author | wenzelm |
Fri, 03 Jul 2020 17:00:41 +0200 | |
changeset 71993 | 088e3aa85250 |
parent 69593 | 3dda49e08b9d |
child 76213 | e44d86131648 |
permissions | -rw-r--r-- |
1478 | 1 |
(* Title: ZF/Zorn.thy |
2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
516 | 3 |
Copyright 1994 University of Cambridge |
4 |
*) |
|
5 |
||
60770 | 6 |
section\<open>Zorn's Lemma\<close> |
13356 | 7 |
|
68490
eb53f944c8cd
simplified ZF theory names (in contrast to 6a0801279f4c): session-qualification already achieves disjointness;
wenzelm
parents:
67443
diff
changeset
|
8 |
theory Zorn imports OrderArith AC Inductive begin |
516 | 9 |
|
60770 | 10 |
text\<open>Based upon the unpublished article ``Towards the Mechanization of the |
11 |
Proofs of Some Classical Theorems of Set Theory,'' by Abrial and Laffitte.\<close> |
|
13356 | 12 |
|
24893 | 13 |
definition |
14 |
Subset_rel :: "i=>i" where |
|
13558 | 15 |
"Subset_rel(A) == {z \<in> A*A . \<exists>x y. z=<x,y> & x<=y & x\<noteq>y}" |
13134 | 16 |
|
24893 | 17 |
definition |
18 |
chain :: "i=>i" where |
|
13558 | 19 |
"chain(A) == {F \<in> Pow(A). \<forall>X\<in>F. \<forall>Y\<in>F. X<=Y | Y<=X}" |
516 | 20 |
|
24893 | 21 |
definition |
22 |
super :: "[i,i]=>i" where |
|
14653 | 23 |
"super(A,c) == {d \<in> chain(A). c<=d & c\<noteq>d}" |
24 |
||
24893 | 25 |
definition |
26 |
maxchain :: "i=>i" where |
|
13558 | 27 |
"maxchain(A) == {c \<in> chain(A). super(A,c)=0}" |
28 |
||
24893 | 29 |
definition |
30 |
increasing :: "i=>i" where |
|
46820 | 31 |
"increasing(A) == {f \<in> Pow(A)->Pow(A). \<forall>x. x<=A \<longrightarrow> x<=f`x}" |
516 | 32 |
|
13356 | 33 |
|
60770 | 34 |
text\<open>Lemma for the inductive definition below\<close> |
46820 | 35 |
lemma Union_in_Pow: "Y \<in> Pow(Pow(A)) ==> \<Union>(Y) \<in> Pow(A)" |
13356 | 36 |
by blast |
37 |
||
38 |
||
60770 | 39 |
text\<open>We could make the inductive definition conditional on |
69593 | 40 |
\<^term>\<open>next \<in> increasing(S)\<close> |
516 | 41 |
but instead we make this a side-condition of an introduction rule. Thus |
42 |
the induction rule lets us assume that condition! Many inductive proofs |
|
60770 | 43 |
are therefore unconditional.\<close> |
516 | 44 |
consts |
13134 | 45 |
"TFin" :: "[i,i]=>i" |
516 | 46 |
|
47 |
inductive |
|
46820 | 48 |
domains "TFin(S,next)" \<subseteq> "Pow(S)" |
13134 | 49 |
intros |
13558 | 50 |
nextI: "[| x \<in> TFin(S,next); next \<in> increasing(S) |] |
51 |
==> next`x \<in> TFin(S,next)" |
|
516 | 52 |
|
46820 | 53 |
Pow_UnionI: "Y \<in> Pow(TFin(S,next)) ==> \<Union>(Y) \<in> TFin(S,next)" |
516 | 54 |
|
6053
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
1478
diff
changeset
|
55 |
monos Pow_mono |
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
1478
diff
changeset
|
56 |
con_defs increasing_def |
13134 | 57 |
type_intros CollectD1 [THEN apply_funtype] Union_in_Pow |
58 |
||
59 |
||
60770 | 60 |
subsection\<open>Mathematical Preamble\<close> |
13134 | 61 |
|
46820 | 62 |
lemma Union_lemma0: "(\<forall>x\<in>C. x<=A | B<=x) ==> \<Union>(C)<=A | B<=\<Union>(C)" |
13269 | 63 |
by blast |
13134 | 64 |
|
13356 | 65 |
lemma Inter_lemma0: |
46820 | 66 |
"[| c \<in> C; \<forall>x\<in>C. A<=x | x<=B |] ==> A \<subseteq> \<Inter>(C) | \<Inter>(C) \<subseteq> B" |
13269 | 67 |
by blast |
13134 | 68 |
|
69 |
||
60770 | 70 |
