author | huffman |
Tue, 02 Mar 2010 20:04:17 -0800 | |
changeset 35529 | 089e438b925b |
parent 35494 | 45c9a8278faf |
child 35531 | 4b7d5b88a965 |
permissions | -rw-r--r-- |
15741 | 1 |
(* Title: HOLCF/Domain.thy |
2 |
Author: Brian Huffman |
|
3 |
*) |
|
4 |
||
5 |
header {* Domain package *} |
|
6 |
||
7 |
theory Domain |
|
33800 | 8 |
imports Ssum Sprod Up One Tr Fixrec Representable |
30910 | 9 |
uses |
10 |
("Tools/cont_consts.ML") |
|
11 |
("Tools/cont_proc.ML") |
|
35444 | 12 |
("Tools/Domain/domain_constructors.ML") |
32126 | 13 |
("Tools/Domain/domain_library.ML") |
14 |
("Tools/Domain/domain_syntax.ML") |
|
15 |
("Tools/Domain/domain_axioms.ML") |
|
16 |
("Tools/Domain/domain_theorems.ML") |
|
17 |
("Tools/Domain/domain_extender.ML") |
|
15741 | 18 |
begin |
19 |
||
20 |
defaultsort pcpo |
|
21 |
||
23376 | 22 |
|
15741 | 23 |
subsection {* Continuous isomorphisms *} |
24 |
||
25 |
text {* A locale for continuous isomorphisms *} |
|
26 |
||
27 |
locale iso = |
|
28 |
fixes abs :: "'a \<rightarrow> 'b" |
|
29 |
fixes rep :: "'b \<rightarrow> 'a" |
|
30 |
assumes abs_iso [simp]: "rep\<cdot>(abs\<cdot>x) = x" |
|
31 |
assumes rep_iso [simp]: "abs\<cdot>(rep\<cdot>y) = y" |
|
23376 | 32 |
begin |
15741 | 33 |
|
23376 | 34 |
lemma swap: "iso rep abs" |
35 |
by (rule iso.intro [OF rep_iso abs_iso]) |
|
15741 | 36 |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30911
diff
changeset
|
37 |
lemma abs_below: "(abs\<cdot>x \<sqsubseteq> abs\<cdot>y) = (x \<sqsubseteq> y)" |
17835 | 38 |
proof |
39 |
assume "abs\<cdot>x \<sqsubseteq> abs\<cdot>y" |
|
23376 | 40 |
then have "rep\<cdot>(abs\<cdot>x) \<sqsubseteq> rep\<cdot>(abs\<cdot>y)" by (rule monofun_cfun_arg) |
41 |
then show "x \<sqsubseteq> y" by simp |
|
17835 | 42 |
next |
43 |
assume "x \<sqsubseteq> y" |
|
23376 | 44 |
then show "abs\<cdot>x \<sqsubseteq> abs\<cdot>y" by (rule monofun_cfun_arg) |
17835 | 45 |
qed |
46 |
||
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30911
diff
changeset
|
47 |
lemma rep_below: "(rep\<cdot>x \<sqsubseteq> rep\<cdot>y) = (x \<sqsubseteq> y)" |
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30911
diff
changeset
|
48 |
by (rule iso.abs_below [OF swap]) |
17835 | 49 |
|
23376 | 50 |
lemma abs_eq: "(abs\<cdot>x = abs\<cdot>y) = (x = y)" |
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30911
diff
changeset
|
51 |
by (simp add: po_eq_conv abs_below) |
17835 | 52 |
|
23376 | 53 |
lemma rep_eq: "(rep\<cdot>x = rep\<cdot>y) = (x = y)" |
54 |
by (rule iso.abs_eq [OF swap]) |
|
17835 | 55 |
|
23376 | 56 |
lemma abs_strict: "abs\<cdot>\<bottom> = \<bottom>" |
15741 | 57 |
proof - |
58 |
have "\<bottom> \<sqsubseteq> rep\<cdot>\<bottom>" .. |
|
23376 | 59 |
then have "abs\<cdot>\<bottom> \<sqsubseteq> abs\<cdot>(rep\<cdot>\<bottom>)" by (rule monofun_cfun_arg) |
60 |
then have "abs\<cdot>\<bottom> \<sqsubseteq> \<bottom>" by simp |
|
61 |
then show ?thesis by (rule UU_I) |
|
15741 | 62 |
qed |
63 |
||
23376 | 64 |
lemma rep_strict: "rep\<cdot>\<bottom> = \<bottom>" |
65 |
by (rule iso.abs_strict [OF swap]) |
|
15741 | 66 |
|
23376 | 67 |
lemma abs_defin': "abs\<cdot>x = \<bottom> \<Longrightarrow> x = \<bottom>" |
15741 | 68 |
proof - |
17835 | 69 |
have "x = rep\<cdot>(abs\<cdot>x)" by simp |
