| author | berghofe | 
| Mon, 19 Nov 2001 17:40:45 +0100 | |
| changeset 12238 | 09966ccbc84c | 
| parent 11786 | 51ce34ef5113 | 
| permissions | -rw-r--r-- | 
| 9421 | 1 | (* Title: HOL/Finite.ML | 
| 923 | 2 | ID: $Id$ | 
| 1531 | 3 | Author: Lawrence C Paulson & Tobias Nipkow | 
| 4 | Copyright 1995 University of Cambridge & TU Muenchen | |
| 923 | 5 | |
| 9421 | 6 | Finite sets and their cardinality. | 
| 923 | 7 | *) | 
| 8 | ||
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 9 | section "finite"; | 
| 1531 | 10 | |
| 923 | 11 | (*Discharging ~ x:y entails extra work*) | 
| 5316 | 12 | val major::prems = Goal | 
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 13 |     "[| finite F;  P({}); \
 | 
| 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 14 | \ !!F x. [| finite F; x ~: F; P(F) |] ==> P(insert x F) \ | 
| 923 | 15 | \ |] ==> P(F)"; | 
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 16 | by (rtac (major RS Finites.induct) 1); | 
| 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 17 | by (excluded_middle_tac "a:A" 2); | 
| 923 | 18 | by (etac (insert_absorb RS ssubst) 3 THEN assume_tac 3); (*backtracking!*) | 
| 19 | by (REPEAT (ares_tac prems 1)); | |
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 20 | qed "finite_induct"; | 
| 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 21 | |
| 5316 | 22 | val major::subs::prems = Goal | 
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 23 | "[| finite F; F <= A; \ | 
| 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 24 | \       P({}); \
 | 
| 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 25 | \ !!F a. [| finite F; a:A; a ~: F; P(F) |] ==> P(insert a F) \ | 
| 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 26 | \ |] ==> P(F)"; | 
| 4386 | 27 | by (rtac (subs RS rev_mp) 1); | 
| 28 | by (rtac (major RS finite_induct) 1); | |
| 29 | by (ALLGOALS (blast_tac (claset() addIs prems))); | |
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 30 | qed "finite_subset_induct"; | 
| 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 31 | |
| 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 32 | Addsimps Finites.intrs; | 
| 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 33 | AddSIs Finites.intrs; | 
| 923 | 34 | |
| 35 | (*The union of two finite sets is finite*) | |
| 5316 | 36 | Goal "[| finite F; finite G |] ==> finite(F Un G)"; | 
| 37 | by (etac finite_induct 1); | |
| 38 | by (ALLGOALS Asm_simp_tac); | |
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 39 | qed "finite_UnI"; | 
| 923 | 40 | |
| 41 | (*Every subset of a finite set is finite*) | |
| 5143 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 paulson parents: 
5069diff
changeset | 42 | Goal "finite B ==> ALL A. A<=B --> finite A"; | 
| 4304 | 43 | by (etac finite_induct 1); | 
| 9399 | 44 | by (ALLGOALS (simp_tac (simpset() addsimps [subset_insert_iff]))); | 
| 45 | by Safe_tac; | |
| 46 |  by (eres_inst_tac [("t","A")] (insert_Diff RS subst) 1);
 | |
| 47 | by (ALLGOALS Blast_tac); | |
| 4304 | 48 | val lemma = result(); | 
| 49 | ||
| 5143 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 paulson parents: 
5069diff
changeset | 50 | Goal "[| A<=B; finite B |] ==> finite A"; | 
| 4423 | 51 | by (dtac lemma 1); | 
| 4304 | 52 | by (Blast_tac 1); | 
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 53 | qed "finite_subset"; | 
| 923 | 54 | |
| 5069 | 55 | Goal "finite(F Un G) = (finite F & finite G)"; | 
| 4304 | 56 | by (blast_tac (claset() | 
| 8554 
ba33995b87ff
combined finite_Int1/2 as finite_Int.  Deleted the awful "lemma" from the