subsection\<open>The Transfinite Construction\<close> |
13134 | 71 |
|
13558 | 72 |
lemma increasingD1: "f \<in> increasing(A) ==> f \<in> Pow(A)->Pow(A)" |
13134 | 73 |
apply (unfold increasing_def) |
74 |
apply (erule CollectD1) |
|
75 |
done |
|
76 |
||
46820 | 77 |
lemma increasingD2: "[| f \<in> increasing(A); x<=A |] ==> x \<subseteq> f`x" |
13269 | 78 |
by (unfold increasing_def, blast) |
13134 | 79 |
|
45602 | 80 |
lemmas TFin_UnionI = PowI [THEN TFin.Pow_UnionI] |
13134 | 81 |
|
45602 | 82 |
lemmas TFin_is_subset = TFin.dom_subset [THEN subsetD, THEN PowD] |
13134 | 83 |
|
84 |
||
69593 | 85 |
text\<open>Structural induction on \<^term>\<open>TFin(S,next)\<close>\<close> |
13134 | 86 |
lemma TFin_induct: |
13558 | 87 |
"[| n \<in> TFin(S,next); |
88 |
!!x. [| x \<in> TFin(S,next); P(x); next \<in> increasing(S) |] ==> P(next`x); |
|
46820 | 89 |
!!Y. [| Y \<subseteq> TFin(S,next); \<forall>y\<in>Y. P(y) |] ==> P(\<Union>(Y)) |
13134 | 90 |
|] ==> P(n)" |
13356 | 91 |
by (erule TFin.induct, blast+) |
13134 | 92 |
|
93 |
||
60770 | 94 |
subsection\<open>Some Properties of the Transfinite Construction\<close> |
13134 | 95 |
|
13558 | 96 |
lemmas increasing_trans = subset_trans [OF _ increasingD2, |
13134 | 97 |
OF _ _ TFin_is_subset] |
98 |
||
60770 | 99 |
text\<open>Lemma 1 of section 3.1\<close> |
13134 | 100 |
lemma TFin_linear_lemma1: |
13558 | 101 |
"[| n \<in> TFin(S,next); m \<in> TFin(S,next); |
46820 | 102 |
\<forall>x \<in> TFin(S,next) . x<=m \<longrightarrow> x=m | next`x<=m |] |
13134 | 103 |
==> n<=m | next`m<=n" |
104 |
apply (erule TFin_induct) |
|
105 |
apply (erule_tac [2] Union_lemma0) (*or just Blast_tac*) |
|
106 |
(*downgrade subsetI from intro! to intro*) |
|
107 |
apply (blast dest: increasing_trans) |
|
108 |
done |
|
109 |
||
60770 | 110 |
text\<open>Lemma 2 of section 3.2. Interesting in its own right! |
69593 | 111 |
Requires \<^term>\<open>next \<in> increasing(S)\<close> in the second induction step.\<close> |
13134 | 112 |
lemma TFin_linear_lemma2: |
13558 | 113 |
"[| m \<in> TFin(S,next); next \<in> increasing(S) |] |
46820 | 114 |
==> \<forall>n \<in> TFin(S,next). n<=m \<longrightarrow> n=m | next`n \<subseteq> m" |
13134 | 115 |
apply (erule TFin_induct) |
116 |
apply (rule impI [THEN ballI]) |
|
61798 | 117 |
txt\<open>case split using \<open>TFin_linear_lemma1\<close>\<close> |
13784 | 118 |
apply (rule_tac n1 = n and m1 = x in TFin_linear_lemma1 [THEN disjE], |
13134 | 119 |
assumption+) |
120 |
apply (blast del: subsetI |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
27704
diff
changeset
|
121 |
intro: increasing_trans subsetI, blast) |
60770 | 122 |
txt\<open>second induction step\<close> |
13134 | 123 |
apply (rule impI [THEN ballI]) |
124 |
apply (rule Union_lemma0 [THEN disjE]) |
|
125 |
apply (erule_tac [3] disjI2) |
|
13558 | 126 |
prefer 2 apply blast |
13134 | 127 |
apply (rule ballI) |
13558 | 128 |
apply (drule bspec, assumption) |
129 |
apply (drule subsetD, assumption) |
|
13784 | 130 |
apply (rule_tac n1 = n and m1 = x in TFin_linear_lemma1 [THEN disjE], |
13558 | 131 |
assumption+, blast) |
13134 | 132 |
apply (erule increasingD2 [THEN subset_trans, THEN disjI1]) |
133 |
apply (blast dest: TFin_is_subset)+ |
|
134 |
done |
|
135 |
||
60770 | 136 |
text\<open>a more convenient form for Lemma 2\<close> |
13134 | 137 |