70 |
also assume "abs\<cdot>x = \<bottom>" |
|
15741 | 71 |
also note rep_strict |
17835 | 72 |
finally show "x = \<bottom>" . |
15741 | 73 |
qed |
74 |
||
23376 | 75 |
lemma rep_defin': "rep\<cdot>z = \<bottom> \<Longrightarrow> z = \<bottom>" |
76 |
by (rule iso.abs_defin' [OF swap]) |
|
15741 | 77 |
|
23376 | 78 |
lemma abs_defined: "z \<noteq> \<bottom> \<Longrightarrow> abs\<cdot>z \<noteq> \<bottom>" |
79 |
by (erule contrapos_nn, erule abs_defin') |
|
15741 | 80 |
|
23376 | 81 |
lemma rep_defined: "z \<noteq> \<bottom> \<Longrightarrow> rep\<cdot>z \<noteq> \<bottom>" |
82 |
by (rule iso.abs_defined [OF iso.swap]) (rule iso_axioms) |
|
17835 | 83 |
|
23376 | 84 |
lemma abs_defined_iff: "(abs\<cdot>x = \<bottom>) = (x = \<bottom>)" |
85 |
by (auto elim: abs_defin' intro: abs_strict) |
|
17835 | 86 |
|
23376 | 87 |
lemma rep_defined_iff: "(rep\<cdot>x = \<bottom>) = (x = \<bottom>)" |
88 |
by (rule iso.abs_defined_iff [OF iso.swap]) (rule iso_axioms) |
|
15741 | 89 |
|
35457
d63655b88369
move proofs of casedist into domain_constructors.ML
huffman
parents:
35446
diff
changeset
|
90 |
lemma casedist_rule: "rep\<cdot>x = \<bottom> \<or> P \<Longrightarrow> x = \<bottom> \<or> P" |
d63655b88369
move proofs of casedist into domain_constructors.ML
huffman
parents:
35446
diff
changeset
|
91 |
by (simp add: rep_defined_iff) |
d63655b88369
move proofs of casedist into domain_constructors.ML
huffman
parents:
35446
diff
changeset
|
92 |
|
d63655b88369
move proofs of casedist into domain_constructors.ML
huffman
parents:
35446
diff
changeset
|
93 |
lemma compact_abs_rev: "compact (abs\<cdot>x) \<Longrightarrow> compact x" |
17836 | 94 |
proof (unfold compact_def) |
95 |
assume "adm (\<lambda>y. \<not> abs\<cdot>x \<sqsubseteq> y)" |
|
96 |
with cont_Rep_CFun2 |
|
97 |
have "adm (\<lambda>y. \<not> abs\<cdot>x \<sqsubseteq> abs\<cdot>y)" by (rule adm_subst) |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30911
diff
changeset
|
98 |
then show "adm (\<lambda>y. \<not> x \<sqsubseteq> y)" using abs_below by simp |
17836 | 99 |
qed |
100 |
||
23376 | 101 |
lemma compact_rep_rev: "compact (rep\<cdot>x) \<Longrightarrow> compact x" |
102 |
by (rule iso.compact_abs_rev [OF iso.swap]) (rule iso_axioms) |
|
17836 | 103 |
|
23376 | 104 |
lemma compact_abs: "compact x \<Longrightarrow> compact (abs\<cdot>x)" |
105 |
by (rule compact_rep_rev) simp |
|
17836 | 106 |
|
23376 | 107 |
lemma compact_rep: "compact x \<Longrightarrow> compact (rep\<cdot>x)" |
108 |
by (rule iso.compact_abs [OF iso.swap]) (rule iso_axioms) |
|
17836 | 109 |
|
23376 | 110 |
lemma iso_swap: "(x = abs\<cdot>y) = (rep\<cdot>x = y)" |
15741 | 111 |
proof |
112 |
assume "x = abs\<cdot>y" |
|
23376 | 113 |
then have "rep\<cdot>x = rep\<cdot>(abs\<cdot>y)" by simp |
114 |
then show "rep\<cdot>x = y" by simp |
|
15741 | 115 |
next |
116 |
assume "rep\<cdot>x = y" |
|
23376 | 117 |
then have "abs\<cdot>(rep\<cdot>x) = abs\<cdot>y" by simp |
118 |
then show "x = abs\<cdot>y" by simp |
|
15741 | 119 |
qed |
120 |
||
23376 | 121 |
end |
122 |
||
123 |
||
15741 | 124 |
subsection {* Casedist *} |
125 |
||
126 |
lemma ex_one_defined_iff: |
|
127 |
"(\<exists>x. P x \<and> x \<noteq> \<bottom>) = P ONE" |
|
128 |