 paulson parents: 
8442diff
changeset | 57 | addIs [inst "B" "?X Un ?Y" finite_subset, finite_UnI]) 1); | 
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 58 | qed "finite_Un"; | 
| 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 59 | AddIffs[finite_Un]; | 
| 1531 | 60 | |
| 8554 
ba33995b87ff
combined finite_Int1/2 as finite_Int.  Deleted the awful "lemma" from the
 paulson parents: 
8442diff
changeset | 61 | (*The converse obviously fails*) | 
| 
ba33995b87ff
combined finite_Int1/2 as finite_Int.  Deleted the awful "lemma" from the
 paulson parents: 
8442diff
changeset | 62 | Goal "finite F | finite G ==> finite(F Int G)"; | 
| 5413 | 63 | by (blast_tac (claset() addIs [finite_subset]) 1); | 
| 8554 
ba33995b87ff
combined finite_Int1/2 as finite_Int.  Deleted the awful "lemma" from the
 paulson parents: 
8442diff
changeset | 64 | qed "finite_Int"; | 
| 5413 | 65 | |
| 8554 
ba33995b87ff
combined finite_Int1/2 as finite_Int.  Deleted the awful "lemma" from the
 paulson parents: 
8442diff
changeset | 66 | Addsimps [finite_Int]; | 
| 
ba33995b87ff
combined finite_Int1/2 as finite_Int.  Deleted the awful "lemma" from the
 paulson parents: 
8442diff
changeset | 67 | AddIs [finite_Int]; | 
| 5413 | 68 | |
| 5069 | 69 | Goal "finite(insert a A) = finite A"; | 
| 1553 | 70 | by (stac insert_is_Un 1); | 
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 71 | by (simp_tac (HOL_ss addsimps [finite_Un]) 1); | 
| 3427 
e7cef2081106
Removed a few redundant additions of simprules or classical rules
 paulson parents: 
3416diff
changeset | 72 | by (Blast_tac 1); | 
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 73 | qed "finite_insert"; | 
| 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 74 | Addsimps[finite_insert]; | 
| 1531 | 75 | |
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 76 | (*The image of a finite set is finite *) | 
| 10832 | 77 | Goal "finite F ==> finite(h`F)"; | 
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 78 | by (etac finite_induct 1); | 
| 1264 | 79 | by (Simp_tac 1); | 
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 80 | by (Asm_simp_tac 1); | 
| 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 81 | qed "finite_imageI"; | 
| 923 | 82 | |
| 8155 | 83 | Goal "finite (range g) ==> finite (range (%x. f (g x)))"; | 
| 84 | by (Simp_tac 1); | |
| 85 | by (etac finite_imageI 1); | |
| 86 | qed "finite_range_imageI"; | |
| 87 | ||
| 5316 | 88 | val major::prems = Goal | 
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 89 | "[| finite c; finite b; \ | 
| 1465 | 90 | \ P(b); \ | 
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 91 | \       !!x y. [| finite y;  x:y;  P(y) |] ==> P(y-{x}) \
 | 
| 923 | 92 | \ |] ==> c<=b --> P(b-c)"; | 
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 93 | by (rtac (major RS finite_induct) 1); | 
| 2031 | 94 | by (stac Diff_insert 2); | 
| 923 | 95 | by (ALLGOALS (asm_simp_tac | 
| 5537 | 96 | (simpset() addsimps prems@[Diff_subset RS finite_subset]))); | 
| 1531 | 97 | val lemma = result(); | 
| 923 | 98 | |
| 5316 | 99 | val prems = Goal | 
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 100 | "[| finite A; \ | 
| 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 101 | \ P(A); \ | 
| 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 102 | \       !!a A. [| finite A;  a:A;  P(A) |] ==> P(A-{a}) \
 | 
| 923 | 103 | \    |] ==> P({})";
 | 
| 104 | by (rtac (Diff_cancel RS subst) 1); | |
| 1531 | 105 | by (rtac (lemma RS mp) 1); | 
