| author | huffman | 
| Mon, 29 Aug 2011 13:50:47 -0700 | |
| changeset 44584 | 08ad27488983 | 
| parent 43564 | 9864182c6bad | 
| child 46192 | 93eaaacc1955 | 
| permissions | -rw-r--r-- | 
| 10365 | 1 | % | 
| 11187 | 2 | \begin{isabellebody}%
 | 
| 3 | \def\isabellecontext{Advanced}%
 | |
| 17056 | 4 | % | 
| 5 | \isadelimtheory | |
| 6 | % | |
| 7 | \endisadelimtheory | |
| 8 | % | |
| 9 | \isatagtheory | |
| 23848 | 10 | % | 
| 17056 | 11 | \endisatagtheory | 
| 12 | {\isafoldtheory}%
 | |
| 13 | % | |
| 14 | \isadelimtheory | |
| 15 | % | |
| 16 | \endisadelimtheory | |
| 23848 | 17 | % | 
| 43564 
9864182c6bad
document antiquotations are managed as theory data, with proper name space and entity markup;
 wenzelm parents: 
40406diff
changeset | 18 | \isadelimML | 
| 
9864182c6bad
document antiquotations are managed as theory data, with proper name space and entity markup;
 wenzelm parents: 
40406diff
changeset | 19 | % | 
| 
9864182c6bad
document antiquotations are managed as theory data, with proper name space and entity markup;
 wenzelm parents: 
40406diff
changeset | 20 | \endisadelimML | 
| 
9864182c6bad
document antiquotations are managed as theory data, with proper name space and entity markup;
 wenzelm parents: 
40406diff
changeset | 21 | % | 
| 
9864182c6bad
document antiquotations are managed as theory data, with proper name space and entity markup;
 wenzelm parents: 
40406diff
changeset | 22 | \isatagML | 
| 
9864182c6bad
document antiquotations are managed as theory data, with proper name space and entity markup;
 wenzelm parents: 
40406diff
changeset | 23 | % | 
| 
9864182c6bad
document antiquotations are managed as theory data, with proper name space and entity markup;
 wenzelm parents: 
40406diff
changeset | 24 | \endisatagML | 
| 
9864182c6bad
document antiquotations are managed as theory data, with proper name space and entity markup;
 wenzelm parents: 
40406diff
changeset | 25 | {\isafoldML}%
 | 
| 
9864182c6bad
document antiquotations are managed as theory data, with proper name space and entity markup;
 wenzelm parents: 
40406diff
changeset | 26 | % | 
| 
9864182c6bad
document antiquotations are managed as theory data, with proper name space and entity markup;
 wenzelm parents: 
40406diff
changeset | 27 | \isadelimML | 
| 
9864182c6bad
document antiquotations are managed as theory data, with proper name space and entity markup;
 wenzelm parents: 
40406diff
changeset | 28 | % | 
| 
9864182c6bad
document antiquotations are managed as theory data, with proper name space and entity markup;
 wenzelm parents: 
40406diff
changeset | 29 | \endisadelimML | 
| 
9864182c6bad
document antiquotations are managed as theory data, with proper name space and entity markup;
 wenzelm parents: 
40406diff
changeset | 30 | % | 
| 23848 | 31 | \begin{isamarkuptext}%
 | 
| 32 | The premises of introduction rules may contain universal quantifiers and | |
| 33 | monotone functions. A universal quantifier lets the rule | |
| 34 | refer to any number of instances of | |
| 35 | the inductively defined set. A monotone function lets the rule refer | |
| 36 | to existing constructions (such as ``list of'') over the inductively defined | |
| 37 | set. The examples below show how to use the additional expressiveness | |
| 38 | and how to reason from the resulting definitions.% | |
| 39 | \end{isamarkuptext}%
 | |
| 40 | \isamarkuptrue% | |
| 41 | % | |
| 42 | \isamarkupsubsection{Universal Quantifiers in Introduction Rules \label{sec:gterm-datatype}%
 | |
| 43 | } | |
| 44 | \isamarkuptrue% | |
| 45 | % | |
| 46 | \begin{isamarkuptext}%
 | |
| 47 | \index{ground terms example|(}%
 | |
| 48 | \index{quantifiers!and inductive definitions|(}%
 | |
| 49 | As a running example, this section develops the theory of \textbf{ground
 | |
| 50 | terms}: terms constructed from constant and function | |
| 51 | symbols but not variables. To simplify matters further, we regard a | |
| 52 | constant as a function applied to the null argument list. Let us declare a | |
| 53 | datatype \isa{gterm} for the type of ground  terms. It is a type constructor
 | |
| 54 | whose argument is a type of function symbols.% | |
| 55 | \end{isamarkuptext}%
 | |
| 56 | \isamarkuptrue% | |
| 17175 | 57 | \isacommand{datatype}\isamarkupfalse%
 | 
| 40406 | 58 | \ {\isaliteral{27}{\isacharprime}}f\ gterm\ {\isaliteral{3D}{\isacharequal}}\ Apply\ {\isaliteral{27}{\isacharprime}}f\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{27}{\isacharprime}}f\ gterm\ list{\isaliteral{22}{\isachardoublequoteclose}}%
 | 
| 23848 | 59 | \begin{isamarkuptext}%
 | 
| 60 | To try it out, we declare a datatype of some integer operations: | |
| 61 | integer constants, the unary minus operator and the addition | |
| 62 | operator.% | |
| 63 | \end{isamarkuptext}%
 | |
| 64 | \isamarkuptrue% | |
| 17175 | 65 | \isacommand{datatype}\isamarkupfalse%
 | 
| 40406 | 66 | \ integer{\isaliteral{5F}{\isacharunderscore}}op\ {\isaliteral{3D}{\isacharequal}}\ Number\ int\ {\isaliteral{7C}{\isacharbar}}\ UnaryMinus\ {\isaliteral{7C}{\isacharbar}}\ Plus%
 | 
| 23848 | 67 | \begin{isamarkuptext}%
 | 
| 40406 | 68 | Now the type \isa{integer{\isaliteral{5F}{\isacharunderscore}}op\ gterm} denotes the ground 
 | 
| 23848 | 69 | terms built over those symbols. | 
| 70 | ||
| 71 | The type constructor \isa{gterm} can be generalized to a function 
 | |
| 72 | over sets. It returns | |
| 73 | the set of ground terms that can be formed over a set \isa{F} of function symbols. For
 | |
| 74 | example, we could consider the set of ground terms formed from the finite | |
| 40406 | 75 | set \isa{{\isaliteral{7B}{\isacharbraceleft}}Number\ {\isadigit{2}}{\isaliteral{2C}{\isacharcomma}}\ UnaryMinus{\isaliteral{2C}{\isacharcomma}}\ Plus{\isaliteral{7D}{\isacharbraceright}}}.