apply safe |
|
129 |
apply (rule_tac p=x in oneE) |
|
130 |
apply simp |
|
131 |
apply simp |
|
132 |
apply force |
|
23376 | 133 |
done |
15741 | 134 |
|
135 |
lemma ex_up_defined_iff: |
|
136 |
"(\<exists>x. P x \<and> x \<noteq> \<bottom>) = (\<exists>x. P (up\<cdot>x))" |
|
137 |
apply safe |
|
16754 | 138 |
apply (rule_tac p=x in upE) |
15741 | 139 |
apply simp |
140 |
apply fast |
|
16320 | 141 |
apply (force intro!: up_defined) |
23376 | 142 |
done |
15741 | 143 |
|
144 |
lemma ex_sprod_defined_iff: |
|
145 |
"(\<exists>y. P y \<and> y \<noteq> \<bottom>) = |
|
146 |
(\<exists>x y. (P (:x, y:) \<and> x \<noteq> \<bottom>) \<and> y \<noteq> \<bottom>)" |
|
147 |
apply safe |
|
148 |
apply (rule_tac p=y in sprodE) |
|
149 |
apply simp |
|
150 |
apply fast |
|
16217 | 151 |
apply (force intro!: spair_defined) |
23376 | 152 |
done |
15741 | 153 |
|
154 |
lemma ex_sprod_up_defined_iff: |
|
155 |
"(\<exists>y. P y \<and> y \<noteq> \<bottom>) = |
|
156 |
(\<exists>x y. P (:up\<cdot>x, y:) \<and> y \<noteq> \<bottom>)" |
|
157 |
apply safe |
|
158 |
apply (rule_tac p=y in sprodE) |
|
159 |
apply simp |
|
16754 | 160 |
apply (rule_tac p=x in upE) |
15741 | 161 |
apply simp |
162 |
apply fast |
|
16217 | 163 |
apply (force intro!: spair_defined) |
23376 | 164 |
done |
15741 | 165 |
|
166 |
lemma ex_ssum_defined_iff: |
|
167 |
"(\<exists>x. P x \<and> x \<noteq> \<bottom>) = |
|
168 |
((\<exists>x. P (sinl\<cdot>x) \<and> x \<noteq> \<bottom>) \<or> |
|
169 |
(\<exists>x. P (sinr\<cdot>x) \<and> x \<noteq> \<bottom>))" |
|
170 |
apply (rule iffI) |
|
171 |
apply (erule exE) |
|
172 |
apply (erule conjE) |
|
173 |
apply (rule_tac p=x in ssumE) |
|
174 |
apply simp |
|
175 |
apply (rule disjI1, fast) |
|
176 |
apply (rule disjI2, fast) |
|
177 |
apply (erule disjE) |
|
17835 | 178 |
apply force |
179 |
apply force |
|
23376 | 180 |
done |
15741 | 181 |
|
182 |
lemma exh_start: "p = \<bottom> \<or> (\<exists>x. p = x \<and> x \<noteq> \<bottom>)" |
|
23376 | 183 |
by auto |
15741 | 184 |
|
185 |
lemmas ex_defined_iffs = |
|
186 |
ex_ssum_defined_iff |
|
187 |
ex_sprod_up_defined_iff |
|
188 |
ex_sprod_defined_iff |
|
189 |
ex_up_defined_iff |
|
190 |
ex_one_defined_iff |
|
191 |
||
192 |
text {* Rules for turning exh into casedist *} |
|
193 |
||
194 |
lemma exh_casedist0: "\<lbrakk>R; R \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P" (* like make_elim *) |
|
23376 | 195 |
by auto |
15741 | 196 |
|
197 |
lemma exh_casedist1: "((P \<or> Q \<Longrightarrow> R) \<Longrightarrow> S) \<equiv> (\<lbrakk>P \<Longrightarrow> R; Q \<Longrightarrow> R\<rbrakk> \<Longrightarrow> S)" |
|
23376 | 198 |
by rule auto |
15741 | 199 |
|
200 |
lemma exh_casedist2: "(\<exists>x. P x \<Longrightarrow> Q) \<equiv> (\<And>x. P x \<Longrightarrow> Q)" |
|
23376 | 201 |
by rule auto |
15741 | 202 |
|
203 |
lemma exh_casedist3: "(P \<and> Q \<Longrightarrow> R) \<equiv> (P \<Longrightarrow> Q \<Longrightarrow> R)" |
|
23376 | 204 |
by rule auto |
15741 | 205 |
|
206 |
lemmas exh_casedists = exh_casedist1 exh_casedist2 exh_casedist3 |
|
207 |
||
30910 | 208 |
|
31230 | 209 |
subsection {* Combinators for building copy functions *} |
210 |
||
33504
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