| 923 | 106 | by (REPEAT (ares_tac (subset_refl::prems) 1)); | 
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 107 | qed "finite_empty_induct"; | 
| 1531 | 108 | |
| 109 | ||
| 1618 | 110 | (* finite B ==> finite (B - Ba) *) | 
| 111 | bind_thm ("finite_Diff", Diff_subset RS finite_subset);
 | |
| 1531 | 112 | Addsimps [finite_Diff]; | 
| 113 | ||
| 5626 | 114 | Goal "finite(A - insert a B) = finite(A-B)"; | 
| 6162 | 115 | by (stac Diff_insert 1); | 
| 5626 | 116 | by (case_tac "a : A-B" 1); | 
| 3457 | 117 | by (rtac (finite_insert RS sym RS trans) 1); | 
| 3368 | 118 | by (stac insert_Diff 1); | 
| 5626 | 119 | by (ALLGOALS Asm_full_simp_tac); | 
| 120 | qed "finite_Diff_insert"; | |
| 121 | AddIffs [finite_Diff_insert]; | |
| 122 | ||
| 8554 
ba33995b87ff
combined finite_Int1/2 as finite_Int.  Deleted the awful "lemma" from the
 paulson parents: 
8442diff
changeset | 123 | (*lemma merely for classical reasoner in the proof below: force_tac can't | 
| 
ba33995b87ff
combined finite_Int1/2 as finite_Int.  Deleted the awful "lemma" from the
 paulson parents: 
8442diff
changeset | 124 | prove it.*) | 
| 5626 | 125 | Goal "finite(A-{}) = finite A";
 | 
| 126 | by (Simp_tac 1); | |
| 127 | val lemma = result(); | |
| 3368 | 128 | |
| 4059 | 129 | (*Lemma for proving finite_imageD*) | 
| 10832 | 130 | Goal "finite B ==> ALL A. f`A = B --> inj_on f A --> finite A"; | 
| 1553 | 131 | by (etac finite_induct 1); | 
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 132 | by (ALLGOALS Asm_simp_tac); | 
| 3708 | 133 | by (Clarify_tac 1); | 
| 10832 | 134 | by (subgoal_tac "EX y:A. f y = x & F = f`(A-{y})" 1);
 | 
| 3708 | 135 | by (Clarify_tac 1); | 
| 8081 | 136 | by (full_simp_tac (simpset() addsimps [inj_on_def]) 1); | 
| 8554 
ba33995b87ff
combined finite_Int1/2 as finite_Int.  Deleted the awful "lemma" from the
 paulson parents: 
8442diff
changeset | 137 | by (blast_tac (claset() addSDs [lemma RS iffD1]) 1); | 
| 3368 | 138 | by (thin_tac "ALL A. ?PP(A)" 1); | 
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 139 | by (forward_tac [[equalityD2, insertI1] MRS subsetD] 1); | 
| 3708 | 140 | by (Clarify_tac 1); | 
| 3368 | 141 | by (res_inst_tac [("x","xa")] bexI 1);
 | 
| 4059 | 142 | by (ALLGOALS | 
| 4830 | 143 | (asm_full_simp_tac (simpset() addsimps [inj_on_image_set_diff]))); | 
| 3368 | 144 | val lemma = result(); | 
| 145 | ||
| 10832 | 146 | Goal "[| finite(f`A); inj_on f A |] ==> finite A"; | 
| 3457 | 147 | by (dtac lemma 1); | 
| 3368 | 148 | by (Blast_tac 1); | 
| 149 | qed "finite_imageD"; | |
| 150 | ||
| 4014 | 151 | (** The finite UNION of finite sets **) | 
| 152 | ||
| 9096 
5c4d4364f854
tidied; weakened the (impossible) premises of setsum_UN_disjoint
 paulson parents: 
9086diff
changeset | 153 | Goal "finite A ==> (ALL a:A. finite(B a)) --> finite(UN a:A. B a)"; | 
| 5316 | 154 | by (etac finite_induct 1); | 
| 4153 | 155 | by (ALLGOALS Asm_simp_tac); | 
| 9096 
5c4d4364f854
tidied; weakened the (impossible) premises of setsum_UN_disjoint
 paulson parents: 
9086diff
changeset | 156 | bind_thm("finite_UN_I", ballI RSN (2, result() RS mp));
 | 
| 
5c4d4364f854
tidied; weakened the (impossible) premises of setsum_UN_disjoint
 paulson parents: 
9086diff
changeset | 157 | |
| 
5c4d4364f854
tidied; weakened the (impossible) premises of setsum_UN_disjoint
 paulson parents: 
9086diff
changeset | 158 | (*strengthen RHS to | 
| 
5c4d4364f854
tidied; weakened the (impossible) premises of setsum_UN_disjoint
 paulson parents: 
9086diff
changeset | 159 |     ((ALL x:A. finite (B x)) & finite {x. x:A & B x ~= {}})  ?  