lemma TFin_subsetD: |
13558 | 138 |
"[| n<=m; m \<in> TFin(S,next); n \<in> TFin(S,next); next \<in> increasing(S) |] |
46820 | 139 |
==> n=m | next`n \<subseteq> m" |
13558 | 140 |
by (blast dest: TFin_linear_lemma2 [rule_format]) |
13134 | 141 |
|
60770 | 142 |
text\<open>Consequences from section 3.3 -- Property 3.2, the ordering is total\<close> |
13134 | 143 |
lemma TFin_subset_linear: |
13558 | 144 |
"[| m \<in> TFin(S,next); n \<in> TFin(S,next); next \<in> increasing(S) |] |
46820 | 145 |
==> n \<subseteq> m | m<=n" |
13558 | 146 |
apply (rule disjE) |
13134 | 147 |
apply (rule TFin_linear_lemma1 [OF _ _TFin_linear_lemma2]) |
148 |
apply (assumption+, erule disjI2) |
|
13558 | 149 |
apply (blast del: subsetI |
13134 | 150 |
intro: subsetI increasingD2 [THEN subset_trans] TFin_is_subset) |
151 |
done |
|
152 |
||
153 |
||
60770 | 154 |
text\<open>Lemma 3 of section 3.3\<close> |
13134 | 155 |
lemma equal_next_upper: |
46820 | 156 |
"[| n \<in> TFin(S,next); m \<in> TFin(S,next); m = next`m |] ==> n \<subseteq> m" |
13134 | 157 |
apply (erule TFin_induct) |
158 |
apply (drule TFin_subsetD) |
|
13784 | 159 |
apply (assumption+, force, blast) |
13134 | 160 |
done |
161 |
||
60770 | 162 |
text\<open>Property 3.3 of section 3.3\<close> |
13558 | 163 |
lemma equal_next_Union: |
164 |
"[| m \<in> TFin(S,next); next \<in> increasing(S) |] |
|
46820 | 165 |
==> m = next`m <-> m = \<Union>(TFin(S,next))" |
13134 | 166 |
apply (rule iffI) |
167 |
apply (rule Union_upper [THEN equalityI]) |
|
168 |
apply (rule_tac [2] equal_next_upper [THEN Union_least]) |
|
169 |
apply (assumption+) |
|
170 |
apply (erule ssubst) |
|
13269 | 171 |
apply (rule increasingD2 [THEN equalityI], assumption) |
13134 | 172 |
apply (blast del: subsetI |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
27704
diff
changeset
|
173 |
intro: subsetI TFin_UnionI TFin.nextI TFin_is_subset)+ |
13134 | 174 |
done |
175 |
||
176 |
||
60770 | 177 |
subsection\<open>Hausdorff's Theorem: Every Set Contains a Maximal Chain\<close> |
13356 | 178 |
|
61798 | 179 |
text\<open>NOTE: We assume the partial ordering is \<open>\<subseteq>\<close>, the subset |
60770 | 180 |
relation!\<close> |
13134 | 181 |
|
60770 | 182 |
text\<open>* Defining the "next" operation for Hausdorff's Theorem *\<close> |
13134 | 183 |
|
46820 | 184 |
lemma chain_subset_Pow: "chain(A) \<subseteq> Pow(A)" |
13134 | 185 |
apply (unfold chain_def) |
186 |
apply (rule Collect_subset) |
|
187 |
done |
|
188 |
||
46820 | 189 |
lemma super_subset_chain: "super(A,c) \<subseteq> chain(A)" |
13134 | 190 |
apply (unfold super_def) |
191 |
apply (rule Collect_subset) |
|
192 |
done |
|
193 |
||
46820 | 194 |
lemma maxchain_subset_chain: "maxchain(A) \<subseteq> chain(A)" |
13134 | 195 |
apply (unfold maxchain_def) |
196 |
apply (rule Collect_subset) |
|
197 |
done |
|
198 |
||
13558 | 199 |
lemma choice_super: |
61980 | 200 |
"[| ch \<in> (\<Prod>X \<in> Pow(chain(S)) - {0}. X); X \<in> chain(S); X \<notin> maxchain(S) |] |
13558 | 201 |
==> ch ` super(S,X) \<in> super(S,X)" |
13134 | 202 |
apply (erule apply_type) |
13269 | 203 |
apply (unfold super_def maxchain_def, blast) |
13134 | 204 |
done |
205 |
||
206 |
lemma choice_not_equals: |
|
61980 | 207 |
"[| ch \<in> (\<Prod>X \<in> Pow(chain(S)) - {0}. X); X \<in> chain(S); X \<notin> maxchain(S) |] |
13558 | 208 |