 | 
| 23848 | 76 | |
| 77 | This concept is inductive. If we have a list \isa{args} of ground terms 
 | |
| 78 | over~\isa{F} and a function symbol \isa{f} in \isa{F}, then we 
 | |
| 79 | can apply \isa{f} to \isa{args} to obtain another ground term. 
 | |
| 80 | The only difficulty is that the argument list may be of any length. Hitherto, | |
| 81 | each rule in an inductive definition referred to the inductively | |
| 82 | defined set a fixed number of times, typically once or twice. | |
| 83 | A universal quantifier in the premise of the introduction rule | |
| 84 | expresses that every element of \isa{args} belongs
 | |
| 85 | to our inductively defined set: is a ground term | |
| 86 | over~\isa{F}.  The function \isa{set} denotes the set of elements in a given 
 | |
| 87 | list.% | |
| 88 | \end{isamarkuptext}%
 | |
| 89 | \isamarkuptrue% | |
| 40406 | 90 | \isacommand{inductive{\isaliteral{5F}{\isacharunderscore}}set}\isamarkupfalse%
 | 
| 23733 | 91 | \isanewline | 
| 40406 | 92 | \ \ gterms\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{27}{\isacharprime}}f\ set\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}f\ gterm\ set{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
 | 
| 93 | \ \ \isakeyword{for}\ F\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{27}{\isacharprime}}f\ set{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
 | |
| 23733 | 94 | \isakeyword{where}\isanewline
 | 
| 40406 | 95 | step{\isaliteral{5B}{\isacharbrackleft}}intro{\isaliteral{21}{\isacharbang}}{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ set\ args{\isaliteral{2E}{\isachardot}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ gterms\ F{\isaliteral{3B}{\isacharsemicolon}}\ \ f\ {\isaliteral{5C3C696E3E}{\isasymin}}\ F{\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\isanewline
 | 
| 96 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{28}{\isacharparenleft}}Apply\ f\ args{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ gterms\ F{\isaliteral{22}{\isachardoublequoteclose}}%
 | |
| 23848 | 97 | \begin{isamarkuptext}%
 | 
| 98 | To demonstrate a proof from this definition, let us | |
| 99 | show that the function \isa{gterms}
 | |
| 100 | is \textbf{monotone}.  We shall need this concept shortly.%
 | |
| 101 | \end{isamarkuptext}%
 | |
| 102 | \isamarkuptrue% | |
| 17175 | 103 | \isacommand{lemma}\isamarkupfalse%
 | 
| 40406 | 104 | \ gterms{\isaliteral{5F}{\isacharunderscore}}mono{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}F{\isaliteral{5C3C73756273657465713E}{\isasymsubseteq}}G\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ gterms\ F\ {\isaliteral{5C3C73756273657465713E}{\isasymsubseteq}}\ gterms\ G{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
 | 
| 17056 | 105 | % | 
| 106 | \isadelimproof | |
| 107 | % | |
| 108 | \endisadelimproof | |
| 109 | % | |
| 110 | \isatagproof | |
| 17175 | 111 | \isacommand{apply}\isamarkupfalse%
 | 
| 112 | \ clarify\isanewline | |
| 113 | \isacommand{apply}\isamarkupfalse%
 | |
| 40406 | 114 | \ {\isaliteral{28}{\isacharparenleft}}erule\ gterms{\isaliteral{2E}{\isachardot}}induct{\isaliteral{29}{\isacharparenright}}\isanewline
 | 
| 17175 | 115 | \isacommand{apply}\isamarkupfalse%
 | 
| 116 | \ blast\isanewline | |
| 117 | \isacommand{done}\isamarkupfalse%
 | |
| 118 | % | |
| 17056 | 119 | \endisatagproof | 
| 120 | {\isafoldproof}%
 | |
| 121 | % | |
| 122 | \isadelimproof | |
| 123 | % | |
| 124 | \endisadelimproof | |
| 11866 | 125 | % | 
| 23848 | 126 | \isadelimproof | 
| 127 | % | |
| 128 | \endisadelimproof | |
| 129 | % | |
| 130 | \isatagproof | |
| 131 | % | |
| 132 | \begin{isamarkuptxt}%
 | |
| 133 | Intuitively, this theorem says that | |
| 134 | enlarging the set of function symbols enlarges the set of ground | |
| 135 | terms. The proof is a trivial rule induction. | |
| 136 | First we use the \isa{clarify} method to assume the existence of an element of
 | |
| 137 | \isa{gterms\ F}.  (We could have used \isa{intro\ subsetI}.)  We then
 | |
| 138 | apply rule induction. Here is the resulting subgoal: | |
| 11187 | 139 | \begin{isabelle}%
 | 
| 40406 | 140 | \ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}x\ args\ f{\isaliteral{2E}{\isachardot}}\isanewline
 | 
| 141 | \isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ \ \ \ }{\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}F\ {\isaliteral{5C3C73756273657465713E}{\isasymsubseteq}}\ G{\isaliteral{3B}{\isacharsemicolon}}\ {\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}t{\isaliteral{5C3C696E3E}{\isasymin}}set\ args{\isaliteral{2E}{\isachardot}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ gterms\ F\ {\isaliteral{5C3C616E643E}{\isasymand}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ gterms\ G{\isaliteral{3B}{\isacharsemicolon}}\ f\ {\isaliteral{5C3C696E3E}{\isasymin}}\ F{\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\isanewline
 | |
| 142 | \isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ \ \ \ }{\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ Apply\ f\ args\ {\isaliteral{5C3C696E3E}{\isasymin}}\ gterms\ G%
 | |
| 11173 | 143 | \end{isabelle}
 | 
| 23848 | 144 | The assumptions state that \isa{f} belongs 
 | 
| 145 | to~\isa{F}, which is included in~\isa{G}, and that every element of the list \isa{args} is
 | |
| 146 | a ground term over~\isa{G}.  The \isa{blast} method finds this chain of reasoning easily.%
 | |
| 147 | \end{isamarkuptxt}%
 | |
| 148 | \isamarkuptrue% | |
| 149 | % | |
| 150 | \endisatagproof | |
| 151 | {\isafoldproof}%
 | |
| 152 | % | |
| 153 | \isadelimproof | |
| 154 | % | |
| 155 | \endisadelimproof | |
| 156 | % | |
| 157 | \begin{isamarkuptext}%
 | |
| 158 | \begin{warn}
 | |
| 159 | Why do we call this function \isa{gterms} instead 
 | |
| 160 | of \isa{gterm}?  A constant may have the same name as a type.  However,
 | |
| 161 | name clashes could arise in the theorems that Isabelle generates. | |
| 40406 | 162 | Our choice of names keeps \isa{gterms{\isaliteral{2E}{\isachardot}}induct} separate from 
 | 
| 163 | \isa{gterm{\isaliteral{2E}{\isachardot}}induct}.