 | 
| 
5c4d4364f854
tidied; weakened the (impossible) premises of setsum_UN_disjoint
 paulson parents: 
9086diff
changeset | 160 | we'd need to prove | 
| 
5c4d4364f854
tidied; weakened the (impossible) premises of setsum_UN_disjoint
 paulson parents: 
9086diff
changeset | 161 |     finite C ==> ALL A B. (UNION A B) <= C --> finite {x. x:A & B x ~= {}}
 | 
| 
5c4d4364f854
tidied; weakened the (impossible) premises of setsum_UN_disjoint
 paulson parents: 
9086diff
changeset | 162 | by induction*) | 
| 
5c4d4364f854
tidied; weakened the (impossible) premises of setsum_UN_disjoint
 paulson parents: 
9086diff
changeset | 163 | Goal "finite A ==> finite (UNION A B) = (ALL x:A. finite (B x))"; | 
| 
5c4d4364f854
tidied; weakened the (impossible) premises of setsum_UN_disjoint
 paulson parents: 
9086diff
changeset | 164 | by (blast_tac (claset() addIs [finite_UN_I, finite_subset]) 1); | 
| 
5c4d4364f854
tidied; weakened the (impossible) premises of setsum_UN_disjoint
 paulson parents: 
9086diff
changeset | 165 | qed "finite_UN"; | 
| 
5c4d4364f854
tidied; weakened the (impossible) premises of setsum_UN_disjoint
 paulson parents: 
9086diff
changeset | 166 | Addsimps [finite_UN]; | 
| 4014 | 167 | |
| 168 | (** Sigma of finite sets **) | |
| 169 | ||
| 5069 | 170 | Goalw [Sigma_def] | 
| 9096 
5c4d4364f854
tidied; weakened the (impossible) premises of setsum_UN_disjoint
 paulson parents: 
9086diff
changeset | 171 | "[| finite A; ALL a:A. finite(B a) |] ==> finite(SIGMA a:A. B a)"; | 
| 
5c4d4364f854
tidied; weakened the (impossible) premises of setsum_UN_disjoint
 paulson parents: 
9086diff
changeset | 172 | by (blast_tac (claset() addSIs [finite_UN_I]) 1); | 
| 4014 | 173 | bind_thm("finite_SigmaI", ballI RSN (2,result()));
 | 
| 174 | Addsimps [finite_SigmaI]; | |
| 3368 | 175 | |
| 8262 | 176 | Goal "[| finite (UNIV::'a set); finite (UNIV::'b set)|] ==> finite (UNIV::('a * 'b) set)"; 
 | 
| 177 | by (subgoal_tac "(UNIV::('a * 'b) set) = Sigma UNIV (%x. UNIV)" 1);
 | |
| 178 | by (etac ssubst 1); | |
| 179 | by (etac finite_SigmaI 1); | |
| 180 | by Auto_tac; | |
| 181 | qed "finite_Prod_UNIV"; | |
| 182 | ||
| 183 | Goal "finite (UNIV :: ('a::finite * 'b::finite) set)";
 | |
| 8320 | 184 | by (rtac (finite_Prod_UNIV) 1); | 
| 185 | by (rtac finite 1); | |
| 186 | by (rtac finite 1); | |
| 8262 | 187 | qed "finite_Prod"; | 
| 188 | ||
| 9351 | 189 | Goal "finite (UNIV :: unit set)"; | 
| 190 | by (subgoal_tac "UNIV = {()}" 1);
 | |
| 191 | by (etac ssubst 1); | |
| 192 | by Auto_tac; | |
| 193 | qed "finite_unit"; | |
| 194 | ||
| 3368 | 195 | (** The powerset of a finite set **) | 
| 196 | ||
| 5143 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 paulson parents: 
5069diff
changeset | 197 | Goal "finite(Pow A) ==> finite A"; | 
| 10832 | 198 | by (subgoal_tac "finite ((%x.{x})`A)" 1);
 | 
| 3457 | 199 | by (rtac finite_subset 2); | 
| 200 | by (assume_tac 3); | |
| 3368 | 201 | by (ALLGOALS | 
| 4830 | 202 | (fast_tac (claset() addSDs [rewrite_rule [inj_on_def] finite_imageD]))); | 
| 3368 | 203 | val lemma = result(); | 
| 204 | ||
| 5069 | 205 | Goal "finite(Pow A) = finite A"; | 
