| author | wenzelm | 
| Mon, 24 Aug 2020 21:47:21 +0200 | |
| changeset 72202 | 0840240dfb24 | 
| parent 69712 | dc85b5b3a532 | 
| child 76339 | 9e1fef7b4f29 | 
| permissions | -rw-r--r-- | 
| 
41141
 
ad923cdd4a5d
added example to exercise higher-order reasoning with Sledgehammer and Metis
 
blanchet 
parents: 
39260 
diff
changeset
 | 
1  | 
(* Title: HOL/Metis_Examples/Message.thy  | 
| 43197 | 2  | 
Author: Lawrence C. Paulson, Cambridge University Computer Laboratory  | 
| 41144 | 3  | 
Author: Jasmin Blanchette, TU Muenchen  | 
| 23449 | 4  | 
|
| 43197 | 5  | 
Metis example featuring message authentication.  | 
| 23449 | 6  | 
*)  | 
7  | 
||
| 63167 | 8  | 
section \<open>Metis Example Featuring Message Authentication\<close>  | 
| 43197 | 9  | 
|
| 36553 | 10  | 
theory Message  | 
11  | 
imports Main  | 
|
12  | 
begin  | 
|
| 23449 | 13  | 
|
| 
50705
 
0e943b33d907
use new skolemizer for reconstructing skolemization steps in Isar proofs (because the old skolemizer messes up the order of the Skolem arguments)
 
blanchet 
parents: 
46075 
diff
changeset
 | 
14  | 
declare [[metis_new_skolem]]  | 
| 
42103
 