==> ch ` super(S,X) \<noteq> X" |
13134 | 209 |
apply (rule notI) |
13784 | 210 |
apply (drule choice_super, assumption, assumption) |
13134 | 211 |
apply (simp add: super_def) |
212 |
done |
|
213 |
||
60770 | 214 |
text\<open>This justifies Definition 4.4\<close> |
13134 | 215 |
lemma Hausdorff_next_exists: |
61980 | 216 |
"ch \<in> (\<Prod>X \<in> Pow(chain(S))-{0}. X) ==> |
13558 | 217 |
\<exists>next \<in> increasing(S). \<forall>X \<in> Pow(S). |
218 |
next`X = if(X \<in> chain(S)-maxchain(S), ch`super(S,X), X)" |
|
219 |
apply (rule_tac x="\<lambda>X\<in>Pow(S). |
|
220 |
if X \<in> chain(S) - maxchain(S) then ch ` super(S, X) else X" |
|
13175
81082cfa5618
new definition of "apply" and new simprule "beta_if"
paulson
parents:
13134
diff
changeset
|
221 |
in bexI) |
13558 | 222 |
apply force |
13134 | 223 |
apply (unfold increasing_def) |
224 |
apply (rule CollectI) |
|
225 |
apply (rule lam_type) |
|
226 |
apply (simp (no_asm_simp)) |
|
13558 | 227 |
apply (blast dest: super_subset_chain [THEN subsetD] |
228 |
chain_subset_Pow [THEN subsetD] choice_super) |
|
60770 | 229 |
txt\<open>Now, verify that it increases\<close> |
13134 | 230 |
apply (simp (no_asm_simp) add: Pow_iff subset_refl) |
231 |
apply safe |
|
232 |
apply (drule choice_super) |
|
233 |
apply (assumption+) |
|
13269 | 234 |
apply (simp add: super_def, blast) |
13134 | 235 |
done |
236 |
||
60770 | 237 |
text\<open>Lemma 4\<close> |
13134 | 238 |
lemma TFin_chain_lemma4: |
13558 | 239 |
"[| c \<in> TFin(S,next); |
61980 | 240 |
ch \<in> (\<Prod>X \<in> Pow(chain(S))-{0}. X); |
13558 | 241 |
next \<in> increasing(S); |
242 |
\<forall>X \<in> Pow(S). next`X = |
|
243 |
if(X \<in> chain(S)-maxchain(S), ch`super(S,X), X) |] |
|
244 |
==> c \<in> chain(S)" |
|
13134 | 245 |
apply (erule TFin_induct) |
13558 | 246 |
apply (simp (no_asm_simp) add: chain_subset_Pow [THEN subsetD, THEN PowD] |
13134 | 247 |
choice_super [THEN super_subset_chain [THEN subsetD]]) |
248 |
apply (unfold chain_def) |
|
13269 | 249 |
apply (rule CollectI, blast, safe) |
13558 | 250 |
apply (rule_tac m1=B and n1=Ba in TFin_subset_linear [THEN disjE], fast+) |
61798 | 251 |
txt\<open>\<open>Blast_tac's\<close> slow\<close> |
13134 | 252 |
done |
253 |
||
13558 | 254 |
theorem Hausdorff: "\<exists>c. c \<in> maxchain(S)" |
13134 | 255 |
apply (rule AC_Pi_Pow [THEN exE]) |
13269 | 256 |
apply (rule Hausdorff_next_exists [THEN bexE], assumption) |
13134 | 257 |
apply (rename_tac ch "next") |
46820 | 258 |
apply (subgoal_tac "\<Union>(TFin (S,next)) \<in> chain (S) ") |
13134 | 259 |
prefer 2 |
260 |
apply (blast intro!: TFin_chain_lemma4 subset_refl [THEN TFin_UnionI]) |
|
46820 | 261 |
apply (rule_tac x = "\<Union>(TFin (S,next))" in exI) |
13134 | 262 |
apply (rule classical) |
46820 | 263 |
apply (subgoal_tac "next ` Union(TFin (S,next)) = \<Union>(TFin (S,next))") |
13134 | 264 |
apply (rule_tac [2] equal_next_Union [THEN iffD2, symmetric]) |
265 |
apply (rule_tac [2] subset_refl [THEN TFin_UnionI]) |
|
13269 | 266 |
prefer 2 apply assumption |
13134 | 267 |
apply (rule_tac [2] refl) |
13558 | 268 |
apply (simp add: subset_refl [THEN TFin_UnionI, |
13134 | 269 |
THEN TFin.dom_subset [THEN subsetD, THEN PowD]]) |
270 |
apply (erule choice_not_equals [THEN notE]) |
|
271 |
apply (assumption+) |
|
272 |
done |
|
273 |
||
274 |
||
60770 | 275 |