| 3457 | 206 | by (rtac iffI 1); | 
| 207 | by (etac lemma 1); | |
| 3368 | 208 | (*Opposite inclusion: finite A ==> finite (Pow A) *) | 
| 3340 | 209 | by (etac finite_induct 1); | 
| 210 | by (ALLGOALS | |
| 211 | (asm_simp_tac | |
| 4089 | 212 | (simpset() addsimps [finite_UnI, finite_imageI, Pow_insert]))); | 
| 3368 | 213 | qed "finite_Pow_iff"; | 
| 214 | AddIffs [finite_Pow_iff]; | |
| 3340 | 215 | |
| 5069 | 216 | Goal "finite(r^-1) = finite r"; | 
| 10832 | 217 | by (subgoal_tac "r^-1 = (%(x,y).(y,x))`r" 1); | 
| 3457 | 218 | by (Asm_simp_tac 1); | 
| 219 | by (rtac iffI 1); | |
| 4830 | 220 | by (etac (rewrite_rule [inj_on_def] finite_imageD) 1); | 
| 221 | by (simp_tac (simpset() addsplits [split_split]) 1); | |
| 3457 | 222 | by (etac finite_imageI 1); | 
| 4746 | 223 | by (simp_tac (simpset() addsimps [converse_def,image_def]) 1); | 
| 4477 
b3e5857d8d99
New Auto_tac (by Oheimb), and new syntax (without parens), and expandshort
 paulson parents: 
4423diff
changeset | 224 | by Auto_tac; | 
| 5516 | 225 | by (rtac bexI 1); | 
| 226 | by (assume_tac 2); | |
| 4763 | 227 | by (Simp_tac 1); | 
| 4746 | 228 | qed "finite_converse"; | 
| 229 | AddIffs [finite_converse]; | |
| 1531 | 230 | |
| 8963 
0d4abacae6aa
setsum is now overloaded on plus_ac0;  lemmas about lessThan, etc.
 paulson parents: 
8911diff
changeset | 231 | Goal "finite (lessThan (k::nat))"; | 
| 
0d4abacae6aa
setsum is now overloaded on plus_ac0;  lemmas about lessThan, etc.
 paulson parents: 
8911diff
changeset | 232 | by (induct_tac "k" 1); | 
| 
0d4abacae6aa
setsum is now overloaded on plus_ac0;  lemmas about lessThan, etc.
 paulson parents: 
8911diff
changeset | 233 | by (simp_tac (simpset() addsimps [lessThan_Suc]) 2); | 
| 
0d4abacae6aa
setsum is now overloaded on plus_ac0;  lemmas about lessThan, etc.
 paulson parents: 
8911diff
changeset | 234 | by Auto_tac; | 
| 
0d4abacae6aa
setsum is now overloaded on plus_ac0;  lemmas about lessThan, etc.
 paulson parents: 
8911diff
changeset | 235 | qed "finite_lessThan"; | 
| 
0d4abacae6aa
setsum is now overloaded on plus_ac0;  lemmas about lessThan, etc.
 paulson parents: 
8911diff
changeset | 236 | |
| 
0d4abacae6aa
setsum is now overloaded on plus_ac0;  lemmas about lessThan, etc.
 paulson parents: 
8911diff
changeset | 237 | Goal "finite (atMost (k::nat))"; | 
| 
0d4abacae6aa
setsum is now overloaded on plus_ac0;  lemmas about lessThan, etc.
 paulson parents: 
8911diff
changeset | 238 | by (induct_tac "k" 1); | 
| 
0d4abacae6aa
setsum is now overloaded on plus_ac0;  lemmas about lessThan, etc.
 paulson parents: 
8911diff
changeset | 239 | by (simp_tac (simpset() addsimps [atMost_Suc]) 2); | 
| 
0d4abacae6aa
setsum is now overloaded on plus_ac0;  lemmas about lessThan, etc.
 paulson parents: 
8911diff
changeset | 240 | by Auto_tac; | 
| 
0d4abacae6aa
setsum is now overloaded on plus_ac0;  lemmas about lessThan, etc.
 paulson parents: 
8911diff
changeset | 241 | qed "finite_atMost"; | 
| 8971 | 242 | AddIffs [finite_lessThan, finite_atMost]; | 
| 8963 
0d4abacae6aa
setsum is now overloaded on plus_ac0;  lemmas about lessThan, etc.