6066a35f6678
Metis examples use the new Skolemizer to test it
 
blanchet 
parents: 
41144 
diff
changeset
 | 
15  | 
|
| 23449 | 16  | 
lemma strange_Un_eq [simp]: "A \<union> (B \<union> A) = B \<union> A"  | 
| 36911 | 17  | 
by (metis Un_commute Un_left_absorb)  | 
| 23449 | 18  | 
|
| 42463 | 19  | 
type_synonym key = nat  | 
| 23449 | 20  | 
|
21  | 
consts  | 
|
| 
67443
 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 
wenzelm 
parents: 
63167 
diff
changeset
 | 
22  | 
all_symmetric :: bool \<comment> \<open>true if all keys are symmetric\<close>  | 
| 
 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 
wenzelm 
parents: 
63167 
diff
changeset
 | 
23  | 
invKey :: "key=>key" \<comment> \<open>inverse of a symmetric key\<close>  | 
| 23449 | 24  | 
|
25  | 
specification (invKey)  | 
|
26  | 
invKey [simp]: "invKey (invKey K) = K"  | 
|
27  | 
invKey_symmetric: "all_symmetric --> invKey = id"  | 
|
| 36553 | 28  | 
by (metis id_apply)  | 
| 23449 | 29  | 
|
30  | 
||
| 63167 | 31  | 
text\<open>The inverse of a symmetric key is itself; that of a public key  | 
32  | 
is the private key and vice versa\<close>  | 
|
| 23449 | 33  | 
|
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
35109 
diff
changeset
 | 
34  | 
definition symKeys :: "key set" where  | 
| 23449 | 35  | 
  "symKeys == {K. invKey K = K}"
 | 
36  | 
||
| 
67443
 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 
wenzelm 
parents: 
63167 
diff
changeset
 | 
37  | 
datatype \<comment> \<open>We allow any number of friendly agents\<close>  | 
| 23449 | 38  | 
agent = Server | Friend nat | Spy  | 
39  | 
||
| 58310 | 40  | 
datatype  | 
| 
67443
 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 
wenzelm 
parents: 
63167 
diff
changeset
 | 
41  | 
msg = Agent agent \<comment> \<open>Agent names\<close>  | 
| 
 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 
wenzelm 
parents: 
63167 
diff
changeset
 | 
42  | 
| Number nat \<comment> \<open>Ordinary integers, timestamps, ...\<close>  | 
| 
 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 
wenzelm 
parents: 
63167 
diff
changeset
 | 
43  | 
| Nonce nat \<comment> \<open>Unguessable nonces\<close>  | 
| 
 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 
wenzelm 
parents: 
63167 
diff
changeset
 | 
44  | 
| Key key \<comment> \<open>Crypto keys\<close>  | 
| 
 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 
wenzelm 
parents: 
63167 
diff
changeset
 | 
45  | 
| Hash msg \<comment> \<open>Hashing\<close>  | 
| 
 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 
wenzelm 
parents: 
63167 
diff
changeset
 | 
46  | 
| MPair msg msg \<comment> \<open>Compound messages\<close>  | 
| 
 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 
wenzelm 
parents: 
63167 
diff
changeset
 | 
47  | 
| Crypt key msg \<comment> \<open>Encryption, public- or shared-key\<close>  | 
| 23449 | 48  | 
|
49  | 
||
| 63167 | 50  | 
text\<open>Concrete syntax: messages appear as \<open>\<lbrace>A,B,NA\<rbrace>\<close>, etc...\<close>  | 
| 23449 | 51  | 
syntax  | 
| 35109 | 52  | 
  "_MTuple"      :: "['a, args] => 'a * 'b"       ("(2\<lbrace>_,/ _\<rbrace>)")
 | 
| 23449 | 53  | 
translations  | 
| 61984 | 54  | 
"\<lbrace>x, y, z\<rbrace>" == "\<lbrace>x, \<lbrace>y, z\<rbrace>\<rbrace>"  | 
55  | 
"\<lbrace>x, y\<rbrace>" == "CONST MPair x y"  | 
|
| 23449 | 56  | 
|
57  | 
||
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
35109 
diff
changeset
 | 
58  | 
definition HPair :: "[msg,msg] => msg" ("(4Hash[_] /_)" [0, 1000]) where
 | 
| 
67443
 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 
wenzelm 
parents: 
63167 
diff
changeset
 | 
59  | 
\<comment> \<open>Message Y paired with a MAC computed with the help of X\<close>  | 
| 61984 | 60  | 
"Hash[X] Y == \<lbrace> Hash\<lbrace>X,Y\<rbrace>, Y\<rbrace>"  | 
| 23449 | 61  | 
|
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
35109 
diff
changeset
 | 
62  | 
definition keysFor :: "msg set => key set" where  | 
| 
67443
 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 
wenzelm 
parents: 
63167 
diff
changeset
 | 
63  | 
\<comment> \<open>Keys useful to decrypt elements of a message set\<close>  | 
| 23449 | 64  | 
  "keysFor H == invKey ` {K. \<exists>X. Crypt K X \<in> H}"
 | 
65  | 
||
66  | 
||
| 63167 | 67  | 
subsubsection\<open>Inductive Definition of All Parts" of a Message\<close>  | 
| 23449 | 68  | 
|
| 23755 | 69  | 
inductive_set  | 
70  | 
parts :: "msg set => msg set"  | 
|
71  | 
for H :: "msg set"  | 
|
72  | 
where  | 
|
| 23449 | 73  | 
Inj [intro]: "X \<in> H ==> X \<in> parts H"  | 
| 61984 | 74  | 
| Fst: "\<lbrace>X,Y\<rbrace> \<in> parts H ==> X \<in> parts H"  | 
75  | 
| Snd: "\<lbrace>X,Y\<rbrace> \<in> parts H ==> Y \<in> parts H"  | 
|
| 23755 | 76  | 
| Body: "Crypt K X \<in> parts H ==> X \<in> parts H"  | 
| 23449 | 77  | 
|
78  | 
lemma parts_mono: "G \<subseteq> H ==> parts(G) \<subseteq> parts(H)"  | 
|
79  | 
apply auto  | 
|
| 36553 | 80  | 
apply (erule parts.induct)  | 
| 69712 | 81  | 
apply (metis parts.Inj rev_subsetD)  | 
| 36553 | 82  | 
apply (metis parts.Fst)  | 
83  | 
apply (metis parts.Snd)  | 
|
84  | 
by (metis parts.Body)  | 
|
| 23449 | 85  | 
|
| 63167 | 86  | 
text\<open>Equations hold because constructors are injective.\<close>  | 
| 67613 | 87  | 
lemma Friend_image_eq [simp]: "(Friend x \<in> Friend`A) = (x\<in>A)"  | 
| 39260 | 88  | 
by (metis agent.inject image_iff)  | 
| 23449 | 89  | 
|
| 36553 | 90  | 
lemma Key_image_eq [simp]: "(Key x \<in> Key`A) = (x \<in> A)"  | 
91  | 
by (metis image_iff msg.inject(4))  | 
|
| 23449 | 92  | 
|
| 36553 | 93  | 
lemma Nonce_Key_image_eq [simp]: "Nonce x \<notin> Key`A"  | 
94  | 
by (metis image_iff msg.distinct(23))  | 
|
| 23449 | 95  | 
|
96  | 
||
| 63167 | 97  | 
subsubsection\<open>Inverse of keys\<close>  | 
| 23449 | 98  | 
|
| 36553 | 99  | 
lemma invKey_eq [simp]: "(invKey K = invKey K') = (K = K')"  | 
| 23449 | 100  | 
by (metis invKey)  | 
101  | 
||
102  | 
||
| 63167 | 103  | 
subsection\<open>keysFor operator\<close>  | 
| 23449 | 104  | 
|
105  | 
lemma keysFor_empty [simp]: "keysFor {} = {}"
 | 
|
106  | 
by (unfold keysFor_def, blast)  | 
|
107  | 
||
108  | 
lemma keysFor_Un [simp]: "keysFor (H \<union> H') = keysFor H \<union> keysFor H'"  | 
|
109  | 
by (unfold keysFor_def, blast)  | 
|
110  | 
||
111  | 
lemma keysFor_UN [simp]: "keysFor (\<Union>i\<in>A. H i) = (\<Union>i\<in>A. keysFor (H i))"  | 
|
112  | 
by (unfold keysFor_def, blast)  | 
|
113  | 
||
| 63167 | 114  | 
text\<open>Monotonicity\<close>  | 
| 23449 | 115  | 
lemma keysFor_mono: "G \<subseteq> H ==> keysFor(G) \<subseteq> keysFor(H)"  | 
116  | 
by (unfold keysFor_def, blast)  | 
|
117  | 
||
118  | 
lemma keysFor_insert_Agent [simp]: "keysFor (insert (Agent A) H) = keysFor H"  | 
|
119  | 
by (unfold keysFor_def, auto)  | 
|
120  | 
||
121  | 
lemma keysFor_insert_Nonce [simp]: "keysFor (insert (Nonce N) H) = keysFor H"  | 
|
122  | 
by (unfold keysFor_def, auto)  | 
|
123  | 
||
124  | 
lemma keysFor_insert_Number [simp]: "keysFor (insert (Number N) H) = keysFor H"  | 
|
125  | 
by (unfold keysFor_def, auto)  | 
|
126  | 
||
127  | 
lemma keysFor_insert_Key [simp]: "keysFor (insert (Key K) H) = keysFor H"  | 
|
128  | 
by (unfold keysFor_def, auto)  | 
|
129  | 
||
130  | 
lemma keysFor_insert_Hash [simp]: "keysFor (insert (Hash X) H) = keysFor H"  | 
|
131  | 
by (unfold keysFor_def, auto)  | 
|
132  | 
||
| 61984 | 133  | 
lemma keysFor_insert_MPair [simp]: "keysFor (insert \<lbrace>X,Y\<rbrace> H) = keysFor H"  | 
| 23449 | 134  | 
by (unfold keysFor_def, auto)  | 
135  | 
||
| 43197 | 136  | 
lemma keysFor_insert_Crypt [simp]:  | 
| 23449 | 137  | 
"keysFor (insert (Crypt K X) H) = insert (invKey K) (keysFor H)"  | 
138  | 
by (unfold keysFor_def, auto)  | 
|
139  | 
||
140  | 
lemma keysFor_image_Key [simp]: "keysFor (Key`E) = {}"
 | 
|
141  | 
by (unfold keysFor_def, auto)  | 
|
142  | 
||
143  | 
lemma Crypt_imp_invKey_keysFor: "Crypt K X \<in> H ==> invKey K \<in> keysFor H"  | 
|
144  | 
by (unfold keysFor_def, blast)  | 
|
145  | 
||
146  | 
||
| 63167 | 147  | 
subsection\<open>Inductive relation "parts"\<close>  | 
| 23449 | 148  | 
|
149  | 
lemma MPair_parts:  | 
|
| 61984 | 150  | 
"[| \<lbrace>X,Y\<rbrace> \<in> parts H;  | 
| 23449 | 151  | 
[| X \<in> parts H; Y \<in> parts H |] ==> P |] ==> P"  | 
| 43197 | 152  | 
by (blast dest: parts.Fst parts.Snd)  | 
| 23449 | 153  | 
|
| 36553 | 154  | 
declare MPair_parts [elim!] parts.Body [dest!]  | 
| 63167 | 155  | 
text\<open>NB These two rules are UNSAFE in the formal sense, as they discard the  | 
| 43197 | 156  | 
compound message. They work well on THIS FILE.  | 
| 63167 | 157  | 
\<open>MPair_parts\<close> is left as SAFE because it speeds up proofs.  | 
158  | 
The Crypt rule is normally kept UNSAFE to avoid breaking up certificates.\<close>  | 
|
| 23449 | 159  | 
|
160  | 
lemma parts_increasing: "H \<subseteq> parts(H)"  | 
|
161  | 
by blast  | 
|
162  | 
||
| 45605 | 163  | 
lemmas parts_insertI = subset_insertI [THEN parts_mono, THEN subsetD]  | 
| 23449 | 164  | 
|
165  | 
lemma parts_empty [simp]: "parts{} = {}"
 | 
|
166  | 
apply safe  | 
|
167  | 
apply (erule parts.induct)  | 
|
168  | 
apply blast+  | 
|
169  | 
done  | 
|
170  | 
||
171  | 
lemma parts_emptyE [elim!]: "X\<in> parts{} ==> P"
 | 
|
172  | 
by simp  | 
|
173  | 
||
| 63167 | 174  | 
text\<open>WARNING: loops if H = {Y}, therefore must not be repeated!\<close>
 | 
| 23449 | 175  | 
lemma parts_singleton: "X\<in> parts H ==> \<exists>Y\<in>H. X\<in> parts {Y}"
 | 
176  | 
apply (erule parts.induct)  | 
|
| 
26807
 