33400
diff
changeset
|
211 |
lemmas domain_map_stricts = |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
33400
diff
changeset
|
212 |
ssum_map_strict sprod_map_strict u_map_strict |
31230 | 213 |
|
33504
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
33400
diff
changeset
|
214 |
lemmas domain_map_simps = |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
33400
diff
changeset
|
215 |
ssum_map_sinl ssum_map_sinr sprod_map_spair u_map_up |
31230 | 216 |
|
217 |
||
30910 | 218 |
subsection {* Installing the domain package *} |
219 |
||
30911
7809cbaa1b61
domain package: simplify internal proofs of con_rews
huffman
parents:
30910
diff
changeset
|
220 |
lemmas con_strict_rules = |
7809cbaa1b61
domain package: simplify internal proofs of con_rews
huffman
parents:
30910
diff
changeset
|
221 |
sinl_strict sinr_strict spair_strict1 spair_strict2 |
7809cbaa1b61
domain package: simplify internal proofs of con_rews
huffman
parents:
30910
diff
changeset
|
222 |
|
7809cbaa1b61
domain package: simplify internal proofs of con_rews
huffman
parents:
30910
diff
changeset
|
223 |
lemmas con_defin_rules = |
7809cbaa1b61
domain package: simplify internal proofs of con_rews
huffman
parents:
30910
diff
changeset
|
224 |
sinl_defined sinr_defined spair_defined up_defined ONE_defined |
7809cbaa1b61
domain package: simplify internal proofs of con_rews
huffman
parents:
30910
diff
changeset
|
225 |
|
7809cbaa1b61
domain package: simplify internal proofs of con_rews
huffman
parents:
30910
diff
changeset
|
226 |
lemmas con_defined_iff_rules = |
7809cbaa1b61
domain package: simplify internal proofs of con_rews
huffman
parents:
30910
diff
changeset
|
227 |
sinl_defined_iff sinr_defined_iff spair_strict_iff up_defined ONE_defined |
7809cbaa1b61
domain package: simplify internal proofs of con_rews
huffman
parents:
30910
diff
changeset
|
228 |
|
35117
eeec2a320a77
change generated lemmas dist_eqs and dist_les to iff-style
huffman
parents:
33800
diff
changeset
|
229 |
lemmas con_below_iff_rules = |
eeec2a320a77
change generated lemmas dist_eqs and dist_les to iff-style
huffman
parents:
33800
diff
changeset
|
230 |
sinl_below sinr_below sinl_below_sinr sinr_below_sinl con_defined_iff_rules |
eeec2a320a77
change generated lemmas dist_eqs and dist_les to iff-style
huffman
parents:
33800
diff
changeset
|
231 |
|
eeec2a320a77
change generated lemmas dist_eqs and dist_les to iff-style
huffman
parents:
33800
diff
changeset
|
232 |
lemmas con_eq_iff_rules = |
eeec2a320a77
change generated lemmas dist_eqs and dist_les to iff-style
huffman
parents:
33800
diff
changeset
|
233 |
sinl_eq sinr_eq sinl_eq_sinr sinr_eq_sinl con_defined_iff_rules |
eeec2a320a77
change generated lemmas dist_eqs and dist_les to iff-style
huffman
parents:
33800
diff
changeset
|
234 |
|
35446
b719dad322fa
rewrite domain package code for selector functions
huffman
parents:
35444
diff
changeset
|
235 |
lemmas sel_strict_rules = |
b719dad322fa
rewrite domain package code for selector functions
huffman
parents:
35444
diff
changeset
|
236 |
cfcomp2 sscase1 sfst_strict ssnd_strict fup1 |
b719dad322fa
rewrite domain package code for selector functions
huffman
parents:
35444
diff
changeset
|
237 |
|
b719dad322fa