 | |
| 23848 | 164 | \end{warn}
 | 
| 10469 | 165 | |
| 23848 | 166 | Call a term \textbf{well-formed} if each symbol occurring in it is applied
 | 
| 167 | to the correct number of arguments. (This number is called the symbol's | |
| 168 | \textbf{arity}.)  We can express well-formedness by
 | |
| 169 | generalizing the inductive definition of | |
| 170 | \isa{gterms}.
 | |
| 171 | Suppose we are given a function called \isa{arity}, specifying the arities
 | |
| 172 | of all symbols.  In the inductive step, we have a list \isa{args} of such
 | |
| 173 | terms and a function  symbol~\isa{f}. If the length of the list matches the
 | |
| 174 | function's arity  then applying \isa{f} to \isa{args} yields a well-formed
 | |
| 175 | term.% | |
| 176 | \end{isamarkuptext}%
 | |
| 177 | \isamarkuptrue% | |
| 40406 | 178 | \isacommand{inductive{\isaliteral{5F}{\isacharunderscore}}set}\isamarkupfalse%
 | 
| 23848 | 179 | \isanewline | 
| 40406 | 180 | \ \ well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}f\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ nat{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}f\ gterm\ set{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
 | 
| 181 | \ \ \isakeyword{for}\ arity\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{27}{\isacharprime}}f\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ nat{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
 | |
| 23848 | 182 | \isakeyword{where}\isanewline
 | 
| 40406 | 183 | step{\isaliteral{5B}{\isacharbrackleft}}intro{\isaliteral{21}{\isacharbang}}{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ set\ args{\isaliteral{2E}{\isachardot}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm\ arity{\isaliteral{3B}{\isacharsemicolon}}\ \ \isanewline
 | 
| 184 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ length\ args\ {\isaliteral{3D}{\isacharequal}}\ arity\ f{\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\isanewline
 | |
| 185 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{28}{\isacharparenleft}}Apply\ f\ args{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm\ arity{\isaliteral{22}{\isachardoublequoteclose}}%
 | |
| 23848 | 186 | \begin{isamarkuptext}%
 | 
| 187 | The inductive definition neatly captures the reasoning above. | |
| 188 | The universal quantification over the | |
| 189 | \isa{set} of arguments expresses that all of them are well-formed.%
 | |
| 190 | \index{quantifiers!and inductive definitions|)}%
 | |
| 11187 | 191 | \end{isamarkuptext}%
 | 
| 17175 | 192 | \isamarkuptrue% | 
| 23848 | 193 | % | 
| 194 | \isamarkupsubsection{Alternative Definition Using a Monotone Function%
 | |
| 195 | } | |
| 196 | \isamarkuptrue% | |
| 197 | % | |
| 198 | \begin{isamarkuptext}%
 | |
| 199 | \index{monotone functions!and inductive definitions|(}% 
 | |
| 200 | An inductive definition may refer to the | |
| 201 | inductively defined set through an arbitrary monotone function. To | |
| 202 | demonstrate this powerful feature, let us | |
| 203 | change the inductive definition above, replacing the | |
| 204 | quantifier by a use of the function \isa{lists}. This
 | |
| 205 | function, from the Isabelle theory of lists, is analogous to the | |
| 206 | function \isa{gterms} declared above: if \isa{A} is a set then
 | |
| 207 | \isa{lists\ A} is the set of lists whose elements belong to
 | |
| 208 | \isa{A}.  