4cd176ea28dc
Replaced blast by fast in proof of parts_singleton, since blast looped
 
berghofe 
parents: 
25710 
diff
changeset
 | 
177  | 
apply fast+  | 
| 23449 | 178  | 
done  | 
179  | 
||
180  | 
||
| 63167 | 181  | 
subsubsection\<open>Unions\<close>  | 
| 23449 | 182  | 
|
183  | 
lemma parts_Un_subset1: "parts(G) \<union> parts(H) \<subseteq> parts(G \<union> H)"  | 
|
184  | 
by (intro Un_least parts_mono Un_upper1 Un_upper2)  | 
|
185  | 
||
186  | 
lemma parts_Un_subset2: "parts(G \<union> H) \<subseteq> parts(G) \<union> parts(H)"  | 
|
187  | 
apply (rule subsetI)  | 
|
188  | 
apply (erule parts.induct, blast+)  | 
|
189  | 
done  | 
|
190  | 
||
191  | 
lemma parts_Un [simp]: "parts(G \<union> H) = parts(G) \<union> parts(H)"  | 
|
192  | 
by (intro equalityI parts_Un_subset1 parts_Un_subset2)  | 
|
193  | 
||
194  | 
lemma parts_insert: "parts (insert X H) = parts {X} \<union> parts H"
 | 
|
195  | 
apply (subst insert_is_Un [of _ H])  | 
|
196  | 
apply (simp only: parts_Un)  | 
|
197  | 
done  | 
|
198  | 
||
199  | 
lemma parts_insert2:  | 
|
200  | 
     "parts (insert X (insert Y H)) = parts {X} \<union> parts {Y} \<union> parts H"
 | 
|
| 
25710
 
4cdf7de81e1b
Replaced refs by config params; finer critical section in mets method
 
paulson 
parents: 
25457 
diff
changeset
 | 
201  | 
by (metis Un_commute Un_empty_left Un_empty_right Un_insert_left Un_insert_right parts_Un)  | 
| 23449 | 202  | 
|
203  | 
||
204  | 
lemma parts_UN_subset1: "(\<Union>x\<in>A. parts(H x)) \<subseteq> parts(\<Union>x\<in>A. H x)"  | 
|
205  | 
by (intro UN_least parts_mono UN_upper)  | 
|
206  | 
||
207  | 
lemma parts_UN_subset2: "parts(\<Union>x\<in>A. H x) \<subseteq> (\<Union>x\<in>A. parts(H x))"  | 
|
208  | 
apply (rule subsetI)  | 
|
209  | 
apply (erule parts.induct, blast+)  | 
|
210  | 
done  | 
|
211  | 
||
212  | 
lemma parts_UN [simp]: "parts(\<Union>x\<in>A. H x) = (\<Union>x\<in>A. parts(H x))"  | 
|
213  | 
by (intro equalityI parts_UN_subset1 parts_UN_subset2)  | 
|
214  | 
||
| 63167 | 215  | 
text\<open>Added to simplify arguments to parts, analz and synth.  | 
216  | 
NOTE: the UN versions are no longer used!\<close>  | 
|
| 23449 | 217  | 
|
218  | 
||
| 63167 | 219  | 
text\<open>This allows \<open>blast\<close> to simplify occurrences of  | 
| 69597 | 220  | 
\<^term>\<open>parts(G\<union>H)\<close> in the assumption.\<close>  | 
| 43197 | 221  | 
lemmas in_parts_UnE = parts_Un [THEN equalityD1, THEN subsetD, THEN UnE]  | 
| 23449 | 222  | 
declare in_parts_UnE [elim!]  | 
223  | 
||
224  | 
lemma parts_insert_subset: "insert X (parts H) \<subseteq> parts(insert X H)"  | 
|
225  | 
by (blast intro: parts_mono [THEN [2] rev_subsetD])  | 
|
226  | 
||
| 63167 | 227  | 
subsubsection\<open>Idempotence and transitivity\<close>  | 
| 23449 | 228  | 
|
229  | 
lemma parts_partsD [dest!]: "X\<in> parts (parts H) ==> X\<in> parts H"  | 
|
230  | 
by (erule parts.induct, blast+)  | 
|
231  | 
||
232  | 
lemma parts_idem [simp]: "parts (parts H) = parts H"  | 
|
233  | 
by blast  | 
|
234  | 
||
235  | 
lemma parts_subset_iff [simp]: "(parts G \<subseteq> parts H) = (G \<subseteq> parts H)"  | 
|
| 43197 | 236  | 
apply (rule iffI)  | 
| 23449 | 237  | 
apply (metis Un_absorb1 Un_subset_iff parts_Un parts_increasing)  | 
| 
25710
 
4cdf7de81e1b
Replaced refs by config params; finer critical section in mets method
 
paulson 
parents: 
25457 
diff
changeset
 | 
238  | 
apply (metis parts_idem parts_mono)  | 
| 23449 | 239  | 
done  | 
240  | 
||
241  | 
lemma parts_trans: "[| X\<in> parts G; G \<subseteq> parts H |] ==> X\<in> parts H"  | 
|
| 45503 | 242  | 
by (blast dest: parts_mono)  | 
| 23449 | 243  | 
|
| 
46075
 
0054a9513b37
reintroduced "metis" call taken out after reintroducing "set" as a constructor, and added two "metis" calls that used to be too slow
 
blanchet 
parents: 
45970 
diff
changeset
 | 
244  | 
lemma parts_cut: "[|Y\<in> parts (insert X G); X\<in> parts H|] ==> Y\<in> parts(G \<union> H)"  | 
| 
 
0054a9513b37
reintroduced "metis" call taken out after reintroducing "set" as a constructor, and added two "metis" calls that used to be too slow
 
blanchet 
parents: 
45970 
diff
changeset
 | 
245  | 
by (metis (no_types) Un_insert_left Un_insert_right insert_absorb le_supE  | 
| 
 
0054a9513b37
reintroduced "metis" call taken out after reintroducing "set" as a constructor, and added two "metis" calls that used to be too slow
 
