |
by (simp add: Abs_map_def)
|
|
352 |
|
|
353 |
lemma Abs_map_CONS [simp]:
|
|
354 |
"[| M: sexp; N: sexp |] ==> Abs_map g (CONS M N) = g(M) # Abs_map g N"
|
|
355 |
by (simp add: Abs_map_def)
|
|
356 |
|
|
357 |
(*Eases the use of primitive recursion.*)
|
|
358 |
lemma def_list_rec_NilCons:
|
|
359 |
"[| !!xs. f(xs) = list_rec xs c h |]
|
|
360 |
==> f [] = c & f(x#xs) = h x xs (f xs)"
|
|
361 |
by simp
|
|
362 |
|
|
363 |
lemma Abs_map_inverse:
|
|
364 |
"[| M: list(A); A<=sexp; !!z. z: A ==> f(g(z)) = z |]
|
|
365 |
==> Rep_map f (Abs_map g M) = M"
|
|
366 |
apply (erule list.induct, simp_all)
|
|
367 |
apply (insert list_subset_sexp)
|
|
368 |
apply (subst Abs_map_CONS, blast)
|
|
369 |
apply blast
|
|
370 |
apply simp
|
|
371 |
done
|
|
372 |
|
|
373 |
(*Rep_map_inverse is obtained via Abs_Rep_map and map_ident*)
|
|
374 |
|
|
375 |
(** list_case **)
|
|
376 |
|
|
377 |
(* setting up rewrite sets *)
|
|
378 |
|
|
379 |
text{*Better to have a single theorem with a conjunctive conclusion.*}
|
|
380 |
declare def_list_rec_NilCons [OF list_case_def, simp]
|
|
381 |
|
|
382 |
(** list_case **)
|
|
383 |
|
|
384 |
lemma expand_list_case:
|
|
385 |
"P(list_case a f xs) = ((xs=[] --> P a ) & (!y ys. xs=y#ys --> P(f y ys)))"
|
|
386 |
by (induct xs rule: list_induct) simp_all
|
|
387 |
|
|
388 |
|
|
389 |
(**** Function definitions ****)
|
|
390 |
|
|
391 |
declare def_list_rec_NilCons [OF map_def, simp]
|
|
392 |
|
|
393 |
(** The functional "map" and the generalized functionals **)
|
|
394 |
|
|
395 |
lemma Abs_Rep_map:
|
|
396 |
"(!!x. f(x): sexp) ==>
|
|
397 |
Abs_map g (Rep_map f xs) = map (%t. g(f(t))) xs"
|
|
398 |
apply (induct xs rule: list_induct)
|
|
399 |
apply (simp_all add: Rep_map_type list_sexp [THEN subsetD])
|
|
400 |
done
|
|
401 |
|
|
402 |
|
|
403 |
(** Additional mapping lemmas **)
|
|
404 |
|
|
405 |
lemma map_ident [simp]: "map(%x. x)(xs) = xs"
|
|
406 |
by (induct xs rule: list_induct) simp_all
|
|
407 |
|
|
408 |
lemma map_compose: "map(f o g)(xs) = map f (map g xs)"
|
|
409 |
apply (simp add: o_def)
|
|
410 |
apply (induct xs rule: list_induct)
|
|
411 |
apply simp_all
|
|
412 |
done
|
|
413 |
|
|
414 |
|
|
415 |
(** take **)
|
|
416 |
|
|
417 |
lemma take_Suc1 [simp]: "take [] (Suc x) = []"
|
|
418 |
by simp
|
|
419 |
|
|
420 |
lemma take_Suc2 [simp]: "take(a#xs)(Suc x) = a#take xs x"
|
|
421 |
by simp
|
|
422 |
|
|
423 |
lemma take_Nil [simp]: "take [] n = []"
|
|
424 |
by (induct n) simp_all
|
|
425 |
|
|
426 |
lemma take_take_eq [simp]: "\<forall>n. take (take xs n) n = take xs n"
|
|
427 |
apply (induct xs rule: list_induct)
|
|
428 |
apply simp_all
|
|
429 |
apply (rule allI)
|
|
430 |
apply (induct_tac n)
|
|
431 |
apply auto
|
|
432 |
done
|
|
433 |
|
|
434 |
end
|