 | |
| 209 | ||
| 210 | In the inductive definition of well-formed terms, examine the one | |
| 211 | introduction rule.  The first premise states that \isa{args} belongs to
 | |
| 212 | the \isa{lists} of well-formed terms.  This formulation is more
 | |
| 213 | direct, if more obscure, than using a universal quantifier.% | |
| 214 | \end{isamarkuptext}%
 | |
| 215 | \isamarkuptrue% | |
| 40406 | 216 | \isacommand{inductive{\isaliteral{5F}{\isacharunderscore}}set}\isamarkupfalse%
 | 
| 10365 | 217 | \isanewline | 
| 40406 | 218 | \ \ well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm{\isaliteral{27}{\isacharprime}}\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}f\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ nat{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}f\ gterm\ set{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
 | 
| 219 | \ \ \isakeyword{for}\ arity\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{27}{\isacharprime}}f\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ nat{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
 | |
| 23848 | 220 | \isakeyword{where}\isanewline
 | 
| 40406 | 221 | step{\isaliteral{5B}{\isacharbrackleft}}intro{\isaliteral{21}{\isacharbang}}{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}args\ {\isaliteral{5C3C696E3E}{\isasymin}}\ lists\ {\isaliteral{28}{\isacharparenleft}}well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm{\isaliteral{27}{\isacharprime}}\ arity{\isaliteral{29}{\isacharparenright}}{\isaliteral{3B}{\isacharsemicolon}}\ \ \isanewline
 | 
| 222 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ length\ args\ {\isaliteral{3D}{\isacharequal}}\ arity\ f{\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\isanewline
 | |
| 223 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{28}{\isacharparenleft}}Apply\ f\ args{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm{\isaliteral{27}{\isacharprime}}\ arity{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
 | |
| 224 | \isakeyword{monos}\ lists{\isaliteral{5F}{\isacharunderscore}}mono%
 | |
| 11187 | 225 | \begin{isamarkuptext}%
 | 
| 40406 | 226 | We cite the theorem \isa{lists{\isaliteral{5F}{\isacharunderscore}}mono} to justify 
 | 
| 23848 | 227 | using the function \isa{lists}.%
 | 
| 228 | \footnote{This particular theorem is installed by default already, but we
 | |
| 229 | include the \isakeyword{monos} declaration in order to illustrate its syntax.}
 | |
| 11187 | 230 | \begin{isabelle}%
 | 
| 40406 | 231 | A\ {\isaliteral{5C3C73756273657465713E}{\isasymsubseteq}}\ B\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ lists\ A\ {\isaliteral{5C3C73756273657465713E}{\isasymsubseteq}}\ lists\ B\rulename{lists{\isaliteral{5F}{\isacharunderscore}}mono}%
 | 
| 23848 | 232 | \end{isabelle}
 | 
| 233 | Why must the function be monotone? An inductive definition describes | |
| 234 | an iterative construction: each element of the set is constructed by a | |
| 235 | finite number of introduction rule applications. For example, the | |
| 236 | elements of \isa{even} are constructed by finitely many applications of
 | |
| 237 | the rules | |
| 238 | \begin{isabelle}%
 | |
| 40406 | 239 | {\isadigit{0}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ even\isasep\isanewline%
 | 
| 240 | n\ {\isaliteral{5C3C696E3E}{\isasymin}}\ even\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ Suc\ {\isaliteral{28}{\isacharparenleft}}Suc\ n{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ even%
 | |
| 11187 | 241 | \end{isabelle}
 | 
| 23848 | 242 | All references to a set in its | 
| 243 | inductive definition must be positive. Applications of an | |
| 244 | introduction rule cannot invalidate previous applications, allowing the | |
| 245 | construction process to converge. | |
| 246 | The following pair of rules do not constitute an inductive definition: | |
| 247 | \begin{trivlist}
 | |
| 40406 | 248 | \item \isa{{\isadigit{0}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ even}
 | 
| 249 | \item \isa{n\ {\isaliteral{5C3C6E6F74696E3E}{\isasymnotin}}\ even\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ Suc\ n\ {\isaliteral{5C3C696E3E}{\isasymin}}\ even}
 | |
| 23848 | 250 | \end{trivlist}
 | 
| 251 | Showing that 4 is even using these rules requires showing that 3 is not | |
| 252 | even. It is far from trivial to show that this set of rules | |
| 253 | characterizes the even numbers. | |
| 10469 | 254 | |
| 23848 | 255 | Even with its use of the function \isa{lists}, the premise of our
 | 
| 256 | introduction rule is positive: | |
| 257 | \begin{isabelle}%
 | |
| 40406 | 258 | args\ {\isaliteral{5C3C696E3E}{\isasymin}}\ lists\ {\isaliteral{28}{\isacharparenleft}}well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm{\isaliteral{27}{\isacharprime}}\ arity{\isaliteral{29}{\isacharparenright}}%
 | 
| 23848 | 259 | \end{isabelle}
 | 
| 260 | To apply the rule we construct a list \isa{args} of previously
 | |
| 261 | constructed well-formed terms. We obtain a | |
| 262 | new term, \isa{Apply\ f\ args}.  Because \isa{lists} is monotone,
 | |
| 263 | applications of the rule remain valid as new terms are constructed. | |
| 264 | Further lists of well-formed | |
| 265 | terms become available and none are taken away.% | |
| 266 | \index{monotone functions!and inductive definitions|)}%
 | |
| 267 | \end{isamarkuptext}%
 | |
| 268 | \isamarkuptrue% | |
| 269 | % | |
| 270 | \isamarkupsubsection{A Proof of Equivalence%
 | |
| 271 | } | |
| 272 | \isamarkuptrue% | |
| 273 | % | |
| 274 | \begin{isamarkuptext}%
 | |
| 275 | We naturally hope that these two inductive definitions of ``well-formed'' | |
| 276 | coincide. The equality can be proved by separate inclusions in | |
| 277 | each direction. Each is a trivial rule induction.% | |
| 11187 | 278 | \end{isamarkuptext}%
 | 
| 17175 | 279 | \isamarkuptrue% | 
| 280 | \isacommand{lemma}\isamarkupfalse%
 | |
| 40406 | 281 | \ {\isaliteral{22}{\isachardoublequoteopen}}well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm\ arity\ {\isaliteral{5C3C73756273657465713E}{\isasymsubseteq}}\ well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm{\isaliteral{27}{\isacharprime}}\ arity{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
 | 
| 17056 | 282 | % | 
| 283 | \isadelimproof | |
| 284 | % | |
| 285 | \endisadelimproof | |
| 286 | % | |
| 287 | \isatagproof | |
| 17175 | 288 | \isacommand{apply}\isamarkupfalse%
 | 
| 23848 | 289 | \ clarify\isanewline | 
| 290 | \isacommand{apply}\isamarkupfalse%
 | |
| 40406 | 291 | \ {\isaliteral{28}{\isacharparenleft}}erule\ well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm{\isaliteral{2E}{\isachardot}}induct{\isaliteral{29}{\isacharparenright}}\isanewline
 | 
| 23848 | 292 | \isacommand{apply}\isamarkupfalse%
 | 
| 293 | \ auto\isanewline | |
| 294 | \isacommand{done}\isamarkupfalse%
 | |
| 295 | % | |
| 296 | \endisatagproof | |
| 297 | {\isafoldproof}%
 | |
| 298 | % | |
| 299 | \isadelimproof | |
| 300 | % | |
| 301 | \endisadelimproof | |
| 302 | % | |
| 303 | \isadelimproof | |
| 304 | % | |
| 305 | \endisadelimproof | |
| 306 | % | |
| 307 | \isatagproof | |
| 308 | % | |
| 309 | \begin{isamarkuptxt}%
 | |
| 310 | The \isa{clarify} method gives
 | |
| 40406 | 311 | us an element of \isa{well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm\ arity} on which to perform 