blanchet 
parents: 
45970 
diff
changeset
 | 
246  | 
parts_Un parts_idem parts_increasing parts_trans)  | 
| 23449 | 247  | 
|
| 63167 | 248  | 
subsubsection\<open>Rewrite rules for pulling out atomic messages\<close>  | 
| 23449 | 249  | 
|
250  | 
lemmas parts_insert_eq_I = equalityI [OF subsetI parts_insert_subset]  | 
|
251  | 
||
252  | 
||
253  | 
lemma parts_insert_Agent [simp]:  | 
|
254  | 
"parts (insert (Agent agt) H) = insert (Agent agt) (parts H)"  | 
|
| 43197 | 255  | 
apply (rule parts_insert_eq_I)  | 
256  | 
apply (erule parts.induct, auto)  | 
|
| 23449 | 257  | 
done  | 
258  | 
||
259  | 
lemma parts_insert_Nonce [simp]:  | 
|
260  | 
"parts (insert (Nonce N) H) = insert (Nonce N) (parts H)"  | 
|
| 43197 | 261  | 
apply (rule parts_insert_eq_I)  | 
262  | 
apply (erule parts.induct, auto)  | 
|
| 23449 | 263  | 
done  | 
264  | 
||
265  | 
lemma parts_insert_Number [simp]:  | 
|
266  | 
"parts (insert (Number N) H) = insert (Number N) (parts H)"  | 
|
| 43197 | 267  | 
apply (rule parts_insert_eq_I)  | 
268  | 
apply (erule parts.induct, auto)  | 
|
| 23449 | 269  | 
done  | 
270  | 
||
271  | 
lemma parts_insert_Key [simp]:  | 
|
272  | 
"parts (insert (Key K) H) = insert (Key K) (parts H)"  | 
|
| 43197 | 273  | 
apply (rule parts_insert_eq_I)  | 
274  | 
apply (erule parts.induct, auto)  | 
|
| 23449 | 275  | 
done  | 
276  | 
||
277  | 
lemma parts_insert_Hash [simp]:  | 
|
278  | 
"parts (insert (Hash X) H) = insert (Hash X) (parts H)"  | 
|
| 43197 | 279  | 
apply (rule parts_insert_eq_I)  | 
280  | 
apply (erule parts.induct, auto)  | 
|
| 23449 | 281  | 
done  | 
282  | 
||
283  | 
lemma parts_insert_Crypt [simp]:  | 
|
| 43197 | 284  | 
"parts (insert (Crypt K X) H) =  | 
| 23449 | 285  | 
insert (Crypt K X) (parts (insert X H))"  | 
286  | 
apply (rule equalityI)  | 
|
287  | 
apply (rule subsetI)  | 
|
288  | 
apply (erule parts.induct, auto)  | 
|
289  | 
apply (blast intro: parts.Body)  | 
|
290  | 
done  | 
|
291  | 
||
292  | 
lemma parts_insert_MPair [simp]:  | 
|
| 61984 | 293  | 
"parts (insert \<lbrace>X,Y\<rbrace> H) =  | 
294  | 
insert \<lbrace>X,Y\<rbrace> (parts (insert X (insert Y H)))"  | 
|
| 23449 | 295  | 
apply (rule equalityI)  | 
296  | 
apply (rule subsetI)  | 
|
297  | 
apply (erule parts.induct, auto)  | 
|
298  | 
apply (blast intro: parts.Fst parts.Snd)+  | 
|
299  | 
done  | 
|
300  | 
||
301  | 
lemma parts_image_Key [simp]: "parts (Key`N) = Key`N"  | 
|
302  | 
apply auto  | 
|
303  | 
apply (erule parts.induct, auto)  | 
|
304  | 
done  | 
|
305  | 
||
306  | 
lemma msg_Nonce_supply: "\<exists>N. \<forall>n. N\<le>n --> Nonce n \<notin> parts {msg}"
 | 
|
| 43197 | 307  | 
apply (induct_tac "msg")  | 
| 23449 | 308  | 
apply (simp_all add: parts_insert2)  | 
309  | 
apply (metis Suc_n_not_le_n)  | 
|
310  | 
apply (metis le_trans linorder_linear)  | 
|
311  | 
done  | 
|
312  | 
||
| 63167 | 313  | 
subsection\<open>Inductive relation "analz"\<close>  | 
| 23449 | 314  | 
|
| 63167 | 315  | 
text\<open>Inductive definition of "analz" -- what can be broken down from a set of  | 
| 23449 | 316  | 
messages, including keys. A form of downward closure. Pairs can  | 
| 63167 | 317  | 
be taken apart; messages decrypted with known keys.\<close>  | 
| 23449 | 318  | 
|
| 23755 | 319  | 
inductive_set  | 
320  | 
analz :: "msg set => msg set"  | 
|
321  | 
for H :: "msg set"  | 
|
322  | 
where  | 
|
| 23449 | 323  | 
Inj [intro,simp] : "X \<in> H ==> X \<in> analz H"  | 
| 61984 | 324  | 
| Fst: "\<lbrace>X,Y\<rbrace> \<in> analz H ==> X \<in> analz H"  | 
325  | 
| Snd: "\<lbrace>X,Y\<rbrace> \<in> analz H ==> Y \<in> analz H"  | 
|
| 43197 | 326  | 
| Decrypt [dest]:  | 
| 67613 | 327  | 
"[|Crypt K X \<in> analz H; Key(invKey K) \<in> analz H|] ==> X \<in> analz H"  | 
| 23449 | 328  | 
|
329  | 
||
| 63167 | 330  | 
text\<open>Monotonicity; Lemma 1 of Lowe's paper\<close>  | 
| 23449 | 331  | 
lemma analz_mono: "G\<subseteq>H ==> analz(G) \<subseteq> analz(H)"  | 
332  | 
apply auto  | 
|
| 43197 | 333  | 
apply (erule analz.induct)  | 
334  | 
apply (auto dest: analz.Fst analz.Snd)  | 
|
| 23449 | 335  | 
done  | 
336  | 
||
| 63167 | 337  | 
text\<open>Making it safe speeds up proofs\<close>  | 
| 23449 | 338  | 
lemma MPair_analz [elim!]:  | 
| 61984 | 339  | 
"[| \<lbrace>X,Y\<rbrace> \<in> analz H;  | 
| 43197 | 340  | 
[| X \<in> analz H; Y \<in> analz H |] ==> P  | 
| 23449 | 341  | 
|] ==> P"  | 
342  | 
by (blast dest: analz.Fst analz.Snd)  | 
|
343  | 
||
344  | 
lemma analz_increasing: "H \<subseteq> analz(H)"  | 
|
345  | 
by blast  | 
|
346  | 
||
347  | 
lemma analz_subset_parts: "analz H \<subseteq> parts H"  | 
|
348  | 
apply (rule subsetI)  | 
|
349  | 
apply (erule analz.induct, blast+)  | 
|
350  | 
done  | 
|
351  | 
||
| 45605 | 352  | 
lemmas analz_into_parts = analz_subset_parts [THEN subsetD]  | 
| 23449 | 353  | 
|
| 45605 | 354  | 
lemmas not_parts_not_analz = analz_subset_parts [THEN contra_subsetD]  | 
| 23449 | 355  | 
|
356  | 
lemma parts_analz [simp]: "parts (analz H) = parts H"  | 
|
357  | 
apply (rule equalityI)  | 
|
358  | 
apply (metis analz_subset_parts parts_subset_iff)  | 
|
359  | 
apply (metis analz_increasing parts_mono)  | 
|
360  | 
done  | 
|
361  | 
||
362  | 
||
363  | 
lemma analz_parts [simp]: "analz (parts H) = parts H"  | 
|
364  | 
apply auto  | 
|
365  | 
apply (erule analz.induct, auto)  | 
|
366  | 
done  | 
|
367  | 
||
| 45605 | 368  | 
lemmas analz_insertI = subset_insertI [THEN analz_mono, THEN [2] rev_subsetD]  | 
| 23449 | 369  | 
|
| 63167 | 370  | 
subsubsection\<open>General equational properties\<close>  | 
| 23449 | 371  | 
|
372  | 
lemma analz_empty [simp]: "analz{} = {}"
 | 
|
373  | 
apply safe  | 
|
374  | 
apply (erule analz.induct, blast+)  | 
|
375  | 
done  | 
|
376  | 
||
| 63167 | 377  | 
text\<open>Converse fails: we can analz more from the union than from the  | 
378  | 
separate parts, as a key in one might decrypt a message in the other\<close>  | 
|
| 23449 | 379  | 
lemma analz_Un: "analz(G) \<union> analz(H) \<subseteq> analz(G \<union> H)"  | 