subsection\<open>Zorn's Lemma: If All Chains in S Have Upper Bounds In S, |
276 |
then S contains a Maximal Element\<close> |
|
13356 | 277 |
|
60770 | 278 |
text\<open>Used in the proof of Zorn's Lemma\<close> |
13558 | 279 |
lemma chain_extend: |
280 |
"[| c \<in> chain(A); z \<in> A; \<forall>x \<in> c. x<=z |] ==> cons(z,c) \<in> chain(A)" |
|
13356 | 281 |
by (unfold chain_def, blast) |
13134 | 282 |
|
46820 | 283 |
lemma Zorn: "\<forall>c \<in> chain(S). \<Union>(c) \<in> S ==> \<exists>y \<in> S. \<forall>z \<in> S. y<=z \<longrightarrow> y=z" |
13134 | 284 |
apply (rule Hausdorff [THEN exE]) |
285 |
apply (simp add: maxchain_def) |
|
286 |
apply (rename_tac c) |
|
46820 | 287 |
apply (rule_tac x = "\<Union>(c)" in bexI) |
13269 | 288 |
prefer 2 apply blast |
13134 | 289 |
apply safe |
290 |
apply (rename_tac z) |
|
291 |
apply (rule classical) |
|
13558 | 292 |
apply (subgoal_tac "cons (z,c) \<in> super (S,c) ") |
13134 | 293 |
apply (blast elim: equalityE) |
13269 | 294 |
apply (unfold super_def, safe) |
13134 | 295 |
apply (fast elim: chain_extend) |
296 |
apply (fast elim: equalityE) |
|
297 |
done |
|
298 |
||
60770 | 299 |
text \<open>Alternative version of Zorn's Lemma\<close> |
27704 | 300 |
|
301 |
theorem Zorn2: |
|
46820 | 302 |
"\<forall>c \<in> chain(S). \<exists>y \<in> S. \<forall>x \<in> c. x \<subseteq> y ==> \<exists>y \<in> S. \<forall>z \<in> S. y<=z \<longrightarrow> y=z" |
27704 | 303 |
apply (cut_tac Hausdorff maxchain_subset_chain) |
304 |
apply (erule exE) |
|
305 |
apply (drule subsetD, assumption) |
|
306 |
apply (drule bspec, assumption, erule bexE) |
|
307 |
apply (rule_tac x = y in bexI) |
|
308 |
prefer 2 apply assumption |
|
309 |
apply clarify |
|
310 |
apply rule apply assumption |
|
311 |
apply rule |
|
312 |
apply (rule ccontr) |
|
313 |
apply (frule_tac z=z in chain_extend) |
|
314 |
apply (assumption, blast) |
|
315 |
apply (unfold maxchain_def super_def) |
|
316 |
apply (blast elim!: equalityCE) |
|
317 |
done |
|
318 |
||
13134 | 319 |
|
60770 | 320 |
subsection\<open>Zermelo's Theorem: Every Set can be Well-Ordered\<close> |
13134 | 321 |
|
60770 | 322 |
text\<open>Lemma 5\<close> |
13134 | 323 |
lemma TFin_well_lemma5: |
46820 | 324 |
"[| n \<in> TFin(S,next); Z \<subseteq> TFin(S,next); z:Z; ~ \<Inter>(Z) \<in> Z |] |
325 |
==> \<forall>m \<in> Z. n \<subseteq> m" |
|
13134 | 326 |
apply (erule TFin_induct) |
60770 | 327 |
prefer 2 apply blast txt\<open>second induction step is easy\<close> |
13134 | 328 |
apply (rule ballI) |
13558 | 329 |
apply (rule bspec [THEN TFin_subsetD, THEN disjE], auto) |
46820 | 330 |
apply (subgoal_tac "m = \<Inter>(Z) ") |
13134 | 331 |
apply blast+ |
332 |
done |
|
333 |
||
69593 | 334 |
text\<open>Well-ordering of \<^term>\<open>TFin(S,next)\<close>\<close> |
46820 | 335 |
lemma well_ord_TFin_lemma: "[| Z \<subseteq> TFin(S,next); z \<in> Z |] ==> \<Inter>(Z) \<in> Z" |
13134 | 336 |
apply (rule classical) |
46820 | 337 |
apply (subgoal_tac "Z = {\<Union>(TFin (S,next))}") |
13134 | 338 |
apply (simp (no_asm_simp) add: Inter_singleton) |
339 |
apply (erule equal_singleton) |
|
340 |
apply (rule Union_upper [THEN equalityI]) |
|
13269 | 341 |
apply (rule_tac [2] subset_refl [THEN TFin_UnionI, THEN TFin_well_lemma5, THEN bspec], blast+) |
13134 | 342 |
done |
343 |
||
60770 | 344 |