 | 
| 23848 | 312 | induction. The resulting subgoal can be proved automatically: | 
| 313 | \begin{isabelle}%
 | |
| 40406 | 314 | \ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}x\ args\ f{\isaliteral{2E}{\isachardot}}\isanewline
 | 
| 315 | \isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ \ \ \ }{\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}t{\isaliteral{5C3C696E3E}{\isasymin}}set\ args{\isaliteral{2E}{\isachardot}}\isanewline
 | |
| 316 | \isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ \ \ \ {\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}\ \ \ }t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm\ arity\ {\isaliteral{5C3C616E643E}{\isasymand}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm{\isaliteral{27}{\isacharprime}}\ arity{\isaliteral{3B}{\isacharsemicolon}}\isanewline
 | |
| 317 | \isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ \ \ \ \ }length\ args\ {\isaliteral{3D}{\isacharequal}}\ arity\ f{\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\isanewline
 | |
| 318 | \isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ \ \ \ }{\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ Apply\ f\ args\ {\isaliteral{5C3C696E3E}{\isasymin}}\ well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm{\isaliteral{27}{\isacharprime}}\ arity%
 | |
| 23848 | 319 | \end{isabelle}
 | 
| 320 | This proof resembles the one given in | |
| 321 | {\S}\ref{sec:gterm-datatype} above, especially in the form of the
 | |
| 322 | induction hypothesis. Next, we consider the opposite inclusion:% | |
| 323 | \end{isamarkuptxt}%
 | |
| 324 | \isamarkuptrue% | |
| 325 | % | |
| 326 | \endisatagproof | |
| 327 | {\isafoldproof}%
 | |
| 328 | % | |
| 329 | \isadelimproof | |
| 330 | % | |
| 331 | \endisadelimproof | |
| 332 | \isacommand{lemma}\isamarkupfalse%
 | |
| 40406 | 333 | \ {\isaliteral{22}{\isachardoublequoteopen}}well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm{\isaliteral{27}{\isacharprime}}\ arity\ {\isaliteral{5C3C73756273657465713E}{\isasymsubseteq}}\ well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm\ arity{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
 | 
| 23848 | 334 | % | 
| 335 | \isadelimproof | |
| 336 | % | |
| 337 | \endisadelimproof | |
| 338 | % | |
| 339 | \isatagproof | |
| 340 | \isacommand{apply}\isamarkupfalse%
 | |
| 341 | \ clarify\isanewline | |
| 342 | \isacommand{apply}\isamarkupfalse%
 | |
| 40406 | 343 | \ {\isaliteral{28}{\isacharparenleft}}erule\ well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm{\isaliteral{27}{\isacharprime}}{\isaliteral{2E}{\isachardot}}induct{\isaliteral{29}{\isacharparenright}}\isanewline
 | 
| 23848 | 344 | \isacommand{apply}\isamarkupfalse%
 | 
| 345 | \ auto\isanewline | |
| 346 | \isacommand{done}\isamarkupfalse%
 | |
| 17175 | 347 | % | 
| 17056 | 348 | \endisatagproof | 
| 349 | {\isafoldproof}%
 | |
| 350 | % | |
| 351 | \isadelimproof | |
| 23848 | 352 | % | 
| 353 | \endisadelimproof | |
| 354 | % | |
| 355 | \isadelimproof | |
| 17056 | 356 | % | 
| 357 | \endisadelimproof | |
| 23848 | 358 | % | 
| 359 | \isatagproof | |
| 360 | % | |
| 361 | \begin{isamarkuptxt}%
 | |
| 27167 | 362 | The proof script is virtually identical, | 
| 363 | but the subgoal after applying induction may be surprising: | |
| 23848 | 364 | \begin{isabelle}%
 | 
| 40406 | 365 | \ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}x\ args\ f{\isaliteral{2E}{\isachardot}}\isanewline
 | 
| 366 | \isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ \ \ \ }{\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}args\isanewline
 | |
| 367 | \isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ \ \ \ {\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}}{\isaliteral{5C3C696E3E}{\isasymin}}\ lists\isanewline
 | |
| 368 | \isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ \ \ \ {\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}{\isaliteral{5C3C696E3E}{\isasymin}}\ \ }{\isaliteral{28}{\isacharparenleft}}well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm{\isaliteral{27}{\isacharprime}}\ arity\ {\isaliteral{5C3C696E7465723E}{\isasyminter}}\isanewline
 | |
| 369 | \isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ \ \ \ {\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}{\isaliteral{5C3C696E3E}{\isasymin}}\ \ {\isaliteral{28}{\isacharparenleft}}}{\isaliteral{7B}{\isacharbraceleft}}a{\isaliteral{2E}{\isachardot}}\ a\ {\isaliteral{5C3C696E3E}{\isasymin}}\ well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm\ arity{\isaliteral{7D}{\isacharbraceright}}{\isaliteral{29}{\isacharparenright}}{\isaliteral{3B}{\isacharsemicolon}}\isanewline
 | |
| 370 | \isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ \ \ \ \ }length\ args\ {\isaliteral{3D}{\isacharequal}}\ arity\ f{\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\isanewline
 | |
| 371 | \isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ \ \ \ }{\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ Apply\ f\ args\ {\isaliteral{5C3C696E3E}{\isasymin}}\ well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm\ arity%
 | |
| 23848 | 372 | \end{isabelle}
 | 
| 373 | The induction hypothesis contains an application of \isa{lists}.  Using a
 | |
| 374 | monotone function in the inductive definition always has this effect. The | |
| 375 | subgoal may look uninviting, but fortunately | |
| 376 | \isa{lists} distributes over intersection:
 | |
| 377 | \begin{isabelle}%
 | |
| 40406 | 378 | listsp\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}x{\isaliteral{2E}{\isachardot}}\ x\ {\isaliteral{5C3C696E3E}{\isasymin}}\ A{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E7465723E}{\isasyminter}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}x{\isaliteral{2E}{\isachardot}}\ x\ {\isaliteral{5C3C696E3E}{\isasymin}}\ B{\isaliteral{29}{\isacharparenright}}{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}x{\isaliteral{2E}{\isachardot}}\ x\ {\isaliteral{5C3C696E3E}{\isasymin}}\ lists\ A{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E7465723E}{\isasyminter}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}x{\isaliteral{2E}{\isachardot}}\ x\ {\isaliteral{5C3C696E3E}{\isasymin}}\ lists\ B{\isaliteral{29}{\isacharparenright}}\rulename{lists{\isaliteral{5F}{\isacharunderscore}}Int{\isaliteral{5F}{\isacharunderscore}}eq}%
 | 
| 23848 | 379 | \end{isabelle}
 | 
| 380 | Thanks to this default simplification rule, the induction hypothesis | |
| 381 | is quickly replaced by its two parts: | |
| 382 | \begin{trivlist}
 | |
| 40406 | 383 | \item \isa{args\ {\isaliteral{5C3C696E3E}{\isasymin}}\ lists\ {\isaliteral{28}{\isacharparenleft}}well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm{\isaliteral{27}{\isacharprime}}\ arity{\isaliteral{29}{\isacharparenright}}}
 | 
| 384 | \item \isa{args\ {\isaliteral{5C3C696E3E}{\isasymin}}\ lists\ {\isaliteral{28}{\isacharparenleft}}well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm\ arity{\isaliteral{29}{\isacharparenright}}}
 | |
| 23848 | 385 | \end{trivlist}
 | 
| 40406 | 386 | Invoking the rule \isa{well{\isaliteral{5F}{\isacharunderscore}}formed{\isaliteral{5F}{\isacharunderscore}}gterm{\isaliteral{2E}{\isachardot}}step} completes the proof.  The
 | 
| 23848 | 387 | call to \isa{auto} does all this work.