380  | 
by (intro Un_least analz_mono Un_upper1 Un_upper2)  | 
|
381  | 
||
382  | 
lemma analz_insert: "insert X (analz H) \<subseteq> analz(insert X H)"  | 
|
383  | 
by (blast intro: analz_mono [THEN [2] rev_subsetD])  | 
|
384  | 
||
| 63167 | 385  | 
subsubsection\<open>Rewrite rules for pulling out atomic messages\<close>  | 
| 23449 | 386  | 
|
387  | 
lemmas analz_insert_eq_I = equalityI [OF subsetI analz_insert]  | 
|
388  | 
||
389  | 
lemma analz_insert_Agent [simp]:  | 
|
390  | 
"analz (insert (Agent agt) H) = insert (Agent agt) (analz H)"  | 
|
| 43197 | 391  | 
apply (rule analz_insert_eq_I)  | 
392  | 
apply (erule analz.induct, auto)  | 
|
| 23449 | 393  | 
done  | 
394  | 
||
395  | 
lemma analz_insert_Nonce [simp]:  | 
|
396  | 
"analz (insert (Nonce N) H) = insert (Nonce N) (analz H)"  | 
|
| 43197 | 397  | 
apply (rule analz_insert_eq_I)  | 
398  | 
apply (erule analz.induct, auto)  | 
|
| 23449 | 399  | 
done  | 
400  | 
||
401  | 
lemma analz_insert_Number [simp]:  | 
|
402  | 
"analz (insert (Number N) H) = insert (Number N) (analz H)"  | 
|
| 43197 | 403  | 
apply (rule analz_insert_eq_I)  | 
404  | 
apply (erule analz.induct, auto)  | 
|
| 23449 | 405  | 
done  | 
406  | 
||
407  | 
lemma analz_insert_Hash [simp]:  | 
|
408  | 
"analz (insert (Hash X) H) = insert (Hash X) (analz H)"  | 
|
| 43197 | 409  | 
apply (rule analz_insert_eq_I)  | 
410  | 
apply (erule analz.induct, auto)  | 
|
| 23449 | 411  | 
done  | 
412  | 
||
| 63167 | 413  | 
text\<open>Can only pull out Keys if they are not needed to decrypt the rest\<close>  | 
| 43197 | 414  | 
lemma analz_insert_Key [simp]:  | 
415  | 
"K \<notin> keysFor (analz H) ==>  | 
|
| 23449 | 416  | 
analz (insert (Key K) H) = insert (Key K) (analz H)"  | 
417  | 
apply (unfold keysFor_def)  | 
|
| 43197 | 418  | 
apply (rule analz_insert_eq_I)  | 
419  | 
apply (erule analz.induct, auto)  | 
|
| 23449 | 420  | 
done  | 
421  | 
||
422  | 
lemma analz_insert_MPair [simp]:  | 
|
| 61984 | 423  | 
"analz (insert \<lbrace>X,Y\<rbrace> H) =  | 
424  | 
insert \<lbrace>X,Y\<rbrace> (analz (insert X (insert Y H)))"  | 
|
| 23449 | 425  | 
apply (rule equalityI)  | 
426  | 
apply (rule subsetI)  | 
|
427  | 
apply (erule analz.induct, auto)  | 
|
428  | 
apply (erule analz.induct)  | 
|
429  | 
apply (blast intro: analz.Fst analz.Snd)+  | 
|
430  | 
done  | 
|
431  | 
||
| 63167 | 432  | 
text\<open>Can pull out enCrypted message if the Key is not known\<close>  | 
| 23449 | 433  | 
lemma analz_insert_Crypt:  | 
| 43197 | 434  | 
"Key (invKey K) \<notin> analz H  | 
| 23449 | 435  | 
==> analz (insert (Crypt K X) H) = insert (Crypt K X) (analz H)"  | 
| 43197 | 436  | 
apply (rule analz_insert_eq_I)  | 
437  | 
apply (erule analz.induct, auto)  | 
|
| 23449 | 438  | 
|
439  | 
done  | 
|
440  | 
||
| 43197 | 441  | 
lemma lemma1: "Key (invKey K) \<in> analz H ==>  | 
442  | 
analz (insert (Crypt K X) H) \<subseteq>  | 
|
443  | 
insert (Crypt K X) (analz (insert X H))"  | 
|
| 23449 | 444  | 
apply (rule subsetI)  | 
| 23755 | 445  | 
apply (erule_tac x = x in analz.induct, auto)  | 
| 23449 | 446  | 
done  | 
447  | 
||
| 43197 | 448  | 
lemma lemma2: "Key (invKey K) \<in> analz H ==>  | 
449  | 
insert (Crypt K X) (analz (insert X H)) \<subseteq>  | 
|
| 23449 | 450  | 
analz (insert (Crypt K X) H)"  | 
451  | 
apply auto  | 
|
| 23755 | 452  | 
apply (erule_tac x = x in analz.induct, auto)  | 
| 23449 | 453  | 
apply (blast intro: analz_insertI analz.Decrypt)  | 
454  | 
done  | 
|
455  | 
||
456  | 
lemma analz_insert_Decrypt:  | 
|
| 43197 | 457  | 
"Key (invKey K) \<in> analz H ==>  | 
458  | 
analz (insert (Crypt K X) H) =  | 
|
| 23449 | 459  | 
insert (Crypt K X) (analz (insert X H))"  | 
460  | 
by (intro equalityI lemma1 lemma2)  | 
|
461  | 
||
| 63167 | 462  | 
text\<open>Case analysis: either the message is secure, or it is not! Effective,  | 
463  | 
but can cause subgoals to blow up! Use with \<open>if_split\<close>; apparently  | 
|
| 69597 | 464  | 
\<open>split_tac\<close> does not cope with patterns such as \<^term>\<open>analz (insert  | 
465  | 
(Crypt K X) H)\<close>\<close>  | 
|
| 23449 | 466  | 
lemma analz_Crypt_if [simp]:  | 
| 43197 | 467  | 
"analz (insert (Crypt K X) H) =  | 
468  | 
(if (Key (invKey K) \<in> analz H)  | 
|
469  | 
then insert (Crypt K X) (analz (insert X H))  | 
|
| 23449 | 470  | 
else insert (Crypt K X) (analz H))"  | 
471  | 
by (simp add: analz_insert_Crypt analz_insert_Decrypt)  | 
|
472  | 
||
473  | 
||
| 63167 | 474  | 
text\<open>This rule supposes "for the sake of argument" that we have the key.\<close>  | 
| 23449 | 475  | 
lemma analz_insert_Crypt_subset:  | 
| 43197 | 476  | 
"analz (insert (Crypt K X) H) \<subseteq>  | 
| 23449 | 477  | 
insert (Crypt K X) (analz (insert X H))"  | 
478  | 
apply (rule subsetI)  | 
|
479  | 
apply (erule analz.induct, auto)  | 
|
480  | 
done  | 
|
481  | 
||
482  | 
||
483  | 
lemma analz_image_Key [simp]: "analz (Key`N) = Key`N"  | 
|
484  | 
apply auto  | 
|
485  | 
apply (erule analz.induct, auto)  | 
|
486  | 
done  | 
|
487  | 
||
488  | 
||
| 63167 | 489  | 
subsubsection\<open>Idempotence and transitivity\<close>  | 
| 23449 | 490  | 
|
491  | 
lemma analz_analzD [dest!]: "X\<in> analz (analz H) ==> X\<in> analz H"  | 
|
492  | 
by (erule analz.induct, blast+)  | 
|
493  | 
||
494  | 
lemma analz_idem [simp]: "analz (analz H) = analz H"  | 
|
495  | 
by blast  | 
|
496  | 
||
497  | 
lemma analz_subset_iff [simp]: "(analz G \<subseteq> analz H) = (G \<subseteq> analz H)"  | 
|
498  | 
apply (rule iffI)  | 
|
| 43197 | 499  | 
apply (iprover intro: subset_trans analz_increasing)  | 
500  | 
apply (frule analz_mono, simp)  | 
|
| 23449 | 501  | 
done  | 
502  | 
||
503  | 
lemma analz_trans: "[| X\<in> analz G; G \<subseteq> analz H |] ==> X\<in> analz H"  | 
|
504  | 
by (drule analz_mono, blast)  | 
|
505  | 
||
506  | 
||
| 36553 | 507  | 
declare analz_trans[intro]  | 
508  | 
||
| 23449 | 509  | 
lemma analz_cut: "[| Y\<in> analz (insert X H); X\<in> analz H |] ==> Y\<in> analz H"  | 
| 
46075
 