rewrite domain package code for selector functions
huffman
parents:
35444
diff
changeset
|
238 |
lemma sel_app_extra_rules: |
b719dad322fa
rewrite domain package code for selector functions
huffman
parents:
35444
diff
changeset
|
239 |
"sscase\<cdot>ID\<cdot>\<bottom>\<cdot>(sinr\<cdot>x) = \<bottom>" |
b719dad322fa
rewrite domain package code for selector functions
huffman
parents:
35444
diff
changeset
|
240 |
"sscase\<cdot>ID\<cdot>\<bottom>\<cdot>(sinl\<cdot>x) = x" |
b719dad322fa
rewrite domain package code for selector functions
huffman
parents:
35444
diff
changeset
|
241 |
"sscase\<cdot>\<bottom>\<cdot>ID\<cdot>(sinl\<cdot>x) = \<bottom>" |
b719dad322fa
rewrite domain package code for selector functions
huffman
parents:
35444
diff
changeset
|
242 |
"sscase\<cdot>\<bottom>\<cdot>ID\<cdot>(sinr\<cdot>x) = x" |
b719dad322fa
rewrite domain package code for selector functions
huffman
parents:
35444
diff
changeset
|
243 |
"fup\<cdot>ID\<cdot>(up\<cdot>x) = x" |
b719dad322fa
rewrite domain package code for selector functions
huffman
parents:
35444
diff
changeset
|
244 |
by (cases "x = \<bottom>", simp, simp)+ |
b719dad322fa
rewrite domain package code for selector functions
huffman
parents:
35444
diff
changeset
|
245 |
|
b719dad322fa
rewrite domain package code for selector functions
huffman
parents:
35444
diff
changeset
|
246 |
lemmas sel_app_rules = |
b719dad322fa
rewrite domain package code for selector functions
huffman
parents:
35444
diff
changeset
|
247 |
sel_strict_rules sel_app_extra_rules |
b719dad322fa
rewrite domain package code for selector functions
huffman
parents:
35444
diff
changeset
|
248 |
ssnd_spair sfst_spair up_defined spair_defined |
b719dad322fa
rewrite domain package code for selector functions
huffman
parents:
35444
diff
changeset
|
249 |
|
b719dad322fa
rewrite domain package code for selector functions
huffman
parents:
35444
diff
changeset
|
250 |
lemmas sel_defined_iff_rules = |
b719dad322fa
rewrite domain package code for selector functions
huffman
parents:
35444
diff
changeset
|
251 |
cfcomp2 sfst_defined_iff ssnd_defined_iff |
b719dad322fa
rewrite domain package code for selector functions
huffman
parents:
35444
diff
changeset
|
252 |
|
35494
45c9a8278faf
domain package no longer generates copy functions; all proofs use take functions instead
huffman
parents:
35457
diff
changeset
|
253 |
lemmas take_con_rules = |
45c9a8278faf
domain package no longer generates copy functions; all proofs use take functions instead
huffman
parents:
35457
diff
changeset
|
254 |
ID1 ssum_map_sinl' ssum_map_sinr' ssum_map_strict |
45c9a8278faf
domain package no longer generates copy functions; all proofs use take functions instead
huffman
parents:
35457
diff
changeset
|
255 |
sprod_map_spair' sprod_map_strict u_map_up u_map_strict |
45c9a8278faf
domain package no longer generates copy functions; all proofs use take functions instead
huffman
parents:
35457
diff
changeset
|
256 |
|
45c9a8278faf
domain package no longer generates copy functions; all proofs use take functions instead
huffman
parents:
35457
diff
changeset
|
257 |
lemma lub_ID_take_lemma: |
45c9a8278faf
domain package no longer generates copy functions; all proofs use take functions instead
huffman
parents:
35457
diff
changeset
|