text\<open>This theorem just packages the previous result\<close> |
13134 | 345 |
lemma well_ord_TFin: |
13558 | 346 |
"next \<in> increasing(S) |
347 |
==> well_ord(TFin(S,next), Subset_rel(TFin(S,next)))" |
|
13134 | 348 |
apply (rule well_ordI) |
349 |
apply (unfold Subset_rel_def linear_def) |
|
60770 | 350 |
txt\<open>Prove the well-foundedness goal\<close> |
13134 | 351 |
apply (rule wf_onI) |
13269 | 352 |
apply (frule well_ord_TFin_lemma, assumption) |
46820 | 353 |
apply (drule_tac x = "\<Inter>(Z) " in bspec, assumption) |
13134 | 354 |
apply blast |
60770 | 355 |
txt\<open>Now prove the linearity goal\<close> |
13134 | 356 |
apply (intro ballI) |
357 |
apply (case_tac "x=y") |
|
13269 | 358 |
apply blast |
69593 | 359 |
txt\<open>The \<^term>\<open>x\<noteq>y\<close> case remains\<close> |
13134 | 360 |
apply (rule_tac n1=x and m1=y in TFin_subset_linear [THEN disjE], |
13269 | 361 |
assumption+, blast+) |
13134 | 362 |
done |
363 |
||
60770 | 364 |
text\<open>* Defining the "next" operation for Zermelo's Theorem *\<close> |
13134 | 365 |
|
366 |
lemma choice_Diff: |
|
61980 | 367 |
"[| ch \<in> (\<Prod>X \<in> Pow(S) - {0}. X); X \<subseteq> S; X\<noteq>S |] ==> ch ` (S-X) \<in> S-X" |
13134 | 368 |
apply (erule apply_type) |
369 |
apply (blast elim!: equalityE) |
|
370 |
done |
|
371 |
||
60770 | 372 |
text\<open>This justifies Definition 6.1\<close> |
13134 | 373 |
lemma Zermelo_next_exists: |
61980 | 374 |
"ch \<in> (\<Prod>X \<in> Pow(S)-{0}. X) ==> |
13558 | 375 |
\<exists>next \<in> increasing(S). \<forall>X \<in> Pow(S). |
13175
81082cfa5618
new definition of "apply" and new simprule "beta_if"
paulson
parents:
13134
diff
changeset
|
376 |
next`X = (if X=S then S else cons(ch`(S-X), X))" |
81082cfa5618
new definition of "apply" and new simprule "beta_if"
paulson
parents:
13134
diff
changeset
|
377 |
apply (rule_tac x="\<lambda>X\<in>Pow(S). if X=S then S else cons(ch`(S-X), X)" |
81082cfa5618
new definition of "apply" and new simprule "beta_if"
paulson
parents:
13134
diff
changeset
|
378 |
in bexI) |
13558 | 379 |
apply force |
13134 | 380 |
apply (unfold increasing_def) |
381 |
apply (rule CollectI) |
|
382 |
apply (rule lam_type) |
|
60770 | 383 |
txt\<open>Type checking is surprisingly hard!\<close> |
13134 | 384 |
apply (simp (no_asm_simp) add: Pow_iff cons_subset_iff subset_refl) |
385 |
apply (blast intro!: choice_Diff [THEN DiffD1]) |
|
60770 | 386 |
txt\<open>Verify that it increases\<close> |
13558 | 387 |
apply (intro allI impI) |
13134 | 388 |
apply (simp add: Pow_iff subset_consI subset_refl) |
389 |
done |
|
390 |
||
391 |
||
60770 | 392 |
text\<open>The construction of the injection\<close> |
13134 | 393 |
lemma choice_imp_injection: |
61980 | 394 |
"[| ch \<in> (\<Prod>X \<in> Pow(S)-{0}. X); |
13558 | 395 |
next \<in> increasing(S); |
396 |
\<forall>X \<in> Pow(S). next`X = if(X=S, S, cons(ch`(S-X), X)) |] |
|
46820 | 397 |
==> (\<lambda> x \<in> S. \<Union>({y \<in> TFin(S,next). x \<notin> y})) |
13558 | 398 |
\<in> inj(S, TFin(S,next) - {S})" |
13134 | 399 |
apply (rule_tac d = "%y. ch` (S-y) " in lam_injective) |
400 |
apply (rule DiffI) |
|
401 |
apply (rule Collect_subset [THEN TFin_UnionI]) |
|
402 |
apply (blast intro!: Collect_subset [THEN TFin_UnionI] elim: equalityE) |
|
46820 | 403 |
apply (subgoal_tac "x \<notin> \<Union>({y \<in> TFin (S,next) . x \<notin> y}) ") |