0054a9513b37
reintroduced "metis" call taken out after reintroducing "set" as a constructor, and added two "metis" calls that used to be too slow
 
blanchet 
parents: 
45970 
diff
changeset
 | 
510  | 
by (metis analz_idem analz_increasing analz_mono insert_absorb insert_mono insert_subset)  | 
| 23449 | 511  | 
|
| 63167 | 512  | 
text\<open>This rewrite rule helps in the simplification of messages that involve  | 
| 23449 | 513  | 
the forwarding of unknown components (X). Without it, removing occurrences  | 
| 63167 | 514  | 
of X can be very complicated.\<close>  | 
| 23449 | 515  | 
lemma analz_insert_eq: "X\<in> analz H ==> analz (insert X H) = analz H"  | 
516  | 
by (blast intro: analz_cut analz_insertI)  | 
|
517  | 
||
518  | 
||
| 63167 | 519  | 
text\<open>A congruence rule for "analz"\<close>  | 
| 23449 | 520  | 
|
521  | 
lemma analz_subset_cong:  | 
|
| 43197 | 522  | 
"[| analz G \<subseteq> analz G'; analz H \<subseteq> analz H' |]  | 
| 23449 | 523  | 
==> analz (G \<union> H) \<subseteq> analz (G' \<union> H')"  | 
524  | 
apply simp  | 
|
525  | 
apply (metis Un_absorb2 Un_commute Un_subset_iff Un_upper1 Un_upper2 analz_mono)  | 
|
526  | 
done  | 
|
527  | 
||
528  | 
||
529  | 
lemma analz_cong:  | 
|
| 43197 | 530  | 
"[| analz G = analz G'; analz H = analz H'  | 
| 23449 | 531  | 
|] ==> analz (G \<union> H) = analz (G' \<union> H')"  | 
| 43197 | 532  | 
by (intro equalityI analz_subset_cong, simp_all)  | 
| 23449 | 533  | 
|
534  | 
lemma analz_insert_cong:  | 
|
535  | 
"analz H = analz H' ==> analz(insert X H) = analz(insert X H')"  | 
|
536  | 
by (force simp only: insert_def intro!: analz_cong)  | 
|
537  | 
||
| 63167 | 538  | 
text\<open>If there are no pairs or encryptions then analz does nothing\<close>  | 
| 23449 | 539  | 
lemma analz_trivial:  | 
| 61984 | 540  | 
"[| \<forall>X Y. \<lbrace>X,Y\<rbrace> \<notin> H; \<forall>X K. Crypt K X \<notin> H |] ==> analz H = H"  | 
| 23449 | 541  | 
apply safe  | 
542  | 
apply (erule analz.induct, blast+)  | 
|
543  | 
done  | 
|
544  | 
||
| 63167 | 545  | 
text\<open>These two are obsolete (with a single Spy) but cost little to prove...\<close>  | 
| 23449 | 546  | 
lemma analz_UN_analz_lemma:  | 
547  | 
"X\<in> analz (\<Union>i\<in>A. analz (H i)) ==> X\<in> analz (\<Union>i\<in>A. H i)"  | 
|
548  | 
apply (erule analz.induct)  | 
|
549  | 
apply (blast intro: analz_mono [THEN [2] rev_subsetD])+  | 
|
550  | 
done  | 
|
551  | 
||
552  | 
lemma analz_UN_analz [simp]: "analz (\<Union>i\<in>A. analz (H i)) = analz (\<Union>i\<in>A. H i)"  | 
|
553  | 
by (blast intro: analz_UN_analz_lemma analz_mono [THEN [2] rev_subsetD])  | 
|
554  | 
||
555  | 
||
| 63167 | 556  | 
subsection\<open>Inductive relation "synth"\<close>  | 
| 23449 | 557  | 
|
| 63167 | 558  | 
text\<open>Inductive definition of "synth" -- what can be built up from a set of  | 
| 23449 | 559  | 
messages. A form of upward closure. Pairs can be built, messages  | 
560  | 
encrypted with known keys. Agent names are public domain.  | 
|
| 63167 | 561  | 
Numbers can be guessed, but Nonces cannot be.\<close>  | 
| 23449 | 562  | 
|
| 23755 | 563  | 
inductive_set  | 
564  | 
synth :: "msg set => msg set"  | 
|
565  | 
for H :: "msg set"  | 
|
566  | 
where  | 
|
| 23449 | 567  | 
Inj [intro]: "X \<in> H ==> X \<in> synth H"  | 
| 23755 | 568  | 
| Agent [intro]: "Agent agt \<in> synth H"  | 
569  | 
| Number [intro]: "Number n \<in> synth H"  | 
|
570  | 
| Hash [intro]: "X \<in> synth H ==> Hash X \<in> synth H"  | 
|
| 61984 | 571  | 
| MPair [intro]: "[|X \<in> synth H; Y \<in> synth H|] ==> \<lbrace>X,Y\<rbrace> \<in> synth H"  | 
| 23755 | 572  | 
| Crypt [intro]: "[|X \<in> synth H; Key(K) \<in> H|] ==> Crypt K X \<in> synth H"  | 
| 23449 | 573  | 
|
| 63167 | 574  | 
text\<open>Monotonicity\<close>  | 
| 23449 | 575  | 
lemma synth_mono: "G\<subseteq>H ==> synth(G) \<subseteq> synth(H)"  | 
| 43197 | 576  | 
by (auto, erule synth.induct, auto)  | 
| 23449 | 577  | 
|
| 63167 | 578  | 
text\<open>NO \<open>Agent_synth\<close>, as any Agent name can be synthesized.  | 
| 69597 | 579  | 
The same holds for \<^term>\<open>Number\<close>\<close>  | 
| 23449 | 580  | 
inductive_cases Nonce_synth [elim!]: "Nonce n \<in> synth H"  | 
581  | 
inductive_cases Key_synth [elim!]: "Key K \<in> synth H"  | 
|
582  | 
inductive_cases Hash_synth [elim!]: "Hash X \<in> synth H"  | 
|
| 61984 | 583  | 
inductive_cases MPair_synth [elim!]: "\<lbrace>X,Y\<rbrace> \<in> synth H"  | 
| 23449 | 584  | 
inductive_cases Crypt_synth [elim!]: "Crypt K X \<in> synth H"  | 
585  | 
||
586  | 
||
587  | 
lemma synth_increasing: "H \<subseteq> synth(H)"  | 
|
588  | 
by blast  | 
|
589  | 
||
| 63167 | 590  | 
subsubsection\<open>Unions\<close>  | 
| 23449 | 591  | 
|
| 63167 | 592  | 
text\<open>Converse fails: we can synth more from the union than from the  | 
593  | 
separate parts, building a compound message using elements of each.\<close>  | 
|
| 23449 | 594  | 
lemma synth_Un: "synth(G) \<union> synth(H) \<subseteq> synth(G \<union> H)"  | 
595  | 
by (intro Un_least synth_mono Un_upper1 Un_upper2)  | 
|
596  | 
||
597  | 
lemma synth_insert: "insert X (synth H) \<subseteq> synth(insert X H)"  | 
|
598  | 
by (metis insert_iff insert_subset subset_insertI synth.Inj synth_mono)  | 
|
599  | 
||
| 63167 | 600  | 
subsubsection\<open>Idempotence and transitivity\<close>  | 
| 23449 | 601  | 
|
602  | 
lemma synth_synthD [dest!]: "X\<in> synth (synth H) ==> X\<in> synth H"  | 
|
603  | 
by (erule synth.induct, blast+)  | 
|
604  | 
||
605  | 
lemma synth_idem: "synth (synth H) = synth H"  | 
|
606  | 
by blast  | 
|
607  | 
||
608  | 
lemma synth_subset_iff [simp]: "(synth G \<subseteq> synth H) = (G \<subseteq> synth H)"  | 
|
609  | 
apply (rule iffI)  | 
|
| 43197 | 610  | 
apply (iprover intro: subset_trans synth_increasing)  | 
611  | 
apply (frule synth_mono, simp add: synth_idem)  | 
|
| 23449 | 612  | 
done  | 
613  | 
||
614  | 
lemma synth_trans: "[| X\<in> synth G; G \<subseteq> synth H |] ==> X\<in> synth H"  | 
|
615  | 
by (drule synth_mono, blast)  | 
|
616  | 
||
617  | 
lemma synth_cut: "[| Y\<in> synth (insert X H); X\<in> synth H |] ==> Y\<in> synth H"  | 
|
618  | 
by (metis insert_absorb insert_mono insert_subset synth_idem synth_increasing synth_mono)  | 
|
619  | 
||
620  | 
lemma Agent_synth [simp]: "Agent A \<in> synth H"  | 
|
621  | 
by blast  | 
|
622  | 
||
623  | 
lemma Number_synth [simp]: "Number n \<in> synth H"  | 
|
624  | 
by blast  | 
|
625  | 
||
626  | 
lemma Nonce_synth_eq [simp]: "(Nonce N \<in> synth H) = (Nonce N \<in> H)"  | 
|
627  | 
by blast  | 
|
628  | 
||
629  | 
lemma Key_synth_eq [simp]: "(Key K \<in> synth H) = (Key K \<in> H)"  | 
|
630  | 
by blast  | 
|
631  | 
||
632  | 
lemma Crypt_synth_eq [simp]:  | 
|
633  | 
"Key K \<notin> H ==> (Crypt K X \<in> synth H) = (Crypt K X \<in> H)"  | 
|
634  | 
by blast  | 
|
635  | 
||
636  | 
||
| 43197 | 637  | 
lemma keysFor_synth [simp]:  | 
| 23449 | 638  | 
    "keysFor (synth H) = keysFor H \<union> invKey`{K. Key K \<in> H}"
 | 
639  | 
by (unfold keysFor_def, blast)  | 
|
640  | 
||
641  | 
||
| 63167 | 642  | 
subsubsection\<open>Combinations of parts, analz and synth\<close>  | 
| 23449 | 643  | 
|
644  | 
lemma parts_synth [simp]: "parts (synth H) = parts H \<union> synth H"  | 
|
645  | 
apply (rule equalityI)  | 
|
646  | 
apply (rule subsetI)  | 
|
647  | 
apply (erule parts.induct)  | 
|
648  | 
apply (metis UnCI)  | 
|
649  | 
apply (metis MPair_synth UnCI UnE insert_absorb insert_subset parts.Fst parts_increasing)  | 
|
650  | 
apply (metis MPair_synth UnCI UnE insert_absorb insert_subset parts.Snd parts_increasing)  | 
|
651  | 
apply (metis Body Crypt_synth UnCI UnE insert_absorb insert_subset parts_increasing)  | 
|
652  | 
apply (metis Un_subset_iff parts_increasing parts_mono synth_increasing)  | 
|
653  | 
done  | 
|
654  | 
||
655  | 
lemma analz_analz_Un [simp]: "analz (analz G \<union> H) = analz (G \<union> H)"  | 
|
| 45503 | 656  | 
apply (rule equalityI)  | 
| 23449 | 657  | 
apply (metis analz_idem analz_subset_cong order_eq_refl)  | 
658  | 
apply (metis analz_increasing analz_subset_cong order_eq_refl)  | 
|
659  | 
done  | 
|
660  | 
||
| 36553 | 661  | 
declare analz_mono [intro] analz.Fst [intro] analz.Snd [intro] Un_least [intro]  | 
662  | 
||
| 23449 | 663  | 
lemma analz_synth_Un [simp]: "analz (synth G \<union> H) = analz (G \<union> H) \<union> synth G"  | 
664  | 
apply (rule equalityI)  | 
|
665  | 
apply (rule subsetI)  | 
|
666  | 
apply (erule analz.induct)  | 
|
667  | 
apply (metis UnCI UnE Un_commute analz.Inj)  | 
|
| 
45970
 