 | 
| 388 | ||
| 389 | This example is typical of how monotone functions | |
| 390 | \index{monotone functions} can be used.  In particular, many of them
 | |
| 391 | distribute over intersection. Monotonicity implies one direction of | |
| 392 | this set equality; we have this theorem: | |
| 393 | \begin{isabelle}%
 | |
| 40406 | 394 | mono\ f\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ f\ {\isaliteral{28}{\isacharparenleft}}A\ {\isaliteral{5C3C696E7465723E}{\isasyminter}}\ B{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C73756273657465713E}{\isasymsubseteq}}\ f\ A\ {\isaliteral{5C3C696E7465723E}{\isasyminter}}\ f\ B\rulename{mono{\isaliteral{5F}{\isacharunderscore}}Int}%
 | 
| 23848 | 395 | \end{isabelle}%
 | 
| 396 | \end{isamarkuptxt}%
 | |
| 397 | \isamarkuptrue% | |
| 398 | % | |
| 399 | \endisatagproof | |
| 400 | {\isafoldproof}%
 | |
| 401 | % | |
| 402 | \isadelimproof | |
| 403 | % | |
| 404 | \endisadelimproof | |
| 405 | % | |
| 406 | \isamarkupsubsection{Another Example of Rule Inversion%
 | |
| 407 | } | |
| 408 | \isamarkuptrue% | |
| 409 | % | |
| 410 | \begin{isamarkuptext}%
 | |
| 411 | \index{rule inversion|(}%
 | |
| 412 | Does \isa{gterms} distribute over intersection?  We have proved that this
 | |
| 40406 | 413 | function is monotone, so \isa{mono{\isaliteral{5F}{\isacharunderscore}}Int} gives one of the inclusions.  The
 | 
| 23848 | 414 | opposite inclusion asserts that if \isa{t} is a ground term over both of the
 | 
| 415 | sets | |
| 416 | \isa{F} and~\isa{G} then it is also a ground term over their intersection,
 | |
| 40406 | 417 | \isa{F\ {\isaliteral{5C3C696E7465723E}{\isasyminter}}\ G}.%
 | 
| 23848 | 418 | \end{isamarkuptext}%
 | 
| 419 | \isamarkuptrue% | |
| 420 | \isacommand{lemma}\isamarkupfalse%
 | |
| 40406 | 421 | \ gterms{\isaliteral{5F}{\isacharunderscore}}IntI{\isaliteral{3A}{\isacharcolon}}\isanewline
 | 
| 422 | \ \ \ \ \ {\isaliteral{22}{\isachardoublequoteopen}}t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ gterms\ F\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ gterms\ G\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ gterms\ {\isaliteral{28}{\isacharparenleft}}F{\isaliteral{5C3C696E7465723E}{\isasyminter}}G{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}%
 | |
| 23848 | 423 | \isadelimproof | 
| 424 | % | |
| 425 | \endisadelimproof | |
| 426 | % | |
| 427 | \isatagproof | |
| 428 | % | |
| 429 | \endisatagproof | |
| 430 | {\isafoldproof}%
 | |
| 431 | % | |
| 432 | \isadelimproof | |
| 433 | % | |
| 434 | \endisadelimproof | |
| 435 | % | |
| 436 | \begin{isamarkuptext}%
 | |
| 437 | Attempting this proof, we get the assumption | |
| 40406 | 438 | \isa{Apply\ f\ args\ {\isaliteral{5C3C696E3E}{\isasymin}}\ gterms\ G}, which cannot be broken down. 