258 |
assumes "chain t" and "(\<Squnion>n. t n) = ID" |
45c9a8278faf
domain package no longer generates copy functions; all proofs use take functions instead
huffman
parents:
35457
diff
changeset
|
259 |
assumes "\<And>n. t n\<cdot>x = t n\<cdot>y" shows "x = y" |
45c9a8278faf
domain package no longer generates copy functions; all proofs use take functions instead
huffman
parents:
35457
diff
changeset
|
260 |
proof - |
45c9a8278faf
domain package no longer generates copy functions; all proofs use take functions instead
huffman
parents:
35457
diff
changeset
|
261 |
have "(\<Squnion>n. t n\<cdot>x) = (\<Squnion>n. t n\<cdot>y)" |
45c9a8278faf
domain package no longer generates copy functions; all proofs use take functions instead
huffman
parents:
35457
diff
changeset
|
262 |
using assms(3) by simp |
45c9a8278faf
domain package no longer generates copy functions; all proofs use take functions instead
huffman
parents:
35457
diff
changeset
|
263 |
then have "(\<Squnion>n. t n)\<cdot>x = (\<Squnion>n. t n)\<cdot>y" |
45c9a8278faf
domain package no longer generates copy functions; all proofs use take functions instead
huffman
parents:
35457
diff
changeset
|
264 |
using assms(1) by (simp add: lub_distribs) |
45c9a8278faf
domain package no longer generates copy functions; all proofs use take functions instead
huffman
parents:
35457
diff
changeset
|
265 |
then show "x = y" |
45c9a8278faf
domain package no longer generates copy functions; all proofs use take functions instead
huffman
parents:
35457
diff
changeset
|
266 |
using assms(2) by simp |
45c9a8278faf
domain package no longer generates copy functions; all proofs use take functions instead
huffman
parents:
35457
diff
changeset
|
267 |
qed |
45c9a8278faf
domain package no longer generates copy functions; all proofs use take functions instead
huffman
parents:
35457
diff
changeset
|
268 |
|
45c9a8278faf
domain package no longer generates copy functions; all proofs use take functions instead
huffman
parents:
35457
diff
changeset
|
269 |
lemma lub_ID_reach: |
45c9a8278faf
domain package no longer generates copy functions; all proofs use take functions instead
huffman
parents:
35457
diff
changeset
|
270 |
assumes "chain t" and "(\<Squnion>n. t n) = ID" |
45c9a8278faf
domain package no longer generates copy functions; all proofs use take functions instead
huffman
parents:
35457
diff
changeset
|
271 |
shows "(\<Squnion>n. t n\<cdot>x) = x" |
45c9a8278faf
domain package no longer generates copy functions; all proofs use take functions instead
huffman
parents:
35457
diff
changeset
|
272 |
using assms by (simp add: lub_distribs) |
45c9a8278faf
domain package no longer generates copy functions; all proofs use take functions instead
huffman
parents:
35457
diff
changeset
|
273 |
|
30910 | 274 |
use "Tools/cont_consts.ML" |
275 |
use "Tools/cont_proc.ML" |
|
32126 | 276 |
use "Tools/Domain/domain_library.ML" |
277 |
use "Tools/Domain/domain_axioms.ML" |
|
35457
d63655b88369
move proofs of casedist into domain_constructors.ML
huffman
parents:
35446
diff
changeset
|
278 |
use "Tools/Domain/domain_constructors.ML" |
32126 | 279 |
use "Tools/Domain/domain_theorems.ML" |
280 |
use "Tools/Domain/domain_extender.ML" |
|
30910 | 281 |
|
15741 | 282 |
end |