b6d0cff57d96
adjusted to set/pred distinction by means of type constructor `set`
 
haftmann 
parents: 
45605 
diff
changeset
 | 
668  | 
apply (metis MPair_synth UnCI UnE Un_commute analz.Fst analz.Inj)  | 
| 
 
b6d0cff57d96
adjusted to set/pred distinction by means of type constructor `set`
 
haftmann 
parents: 
45605 
diff
changeset
 | 
669  | 
apply (metis MPair_synth UnCI UnE Un_commute analz.Inj analz.Snd)  | 
| 23449 | 670  | 
apply (blast intro: analz.Decrypt)  | 
| 24759 | 671  | 
apply blast  | 
| 23449 | 672  | 
done  | 
673  | 
||
674  | 
lemma analz_synth [simp]: "analz (synth H) = analz H \<union> synth H"  | 
|
| 36553 | 675  | 
proof -  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
50705 
diff
changeset
 | 
676  | 
have "\<forall>x\<^sub>2 x\<^sub>1. synth x\<^sub>1 \<union> analz (x\<^sub>1 \<union> x\<^sub>2) = analz (synth x\<^sub>1 \<union> x\<^sub>2)" by (metis Un_commute analz_synth_Un)  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
50705 
diff
changeset
 | 
677  | 
  hence "\<forall>x\<^sub>1. synth x\<^sub>1 \<union> analz x\<^sub>1 = analz (synth x\<^sub>1 \<union> {})" by (metis Un_empty_right)
 | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
50705 
diff
changeset
 | 
678  | 
hence "\<forall>x\<^sub>1. synth x\<^sub>1 \<union> analz x\<^sub>1 = analz (synth x\<^sub>1)" by (metis Un_empty_right)  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
50705 
diff
changeset
 | 
679  | 
hence "\<forall>x\<^sub>1. analz x\<^sub>1 \<union> synth x\<^sub>1 = analz (synth x\<^sub>1)" by (metis Un_commute)  | 
| 36553 | 680  | 
thus "analz (synth H) = analz H \<union> synth H" by metis  | 
| 23449 | 681  | 
qed  | 
682  | 
||
683  | 
||
| 63167 | 684  | 
subsubsection\<open>For reasoning about the Fake rule in traces\<close>  | 
| 23449 | 685  | 
|
| 
45970
 