 paulson parents: 
8911diff
changeset | 243 | |
| 8889 | 244 | (* A bounded set of natural numbers is finite *) | 
| 9096 
5c4d4364f854
tidied; weakened the (impossible) premises of setsum_UN_disjoint
 paulson parents: 
9086diff
changeset | 245 | Goal "(ALL i:N. i<(n::nat)) ==> finite N"; | 
| 8963 
0d4abacae6aa
setsum is now overloaded on plus_ac0;  lemmas about lessThan, etc.
 paulson parents: 
8911diff
changeset | 246 | by (rtac finite_subset 1); | 
| 
0d4abacae6aa
setsum is now overloaded on plus_ac0;  lemmas about lessThan, etc.
 paulson parents: 
8911diff
changeset | 247 | by (rtac finite_lessThan 2); | 
| 
0d4abacae6aa
setsum is now overloaded on plus_ac0;  lemmas about lessThan, etc.
 paulson parents: 
8911diff
changeset | 248 | by Auto_tac; | 
| 
0d4abacae6aa
setsum is now overloaded on plus_ac0;  lemmas about lessThan, etc.
 paulson parents: 
8911diff
changeset | 249 | qed "bounded_nat_set_is_finite"; | 
| 8889 | 250 | |
| 10785 | 251 | (** Finiteness of transitive closure (thanks to Sidi Ehmety) **) | 
| 252 | ||
| 253 | (*A finite relation has a finite field ( = domain U range) *) | |
| 254 | Goal "finite r ==> finite (Field r)"; | |
| 255 | by (etac finite_induct 1); | |
| 256 | by (auto_tac (claset(), | |
| 257 | simpset() addsimps [Field_def, Domain_insert, Range_insert])); | |
| 258 | qed "finite_Field"; | |
| 259 | ||
| 260 | Goal "r^+ <= Field r <*> Field r"; | |
| 261 | by (Clarify_tac 1); | |
| 262 | by (etac trancl_induct 1); | |
| 263 | by (auto_tac (claset(), simpset() addsimps [Field_def])); | |
| 264 | qed "trancl_subset_Field2"; | |
| 265 | ||
| 266 | Goal "finite (r^+) = finite r"; | |
| 267 | by Auto_tac; | |
| 268 | by (rtac (trancl_subset_Field2 RS finite_subset) 2); | |
| 269 | by (rtac finite_SigmaI 2); | |
| 270 | by (blast_tac (claset() addIs [r_into_trancl, finite_subset]) 1); | |
| 271 | by (auto_tac (claset(), simpset() addsimps [finite_Field])); | |
| 272 | qed "finite_trancl"; | |
| 273 | ||
| 8889 | 274 | |
| 1548 | 275 | section "Finite cardinality -- 'card'"; | 
| 1531 | 276 | |
| 9108 | 277 | bind_thm ("cardR_emptyE", cardR.mk_cases "({},n) : cardR");
 | 
| 278 | bind_thm ("cardR_insertE", cardR.mk_cases "(insert a A,n) : cardR");
 | |
| 1531 | 279 | |
| 5626 | 280 | AddSEs [cardR_emptyE]; | 
| 281 | AddSIs cardR.intrs; | |
| 282 | ||
| 9096 
5c4d4364f854
tidied; weakened the (impossible) premises of setsum_UN_disjoint
 paulson parents: 
9086diff
changeset | 283 | Goal "[| (A,n) : cardR |] ==> a : A --> (EX m. n = Suc m)"; | 
| 6162 | 284 | by (etac cardR.induct 1); | 
| 285 | by (Blast_tac 1); | |
| 286 | by (Blast_tac 1); | |
| 5626 | 287 | qed "cardR_SucD"; | 
| 288 | ||
| 9096 
5c4d4364f854
tidied; weakened the (impossible) premises of setsum_UN_disjoint
 paulson parents: 
9086diff
changeset | 289 | Goal "(A,m): cardR ==> (ALL n a. m = Suc n --> a:A --> (A-{a},n) : cardR)";
 | 
| 6162 | 290 | by (etac cardR.induct 1); | 
| 8911 
c35b74bad518
fold_commute, fold_nest_Un_Int, setsum_Un and other new results
 paulson parents: 
8889diff
changeset | 291 | by Auto_tac; | 
| 6162 | 292 | by (asm_simp_tac (simpset() addsimps [insert_Diff_if]) 1); | 