13134 | 404 |
prefer 2 apply (blast elim: equalityE) |
46820 | 405 |
apply (subgoal_tac "\<Union>({y \<in> TFin (S,next) . x \<notin> y}) \<noteq> S") |
13134 | 406 |
prefer 2 apply (blast elim: equalityE) |
61798 | 407 |
txt\<open>For proving \<open>x \<in> next`\<Union>(...)\<close>. |
60770 | 408 |
Abrial and Laffitte's justification appears to be faulty.\<close> |
46820 | 409 |
apply (subgoal_tac "~ next ` Union({y \<in> TFin (S,next) . x \<notin> y}) |
410 |
\<subseteq> \<Union>({y \<in> TFin (S,next) . x \<notin> y}) ") |
|
13558 | 411 |
prefer 2 |
412 |
apply (simp del: Union_iff |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
27704
diff
changeset
|
413 |
add: Collect_subset [THEN TFin_UnionI, THEN TFin_is_subset] |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
27704
diff
changeset
|
414 |
Pow_iff cons_subset_iff subset_refl choice_Diff [THEN DiffD2]) |
46820 | 415 |
apply (subgoal_tac "x \<in> next ` Union({y \<in> TFin (S,next) . x \<notin> y}) ") |
13558 | 416 |
prefer 2 |
417 |
apply (blast intro!: Collect_subset [THEN TFin_UnionI] TFin.nextI) |
|
60770 | 418 |
txt\<open>End of the lemmas!\<close> |
13134 | 419 |
apply (simp add: Collect_subset [THEN TFin_UnionI, THEN TFin_is_subset]) |
420 |
done |
|
421 |
||
60770 | 422 |
text\<open>The wellordering theorem\<close> |
13558 | 423 |
theorem AC_well_ord: "\<exists>r. well_ord(S,r)" |
13134 | 424 |
apply (rule AC_Pi_Pow [THEN exE]) |
13269 | 425 |
apply (rule Zermelo_next_exists [THEN bexE], assumption) |
13134 | 426 |
apply (rule exI) |
427 |
apply (rule well_ord_rvimage) |
|
428 |
apply (erule_tac [2] well_ord_TFin) |
|
13269 | 429 |
apply (rule choice_imp_injection [THEN inj_weaken_type], blast+) |
13134 | 430 |
done |
13558 | 431 |
|
27704 | 432 |
|
60770 | 433 |
subsection \<open>Zorn's Lemma for Partial Orders\<close> |
27704 | 434 |
|
60770 | 435 |
text \<open>Reimported from HOL by Clemens Ballarin.\<close> |
27704 | 436 |
|
437 |
||
438 |
definition Chain :: "i => i" where |
|
46820 | 439 |
"Chain(r) = {A \<in> Pow(field(r)). \<forall>a\<in>A. \<forall>b\<in>A. <a, b> \<in> r | <b, a> \<in> r}" |
27704 | 440 |
|
441 |
lemma mono_Chain: |
|
442 |
"r \<subseteq> s ==> Chain(r) \<subseteq> Chain(s)" |
|
443 |
unfolding Chain_def |
|
444 |
by blast |
|
445 |
||
446 |
theorem Zorn_po: |
|
447 |
assumes po: "Partial_order(r)" |
|
46820 | 448 |
and u: "\<forall>C\<in>Chain(r). \<exists>u\<in>field(r). \<forall>a\<in>C. <a, u> \<in> r" |
449 |
shows "\<exists>m\<in>field(r). \<forall>a\<in>field(r). <m, a> \<in> r \<longrightarrow> a = m" |
|
27704 | 450 |
proof - |
451 |
have "Preorder(r)" using po by (simp add: partial_order_on_def) |
|
67443
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents:
61980
diff
changeset
|
452 |
\<comment> \<open>Mirror r in the set of subsets below (wrt r) elements of A (?).\<close> |
46820 | 453 |
let ?B = "\<lambda>x\<in>field(r). r -`` {x}" let ?S = "?B `` field(r)" |
454 |
have "\<forall>C\<in>chain(?S). \<exists>U\<in>?S. \<forall>A\<in>C. A \<subseteq> U" |
|
27704 | 455 |
proof (clarsimp simp: chain_def Subset_rel_def bex_image_simp) |
456 |
fix C |
|
46820 | 457 |
assume 1: "C \<subseteq> ?S" and 2: "\<forall>A\<in>C. \<forall>B\<in>C. A \<subseteq> B | B \<subseteq> A" |
458 |
let ?A = "{x \<in> field(r). \<exists>M\<in>C. M = ?B`x}" |
|
