| author | berghofe | 
| Wed, 07 Aug 2002 16:43:41 +0200 | |
| changeset 13465 | 08e3fe248ba9 | 
| parent 3837 | d7f033c74b38 | 
| child 17456 | bcf7544875b2 | 
| permissions | -rw-r--r-- | 
| 1459 | 1 | (* Title: CCL/gfp | 
| 0 | 2 | ID: $Id$ | 
| 3 | ||
| 4 | Modified version of | |
| 1459 | 5 | Title: HOL/gfp | 
| 6 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | |
| 0 | 7 | Copyright 1993 University of Cambridge | 
| 8 | ||
| 9 | For gfp.thy. The Knaster-Tarski Theorem for greatest fixed points. | |
| 10 | *) | |
| 11 | ||
| 12 | open Gfp; | |
| 13 | ||
| 14 | (*** Proof of Knaster-Tarski Theorem using gfp ***) | |
| 15 | ||
| 16 | (* gfp(f) is the least upper bound of {u. u <= f(u)} *)
 | |
| 17 | ||
| 18 | val prems = goalw Gfp.thy [gfp_def] "[| A <= f(A) |] ==> A <= gfp(f)"; | |
| 19 | by (rtac (CollectI RS Union_upper) 1); | |
| 20 | by (resolve_tac prems 1); | |
| 757 | 21 | qed "gfp_upperbound"; | 
| 0 | 22 | |
| 23 | val prems = goalw Gfp.thy [gfp_def] | |
| 24 | "[| !!u. u <= f(u) ==> u<=A |] ==> gfp(f) <= A"; | |
| 25 | by (REPEAT (ares_tac ([Union_least]@prems) 1)); | |
| 26 | by (etac CollectD 1); | |
| 757 | 27 | qed "gfp_least"; | 
| 0 | 28 | |
| 29 | val [mono] = goal Gfp.thy "mono(f) ==> gfp(f) <= f(gfp(f))"; | |
| 30 | by (EVERY1 [rtac gfp_least, rtac subset_trans, atac, | |
| 1459 | 31 | rtac (mono RS monoD), rtac gfp_upperbound, atac]); | 
| 757 | 32 | qed "gfp_lemma2"; | 
| 0 | 33 | |
| 34 | val [mono] = goal Gfp.thy "mono(f) ==> f(gfp(f)) <= gfp(f)"; | |
| 35 | by (EVERY1 [rtac gfp_upperbound, rtac (mono RS monoD), | |
| 1459 | 36 | rtac gfp_lemma2, rtac mono]); | 
| 757 | 37 | qed "gfp_lemma3"; | 
| 0 | 38 | |
| 39 | val [mono] = goal Gfp.thy "mono(f) ==> gfp(f) = f(gfp(f))"; | |
| 40 | by (REPEAT (resolve_tac [equalityI,gfp_lemma2,gfp_lemma3,mono] 1)); | |
| 757 | 41 | qed "gfp_Tarski"; | 
| 0 | 42 | |
| 43 | (*** Coinduction rules for greatest fixed points ***) | |
| 44 | ||
| 45 | (*weak version*) | |
| 46 | val prems = goal Gfp.thy | |
| 47 | "[| a: A; A <= f(A) |] ==> a : gfp(f)"; | |
| 48 | by (rtac (gfp_upperbound RS subsetD) 1); | |
| 49 | by (REPEAT (ares_tac prems 1)); | |
| 757 | 50 | qed "coinduct"; | 
| 0 | 51 | |
| 52 | val [prem,mono] = goal Gfp.thy | |
| 53 | "[| A <= f(A) Un gfp(f); mono(f) |] ==> \ | |
| 54 | \ A Un gfp(f) <= f(A Un gfp(f))"; | |
| 55 | by (rtac subset_trans 1); | |
| 56 | by (rtac (mono RS mono_Un) 2); | |
| 57 | by (rtac (mono RS gfp_Tarski RS subst) 1); | |
| 58 | by (rtac (prem RS Un_least) 1); | |
| 59 | by (rtac Un_upper2 1); | |
| 757 | 60 | qed "coinduct2_lemma"; | 
| 0 | 61 | |
| 62 | (*strong version, thanks to Martin Coen*) | |
| 642 
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
 lcp parents: 
0diff
changeset | 63 | val ainA::prems = goal Gfp.thy | 
| 0 | 64 | "[| a: A; A <= f(A) Un gfp(f); mono(f) |] ==> a : gfp(f)"; | 
| 642 
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
 lcp parents: 
0diff
changeset | 65 | by (rtac coinduct 1); | 
| 
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
 lcp parents: 
0diff
changeset | 66 | by (rtac (prems MRS coinduct2_lemma) 2); | 
| 
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
 lcp parents: 
0diff
changeset | 67 | by (resolve_tac [ainA RS UnI1] 1); | 
| 757 | 68 | qed "coinduct2"; | 
| 0 | 69 | |
| 70 | (*** Even Stronger version of coinduct [by Martin Coen] | |
| 71 | - instead of the condition A <= f(A) | |
| 72 | consider A <= (f(A) Un f(f(A)) ...) Un gfp(A) ***) | |
| 73 | ||
| 3837 | 74 | val [prem] = goal Gfp.thy "mono(f) ==> mono(%x. f(x) Un A Un B)"; | 