| 8911 
c35b74bad518
fold_commute, fold_nest_Un_Int, setsum_Un and other new results
 paulson parents: 
8889diff
changeset | 293 | by Auto_tac; | 
| 7499 | 294 | by (ftac cardR_SucD 1); | 
| 6162 | 295 | by (Blast_tac 1); | 
| 5626 | 296 | val lemma = result(); | 
| 297 | ||
| 298 | Goal "[| (insert a A, Suc m) : cardR; a ~: A |] ==> (A,m) : cardR"; | |
| 6162 | 299 | by (dtac lemma 1); | 
| 300 | by (Asm_full_simp_tac 1); | |
| 5626 | 301 | val lemma = result(); | 
| 302 | ||
| 9096 
5c4d4364f854
tidied; weakened the (impossible) premises of setsum_UN_disjoint
 paulson parents: 
9086diff
changeset | 303 | Goal "(A,m): cardR ==> (ALL n. (A,n) : cardR --> n=m)"; | 
| 6162 | 304 | by (etac cardR.induct 1); | 
| 305 | by (safe_tac (claset() addSEs [cardR_insertE])); | |
| 11122 | 306 | by (rename_tac "B b m" 1 THEN case_tac "a = b" 1); | 
| 6162 | 307 | by (subgoal_tac "A = B" 1); | 
| 308 | by (blast_tac (claset() addEs [equalityE]) 2); | |
| 309 | by (Blast_tac 1); | |
| 9096 
5c4d4364f854
tidied; weakened the (impossible) premises of setsum_UN_disjoint
 paulson parents: 
9086diff
changeset | 310 | by (subgoal_tac "EX C. A = insert b C & B = insert a C" 1); | 
| 6162 | 311 |  by (res_inst_tac [("x","A Int B")] exI 2);
 | 
| 312 | by (blast_tac (claset() addEs [equalityE]) 2); | |
| 313 | by (forw_inst_tac [("A","B")] cardR_SucD 1);
 | |
| 314 | by (blast_tac (claset() addDs [lemma]) 1); | |
| 5626 | 315 | qed_spec_mp "cardR_determ"; | 
| 316 | ||
| 317 | Goal "(A,n) : cardR ==> finite(A)"; | |
| 318 | by (etac cardR.induct 1); | |
| 319 | by Auto_tac; | |
| 320 | qed "cardR_imp_finite"; | |
| 321 | ||
| 322 | Goal "finite(A) ==> EX n. (A, n) : cardR"; | |
| 323 | by (etac finite_induct 1); | |
| 324 | by Auto_tac; | |
| 325 | qed "finite_imp_cardR"; | |
| 326 | ||
| 327 | Goalw [card_def] "(A,n) : cardR ==> card A = n"; | |
| 328 | by (blast_tac (claset() addIs [cardR_determ]) 1); | |
| 329 | qed "card_equality"; | |
| 330 | ||
| 331 | Goalw [card_def] "card {} = 0";
 | |
| 332 | by (Blast_tac 1); | |
| 333 | qed "card_empty"; | |
| 334 | Addsimps [card_empty]; | |
| 335 | ||
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: 
11122diff
changeset | 336 | Goal "x ~: A \ | 
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: 
11122diff
changeset | 337 | \ ==> ((insert x A, n) : cardR) = (EX m. (A, m) : cardR & n = Suc m)"; | 
| 5626 | 338 | by Auto_tac; | 
| 339 | by (res_inst_tac [("A1", "A")] (finite_imp_cardR RS exE) 1);
 | |
| 340 | by (force_tac (claset() addDs [cardR_imp_finite], simpset()) 1); | |
| 341 | by (blast_tac (claset() addIs [cardR_determ]) 1); | |
| 342 | val lemma = result(); | |
| 343 | ||
| 344 | Goalw [card_def] | |
| 345 | "[| finite A; x ~: A |] ==> card (insert x A) = Suc(card A)"; | |
| 346 | by (asm_simp_tac (simpset() addsimps [lemma]) 1); | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: 
11122diff
changeset | 347 | by (rtac the_equality 1); | 
| 5626 | 348 | by (auto_tac (claset() addIs [finite_imp_cardR], | 
| 349 | simpset() addcongs [conj_cong] | |
| 350 | addsimps [symmetric card_def, | |