b6d0cff57d96
adjusted to set/pred distinction by means of type constructor `set`
 
haftmann 
parents: 
45605 
diff
changeset
 | 
686  | 
lemma parts_insert_subset_Un: "X \<in> G ==> parts(insert X H) \<subseteq> parts G \<union> parts H"  | 
| 36553 | 687  | 
proof -  | 
688  | 
assume "X \<in> G"  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
50705 
diff
changeset
 | 
689  | 
hence "\<forall>x\<^sub>1. G \<subseteq> x\<^sub>1 \<longrightarrow> X \<in> x\<^sub>1 " by auto  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
50705 
diff
changeset
 | 
690  | 
hence "\<forall>x\<^sub>1. X \<in> G \<union> x\<^sub>1" by (metis Un_upper1)  | 
| 36911 | 691  | 
hence "insert X H \<subseteq> G \<union> H" by (metis Un_upper2 insert_subset)  | 
692  | 
hence "parts (insert X H) \<subseteq> parts (G \<union> H)" by (metis parts_mono)  | 
|
693  | 
thus "parts (insert X H) \<subseteq> parts G \<union> parts H" by (metis parts_Un)  | 
|
| 23449 | 694  | 
qed  | 
695  | 
||
696  | 
lemma Fake_parts_insert:  | 
|
| 43197 | 697  | 
"X \<in> synth (analz H) ==>  | 
| 23449 | 698  | 
parts (insert X H) \<subseteq> synth (analz H) \<union> parts H"  | 
| 36553 | 699  | 
proof -  | 
700  | 
assume A1: "X \<in> synth (analz H)"  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
50705 
diff
changeset
 | 
701  | 
have F1: "\<forall>x\<^sub>1. analz x\<^sub>1 \<union> synth (analz x\<^sub>1) = analz (synth (analz x\<^sub>1))"  | 
| 36553 | 702  | 
by (metis analz_idem analz_synth)  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
50705 
diff
changeset
 | 
703  | 
have F2: "\<forall>x\<^sub>1. parts x\<^sub>1 \<union> synth (analz x\<^sub>1) = parts (synth (analz x\<^sub>1))"  | 
| 36553 | 704  | 
by (metis parts_analz parts_synth)  | 
| 
45970
 
b6d0cff57d96
adjusted to set/pred distinction by means of type constructor `set`
 
haftmann 
parents: 
45605 
diff
changeset
 | 
705  | 
have F3: "X \<in> synth (analz H)" using A1 by metis  | 
| 61076 | 706  | 
have "\<forall>x\<^sub>2 x\<^sub>1::msg set. x\<^sub>1 \<le> sup x\<^sub>1 x\<^sub>2" by (metis inf_sup_ord(3))  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
50705 
diff
changeset
 | 
707  | 
hence F4: "\<forall>x\<^sub>1. analz x\<^sub>1 \<subseteq> analz (synth x\<^sub>1)" by (metis analz_synth)  | 
| 
45970
 
b6d0cff57d96
adjusted to set/pred distinction by means of type constructor `set`
 
haftmann 
parents: 
45605 
diff
changeset
 | 
708  | 
have F5: "X \<in> synth (analz H)" using F3 by metis  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
50705 
diff
changeset
 | 
709  | 
have "\<forall>x\<^sub>1. analz x\<^sub>1 \<subseteq> synth (analz x\<^sub>1)  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
50705 
diff
changeset
 | 
710  | 
\<longrightarrow> analz (synth (analz x\<^sub>1)) = synth (analz x\<^sub>1)"  | 
| 36553 | 711  | 
using F1 by (metis subset_Un_eq)  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
50705 
diff
changeset
 | 
712  | 
hence F6: "\<forall>x\<^sub>1. analz (synth (analz x\<^sub>1)) = synth (analz x\<^sub>1)"  | 
| 36553 | 713  | 
by (metis synth_increasing)  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
50705 
diff
changeset
 | 
714  | 
have "\<forall>x\<^sub>1. x\<^sub>1 \<subseteq> analz (synth x\<^sub>1)" using F4 by (metis analz_subset_iff)  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
50705 
diff
changeset
 | 
715  | 
hence "\<forall>x\<^sub>1. x\<^sub>1 \<subseteq> analz (synth (analz x\<^sub>1))" by (metis analz_subset_iff)  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
50705 
diff
changeset
 | 
716  | 
hence "\<forall>x\<^sub>1. x\<^sub>1 \<subseteq> synth (analz x\<^sub>1)" using F6 by metis  | 
| 36553 | 717  | 
hence "H \<subseteq> synth (analz H)" by metis  | 
718  | 
hence "H \<subseteq> synth (analz H) \<and> X \<in> synth (analz H)" using F5 by metis  | 
|
719  | 
hence "insert X H \<subseteq> synth (analz H)" by (metis insert_subset)  | 
|
720  | 
hence "parts (insert X H) \<subseteq> parts (synth (analz H))" by (metis parts_mono)  | 
|
721  | 
hence "parts (insert X H) \<subseteq> parts H \<union> synth (analz H)" using F2 by metis  | 
|
722  | 
thus "parts (insert X H) \<subseteq> synth (analz H) \<union> parts H" by (metis Un_commute)  | 
|
| 23449 | 723  | 
qed  | 
724  | 
||
725  | 
lemma Fake_parts_insert_in_Un:  | 
|
| 67613 | 726  | 
"[|Z \<in> parts (insert X H); X \<in> synth (analz H)|]  | 
| 45505 | 727  | 
==> Z \<in> synth (analz H) \<union> parts H"  | 
| 36553 | 728  | 
by (blast dest: Fake_parts_insert [THEN subsetD, dest])  | 
| 23449 | 729  | 
|
| 
45970
 
b6d0cff57d96
adjusted to set/pred distinction by means of type constructor `set`
 
haftmann 
parents: 
45605 
diff
changeset
 | 
730  | 
declare synth_mono [intro]  | 
| 36553 | 731  | 
|
| 23449 | 732  | 
lemma Fake_analz_insert:  | 
| 36553 | 733  | 
"X \<in> synth (analz G) ==>  | 
| 23449 | 734  | 
analz (insert X H) \<subseteq> synth (analz G) \<union> analz (G \<union> H)"  | 
| 36553 | 735  | 
by (metis Un_commute Un_insert_left Un_insert_right Un_upper1 analz_analz_Un  | 
736  | 
analz_mono analz_synth_Un insert_absorb)  | 
|
| 23449 | 737  | 
|
738  | 
lemma Fake_analz_insert_simpler:  | 
|
| 43197 | 739  | 
"X \<in> synth (analz G) ==>  | 
| 23449 | 740  | 
analz (insert X H) \<subseteq> synth (analz G) \<union> analz (G \<union> H)"  | 
741  | 
apply (rule subsetI)  | 
|
742  | 
apply (subgoal_tac "x \<in> analz (synth (analz G) \<union> H) ")  | 
|
743  | 
apply (metis Un_commute analz_analz_Un analz_synth_Un)  | 
|
| 39260 | 744  | 
by (metis Un_upper1 Un_upper2 analz_mono insert_absorb insert_subset)  | 
| 23449 | 745  | 
|
746  | 
end  |