 | 
| 23848 | 439 | It looks like a job for rule inversion:\cmmdx{inductive\protect\_cases}%
 | 
| 440 | \end{isamarkuptext}%
 | |
| 441 | \isamarkuptrue% | |
| 40406 | 442 | \isacommand{inductive{\isaliteral{5F}{\isacharunderscore}}cases}\isamarkupfalse%
 | 
| 443 | \ gterm{\isaliteral{5F}{\isacharunderscore}}Apply{\isaliteral{5F}{\isacharunderscore}}elim\ {\isaliteral{5B}{\isacharbrackleft}}elim{\isaliteral{21}{\isacharbang}}{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}Apply\ f\ args\ {\isaliteral{5C3C696E3E}{\isasymin}}\ gterms\ F{\isaliteral{22}{\isachardoublequoteclose}}%
 | |
| 11187 | 444 | \begin{isamarkuptext}%
 | 
| 23848 | 445 | Here is the result. | 
| 11187 | 446 | \begin{isabelle}%
 | 
| 40406 | 447 | {\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}Apply\ f\ args\ {\isaliteral{5C3C696E3E}{\isasymin}}\ gterms\ F{\isaliteral{3B}{\isacharsemicolon}}\isanewline
 | 
| 448 | \isaindent{\ }{\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}t{\isaliteral{5C3C696E3E}{\isasymin}}set\ args{\isaliteral{2E}{\isachardot}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ gterms\ F{\isaliteral{3B}{\isacharsemicolon}}\ f\ {\isaliteral{5C3C696E3E}{\isasymin}}\ F{\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ P{\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\isanewline
 | |
| 449 | {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ P\rulename{gterm{\isaliteral{5F}{\isacharunderscore}}Apply{\isaliteral{5F}{\isacharunderscore}}elim}%
 | |
| 10469 | 450 | \end{isabelle}
 | 
| 23848 | 451 | This rule replaces an assumption about \isa{Apply\ f\ args} by 
 | 
| 452 | assumptions about \isa{f} and~\isa{args}.  
 | |
| 453 | No cases are discarded (there was only one to begin | |
| 454 | with) but the rule applies specifically to the pattern \isa{Apply\ f\ args}.
 | |
| 455 | It can be applied repeatedly as an elimination rule without looping, so we | |
| 40406 | 456 | have given the \isa{elim{\isaliteral{21}{\isacharbang}}} attribute. 
 | 
| 23848 | 457 | |
| 458 | Now we can prove the other half of that distributive law.% | |
| 11187 | 459 | \end{isamarkuptext}%
 | 
| 17175 | 460 | \isamarkuptrue% | 
| 461 | \isacommand{lemma}\isamarkupfalse%
 | |
| 40406 | 462 | \ gterms{\isaliteral{5F}{\isacharunderscore}}IntI\ {\isaliteral{5B}{\isacharbrackleft}}rule{\isaliteral{5F}{\isacharunderscore}}format{\isaliteral{2C}{\isacharcomma}}\ intro{\isaliteral{21}{\isacharbang}}{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{3A}{\isacharcolon}}\isanewline
 | 
| 463 | \ \ \ \ \ {\isaliteral{22}{\isachardoublequoteopen}}t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ gterms\ F\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ gterms\ G\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ gterms\ {\isaliteral{28}{\isacharparenleft}}F{\isaliteral{5C3C696E7465723E}{\isasyminter}}G{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
 | |
| 17056 | 464 | % | 
| 465 | \isadelimproof | |
| 466 | % | |
| 467 | \endisadelimproof | |
| 468 | % | |
| 469 | \isatagproof | |
| 17175 | 470 | \isacommand{apply}\isamarkupfalse%
 | 
| 40406 | 471 | \ {\isaliteral{28}{\isacharparenleft}}erule\ gterms{\isaliteral{2E}{\isachardot}}induct{\isaliteral{29}{\isacharparenright}}\isanewline
 | 
| 17175 | 472 | \isacommand{apply}\isamarkupfalse%
 | 
| 473 | \ blast\isanewline | |
| 474 | \isacommand{done}\isamarkupfalse%
 | |
| 475 | % | |
| 17056 | 476 | \endisatagproof | 
| 477 | {\isafoldproof}%
 | |
| 478 | % | |
| 479 | \isadelimproof | |
| 480 | % | |
| 481 | \endisadelimproof | |
| 11866 | 482 | % | 
| 23848 | 483 | \isadelimproof | 
| 484 | % | |
| 485 | \endisadelimproof | |
| 486 | % | |
| 487 | \isatagproof | |
| 488 | % | |
| 489 | \begin{isamarkuptxt}%
 | |
| 490 | The proof begins with rule induction over the definition of | |
| 491 | \isa{gterms}, which leaves a single subgoal:  
 | |
| 11187 | 492 | \begin{isabelle}%
 | 
| 40406 | 493 | \ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}args\ f{\isaliteral{2E}{\isachardot}}\isanewline
 | 
| 494 | \isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ \ \ \ }{\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}t{\isaliteral{5C3C696E3E}{\isasymin}}set\ args{\isaliteral{2E}{\isachardot}}\isanewline
 | |
| 495 | \isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ \ \ \ {\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}\ \ \ }t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ gterms\ F\ {\isaliteral{5C3C616E643E}{\isasymand}}\ {\isaliteral{28}{\isacharparenleft}}t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ gterms\ G\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ gterms\ {\isaliteral{28}{\isacharparenleft}}F\ {\isaliteral{5C3C696E7465723E}{\isasyminter}}\ G{\isaliteral{29}{\isacharparenright}}{\isaliteral{29}{\isacharparenright}}{\isaliteral{3B}{\isacharsemicolon}}\isanewline
 | |
| 496 | \isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ \ \ \ \ }f\ {\isaliteral{5C3C696E3E}{\isasymin}}\ F{\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\isanewline
 | |
| 497 | \isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ \ \ \ }{\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ Apply\ f\ args\ {\isaliteral{5C3C696E3E}{\isasymin}}\ gterms\ G\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\isanewline
 | |
| 498 | \isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ \ \ \ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ }Apply\ f\ args\ {\isaliteral{5C3C696E3E}{\isasymin}}\ gterms\ {\isaliteral{28}{\isacharparenleft}}F\ {\isaliteral{5C3C696E7465723E}{\isasyminter}}\ G{\isaliteral{29}{\isacharparenright}}%
 | |
| 11173 | 499 | \end{isabelle}
 | 
| 40406 | 500 | To prove this, we assume \isa{Apply\ f\ args\ {\isaliteral{5C3C696E3E}{\isasymin}}\ gterms\ G}.  Rule inversion,
 | 
| 501 | in the form of \isa{gterm{\isaliteral{5F}{\isacharunderscore}}Apply{\isaliteral{5F}{\isacharunderscore}}elim}, infers
 | |
| 23848 | 502 | that every element of \isa{args} belongs to 
 | 
| 503 | \isa{gterms\ G}; hence (by the induction hypothesis) it belongs
 | |
| 40406 | 504 | to \isa{gterms\ {\isaliteral{28}{\isacharparenleft}}F\ {\isaliteral{5C3C696E7465723E}{\isasyminter}}\ G{\isaliteral{29}{\isacharparenright}}}.  Rule inversion also yields
 | 
| 505 | \isa{f\ {\isaliteral{5C3C696E3E}{\isasymin}}\ G} and hence \isa{f\ {\isaliteral{5C3C696E3E}{\isasymin}}\ F\ {\isaliteral{5C3C696E7465723E}{\isasyminter}}\ G}. 