27704 | 459 |
have "C = ?B `` ?A" using 1 |
460 |
apply (auto simp: image_def) |
|
461 |
apply rule |
|
462 |
apply rule |
|
463 |
apply (drule subsetD) apply assumption |
|
464 |
apply (erule CollectE) |
|
465 |
apply rule apply assumption |
|
466 |
apply (erule bexE) |
|
467 |
apply rule prefer 2 apply assumption |
|
468 |
apply rule |
|
469 |
apply (erule lamE) apply simp |
|
470 |
apply assumption |
|
471 |
||
59788 | 472 |
apply (thin_tac "C \<subseteq> X" for X) |
27704 | 473 |
apply (fast elim: lamE) |
474 |
done |
|
46820 | 475 |
have "?A \<in> Chain(r)" |
27704 | 476 |
proof (simp add: Chain_def subsetI, intro conjI ballI impI) |
477 |
fix a b |
|
46820 | 478 |
assume "a \<in> field(r)" "r -`` {a} \<in> C" "b \<in> field(r)" "r -`` {b} \<in> C" |
27704 | 479 |
hence "r -`` {a} \<subseteq> r -`` {b} | r -`` {b} \<subseteq> r -`` {a}" using 2 by auto |
46820 | 480 |
then show "<a, b> \<in> r | <b, a> \<in> r" |
60770 | 481 |
using \<open>Preorder(r)\<close> \<open>a \<in> field(r)\<close> \<open>b \<in> field(r)\<close> |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
27704
diff
changeset
|
482 |
by (simp add: subset_vimage1_vimage1_iff) |
27704 | 483 |
qed |
46820 | 484 |
then obtain u where uA: "u \<in> field(r)" "\<forall>a\<in>?A. <a, u> \<in> r" |
27704 | 485 |
using u |
486 |
apply auto |
|
487 |
apply (drule bspec) apply assumption |
|
488 |
apply auto |
|
489 |
done |
|
46820 | 490 |
have "\<forall>A\<in>C. A \<subseteq> r -`` {u}" |
27704 | 491 |
proof (auto intro!: vimageI) |
492 |
fix a B |
|
46820 | 493 |
assume aB: "B \<in> C" "a \<in> B" |
494 |
with 1 obtain x where "x \<in> field(r)" "B = r -`` {x}" |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
27704
diff
changeset
|
495 |
apply - |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
27704
diff
changeset
|
496 |
apply (drule subsetD) apply assumption |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
27704
diff
changeset
|
497 |
apply (erule imageE) |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
27704
diff
changeset
|
498 |
apply (erule lamE) |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
27704
diff
changeset
|
499 |
apply simp |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
27704
diff
changeset
|
500 |
done |
60770 | 501 |
then show "<a, u> \<in> r" using uA aB \<open>Preorder(r)\<close> |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
27704
diff
changeset
|
502 |
by (auto simp: preorder_on_def refl_def) (blast dest: trans_onD)+ |
27704 | 503 |
qed |
46820 | 504 |
then show "\<exists>U\<in>field(r). \<forall>A\<in>C. A \<subseteq> r -`` {U}" |
60770 | 505 |
using \<open>u \<in> field(r)\<close> .. |
27704 | 506 |
qed |
507 |
from Zorn2 [OF this] |
|
46820 | 508 |
obtain m B where "m \<in> field(r)" "B = r -`` {m}" |
509 |
"\<forall>x\<in>field(r). B \<subseteq> r -`` {x} \<longrightarrow> B = r -`` {x}" |
|
27704 | 510 |
by (auto elim!: lamE simp: ball_image_simp) |
46820 | 511 |
then have "\<forall>a\<in>field(r). <m, a> \<in> r \<longrightarrow> a = m" |
60770 | 512 |
using po \<open>Preorder(r)\<close> \<open>m \<in> field(r)\<close> |
27704 | 513 |
by (auto simp: subset_vimage1_vimage1_iff Partial_order_eq_vimage1_vimage1_iff) |
60770 | 514 |
then show ?thesis using \<open>m \<in> field(r)\<close> by blast |
27704 | 515 |
qed |
516 |
||
516 | 517 |
end |