| 0 | 75 | by (REPEAT (ares_tac [subset_refl, monoI, Un_mono, prem RS monoD] 1)); | 
| 757 | 76 | qed "coinduct3_mono_lemma"; | 
| 0 | 77 | |
| 78 | val [prem,mono] = goal Gfp.thy | |
| 3837 | 79 | "[| A <= f(lfp(%x. f(x) Un A Un gfp(f))); mono(f) |] ==> \ | 
| 80 | \ lfp(%x. f(x) Un A Un gfp(f)) <= f(lfp(%x. f(x) Un A Un gfp(f)))"; | |
| 0 | 81 | by (rtac subset_trans 1); | 
| 642 
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
 lcp parents: 
0diff
changeset | 82 | by (rtac (mono RS coinduct3_mono_lemma RS lfp_lemma3) 1); | 
| 0 | 83 | by (rtac (Un_least RS Un_least) 1); | 
| 642 
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
 lcp parents: 
0diff
changeset | 84 | by (rtac subset_refl 1); | 
| 
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
 lcp parents: 
0diff
changeset | 85 | by (rtac prem 1); | 
| 
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
 lcp parents: 
0diff
changeset | 86 | by (rtac (mono RS gfp_Tarski RS equalityD1 RS subset_trans) 1); | 
| 0 | 87 | by (rtac (mono RS monoD) 1); | 
| 2035 | 88 | by (stac (mono RS coinduct3_mono_lemma RS lfp_Tarski) 1); | 
| 0 | 89 | by (rtac Un_upper2 1); | 
| 757 | 90 | qed "coinduct3_lemma"; | 
| 0 | 91 | |
| 642 
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
 lcp parents: 
0diff
changeset | 92 | val ainA::prems = goal Gfp.thy | 
| 3837 | 93 | "[| a:A; A <= f(lfp(%x. f(x) Un A Un gfp(f))); mono(f) |] ==> a : gfp(f)"; | 
| 642 
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
 lcp parents: 
0diff
changeset | 94 | by (rtac coinduct 1); | 
| 
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
 lcp parents: 
0diff
changeset | 95 | by (rtac (prems MRS coinduct3_lemma) 2); | 
| 
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
 lcp parents: 
0diff
changeset | 96 | by (resolve_tac (prems RL [coinduct3_mono_lemma RS lfp_Tarski RS ssubst]) 1); | 
| 
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
 lcp parents: 
0diff
changeset | 97 | by (rtac (ainA RS UnI2 RS UnI1) 1); | 
| 757 | 98 | qed "coinduct3"; | 
| 0 | 99 | |
| 100 | ||
| 101 | (** Definition forms of gfp_Tarski, to control unfolding **) | |
| 102 | ||
| 103 | val [rew,mono] = goal Gfp.thy "[| h==gfp(f); mono(f) |] ==> h = f(h)"; | |
| 104 | by (rewtac rew); | |
| 105 | by (rtac (mono RS gfp_Tarski) 1); | |
| 757 | 106 | qed "def_gfp_Tarski"; | 
| 0 | 107 | |
| 108 | val rew::prems = goal Gfp.thy | |
| 109 | "[| h==gfp(f); a:A; A <= f(A) |] ==> a: h"; | |
| 110 | by (rewtac rew); | |
| 111 | by (REPEAT (ares_tac (prems @ [coinduct]) 1)); | |
| 757 | 112 | qed "def_coinduct"; | 
| 0 | 113 | |
| 114 | val rew::prems = goal Gfp.thy | |
| 115 | "[| h==gfp(f); a:A; A <= f(A) Un h; mono(f) |] ==> a: h"; | |
| 116 | by (rewtac rew); | |
| 117 | by (REPEAT (ares_tac (map (rewrite_rule [rew]) prems @ [coinduct2]) 1)); | |
| 757 | 118 | qed "def_coinduct2"; | 
| 0 | 119 | |
| 120 | val rew::prems = goal Gfp.thy | |
| 3837 | 121 | "[| h==gfp(f); a:A; A <= f(lfp(%x. f(x) Un A Un h)); mono(f) |] ==> a: h"; | 
| 0 | 122 | by (rewtac rew); | 
| 123 | by (REPEAT (ares_tac (map (rewrite_rule [rew]) prems @ [coinduct3]) 1)); | |
| 757 | 124 | qed "def_coinduct3"; | 
| 0 | 125 | |
| 126 | (*Monotonicity of gfp!*) | |
| 127 | val prems = goal Gfp.thy | |
| 128 | "[| mono(f); !!Z. f(Z)<=g(Z) |] ==> gfp(f) <= gfp(g)"; | |
| 129 | by (rtac gfp_upperbound 1); | |
| 130 | by (rtac subset_trans 1); | |
| 131 | by (rtac gfp_lemma2 1); | |
| 132 | by (resolve_tac prems 1); | |
| 133 | by (resolve_tac prems 1); | |
| 757 | 134 | qed "gfp_mono"; |