 | |
| 23848 | 506 | All of this reasoning is done by \isa{blast}.
 | 
| 507 | ||
| 508 | \smallskip | |
| 509 | Our distributive law is a trivial consequence of previously-proved results:% | |
| 510 | \end{isamarkuptxt}%
 | |
| 17175 | 511 | \isamarkuptrue% | 
| 23848 | 512 | % | 
| 513 | \endisatagproof | |
| 514 | {\isafoldproof}%
 | |
| 515 | % | |
| 516 | \isadelimproof | |
| 517 | % | |
| 518 | \endisadelimproof | |
| 17175 | 519 | \isacommand{lemma}\isamarkupfalse%
 | 
| 40406 | 520 | \ gterms{\isaliteral{5F}{\isacharunderscore}}Int{\isaliteral{5F}{\isacharunderscore}}eq\ {\isaliteral{5B}{\isacharbrackleft}}simp{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{3A}{\isacharcolon}}\isanewline
 | 
| 521 | \ \ \ \ \ {\isaliteral{22}{\isachardoublequoteopen}}gterms\ {\isaliteral{28}{\isacharparenleft}}F\ {\isaliteral{5C3C696E7465723E}{\isasyminter}}\ G{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ gterms\ F\ {\isaliteral{5C3C696E7465723E}{\isasyminter}}\ gterms\ G{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
 | |
| 17056 | 522 | % | 
| 523 | \isadelimproof | |
| 524 | % | |
| 525 | \endisadelimproof | |
| 526 | % | |
| 527 | \isatagproof | |
| 17175 | 528 | \isacommand{by}\isamarkupfalse%
 | 
| 40406 | 529 | \ {\isaliteral{28}{\isacharparenleft}}blast\ intro{\isaliteral{21}{\isacharbang}}{\isaliteral{3A}{\isacharcolon}}\ mono{\isaliteral{5F}{\isacharunderscore}}Int\ monoI\ gterms{\isaliteral{5F}{\isacharunderscore}}mono{\isaliteral{29}{\isacharparenright}}%
 | 
| 17056 | 530 | \endisatagproof | 
| 531 | {\isafoldproof}%
 | |
| 532 | % | |
| 533 | \isadelimproof | |
| 534 | % | |
| 535 | \endisadelimproof | |
| 12156 
d2758965362e
new-style numerals without leading #, along with generic 0 and 1
 paulson parents: 
11866diff
changeset | 536 | % | 
| 23848 | 537 | \index{rule inversion|)}%
 | 
| 538 | \index{ground terms example|)}
 | |
| 539 | ||
| 540 | ||
| 541 | \begin{isamarkuptext}
 | |
| 542 | \begin{exercise}
 | |
| 543 | A function mapping function symbols to their | |
| 544 | types is called a \textbf{signature}.  Given a type 
 | |
| 545 | ranging over type symbols, we can represent a function's type by a | |
| 546 | list of argument types paired with the result type. | |
| 547 | Complete this inductive definition: | |
| 548 | \begin{isabelle}
 | |
| 40406 | 549 | \isacommand{inductive{\isaliteral{5F}{\isacharunderscore}}set}\isamarkupfalse%
 | 
| 23733 | 550 | \isanewline | 
| 40406 | 551 | \ \ well{\isaliteral{5F}{\isacharunderscore}}typed{\isaliteral{5F}{\isacharunderscore}}gterm\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}f\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}t\ list\ {\isaliteral{2A}{\isacharasterisk}}\ {\isaliteral{27}{\isacharprime}}t{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}f\ gterm\ {\isaliteral{2A}{\isacharasterisk}}\ {\isaliteral{27}{\isacharprime}}t{\isaliteral{29}{\isacharparenright}}set{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
 | 
| 552 | \ \ \isakeyword{for}\ sig\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{27}{\isacharprime}}f\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}t\ list\ {\isaliteral{2A}{\isacharasterisk}}\ {\isaliteral{27}{\isacharprime}}t{\isaliteral{22}{\isachardoublequoteclose}}%
 | |
| 23848 | 553 | \end{isabelle}
 | 
| 554 | \end{exercise}
 | |
| 555 | \end{isamarkuptext}
 | |
| 17056 | 556 | % | 
| 557 | \isadelimproof | |
| 558 | % | |
| 559 | \endisadelimproof | |
| 560 | % | |
| 561 | \isatagproof | |
| 17175 | 562 | % | 
| 17056 | 563 | \endisatagproof | 
| 564 | {\isafoldproof}%
 | |
| 565 | % | |
| 566 | \isadelimproof | |
| 567 | % | |
| 568 | \endisadelimproof | |
| 11866 | 569 | % | 
| 17056 | 570 | \isadelimproof | 
| 571 | % | |
| 572 | \endisadelimproof | |
| 573 | % | |
| 574 | \isatagproof | |
| 17175 | 575 | % | 
| 17056 | 576 | \endisatagproof | 
| 577 | {\isafoldproof}%
 | |
| 578 | % | |
| 579 | \isadelimproof | |
| 580 | % | |
| 581 | \endisadelimproof | |
| 582 | % | |
| 583 | \isadelimtheory | |
| 584 | % | |
| 585 | \endisadelimtheory | |
| 586 | % | |
| 587 | \isatagtheory | |
| 17175 | 588 | % | 
| 17056 | 589 | \endisatagtheory | 
| 590 | {\isafoldtheory}%
 | |
| 591 | % | |
| 592 | \isadelimtheory | |
| 593 | % | |
| 594 | \endisadelimtheory | |
| 11187 | 595 | \end{isabellebody}%
 | 
| 10365 | 596 | %%% Local Variables: | 
| 597 | %%% mode: latex | |
| 598 | %%% TeX-master: "root" | |
| 599 | %%% End: |