| 351 | card_equality])); | |
| 352 | qed "card_insert_disjoint"; | |
| 353 | Addsimps [card_insert_disjoint]; | |
| 354 | ||
| 355 | (* Delete rules to do with cardR relation: obsolete *) | |
| 356 | Delrules [cardR_emptyE]; | |
| 357 | Delrules cardR.intrs; | |
| 358 | ||
| 7958 | 359 | Goal "finite A ==> (card A = 0) = (A = {})";
 | 
| 360 | by Auto_tac; | |
| 361 | by (dres_inst_tac [("a","x")] mk_disjoint_insert 1);
 | |
| 362 | by (Clarify_tac 1); | |
| 363 | by (rotate_tac ~1 1); | |
| 364 | by Auto_tac; | |
| 365 | qed "card_0_eq"; | |
| 366 | Addsimps[card_0_eq]; | |
| 367 | ||
| 5626 | 368 | Goal "finite A ==> card(insert x A) = (if x:A then card A else Suc(card(A)))"; | 
| 369 | by (asm_simp_tac (simpset() addsimps [insert_absorb]) 1); | |
| 370 | qed "card_insert_if"; | |
| 371 | ||
| 7821 | 372 | Goal "[| finite A; x: A |] ==> Suc (card (A-{x})) = card A";
 | 
| 5626 | 373 | by (res_inst_tac [("t", "A")] (insert_Diff RS subst) 1);
 | 
| 374 | by (assume_tac 1); | |
| 375 | by (Asm_simp_tac 1); | |
| 376 | qed "card_Suc_Diff1"; | |
| 377 | ||
| 7821 | 378 | Goal "[| finite A; x: A |] ==> card (A-{x}) = card A - 1";
 | 
| 379 | by (asm_simp_tac (simpset() addsimps [card_Suc_Diff1 RS sym]) 1); | |
| 380 | qed "card_Diff_singleton"; | |
| 381 | ||
| 9074 
2313ddc415a1
inserted some "addsimps [subset_empty]"; also tidied (a lot)
 paulson parents: 
9002diff
changeset | 382 | Goal "finite A ==> card (A-{x}) = (if x:A then card A - 1 else card A)";
 | 
| 
2313ddc415a1
inserted some "addsimps [subset_empty]"; also tidied (a lot)
 paulson parents: 
9002diff
changeset | 383 | by (asm_simp_tac (simpset() addsimps [card_Diff_singleton]) 1); | 
| 
2313ddc415a1
inserted some "addsimps [subset_empty]"; also tidied (a lot)
 paulson parents: 
9002diff
changeset | 384 | qed "card_Diff_singleton_if"; | 
| 
2313ddc415a1
inserted some "addsimps [subset_empty]"; also tidied (a lot)
 paulson parents: 
9002diff
changeset | 385 | |
| 5626 | 386 | Goal "finite A ==> card(insert x A) = Suc(card(A-{x}))";
 | 
| 387 | by (asm_simp_tac (simpset() addsimps [card_insert_if,card_Suc_Diff1]) 1); | |
| 388 | qed "card_insert"; | |
| 3352 | 389 | |
| 5143 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 paulson parents: 
5069diff
changeset | 390 | Goal "finite A ==> card A <= card (insert x A)"; | 
| 5626 | 391 | by (asm_simp_tac (simpset() addsimps [card_insert_if]) 1); | 
| 4768 
c342d63173e9
New theorems card_Diff_le and card_insert_le; tidied
 paulson parents: 
4763diff
changeset | 392 | qed "card_insert_le"; | 
| 
c342d63173e9
New theorems card_Diff_le and card_insert_le; tidied
 paulson parents: 
4763diff
changeset | 393 | |
| 9074 
2313ddc415a1
inserted some "addsimps [subset_empty]"; also tidied (a lot)
 paulson parents: 
9002diff
changeset | 394 | Goal "finite B ==> ALL A. A <= B --> card B <= card A --> A = B"; | 
| 3352 | 395 | by (etac finite_induct 1); | 
| 9338 | 396 | by (Simp_tac 1); | 
| 3708 | 397 | by (Clarify_tac 1); | 
| 9074 
2313ddc415a1
inserted some "addsimps [subset_empty]"; also tidied (a lot)
 paulson parents: 
9002diff
changeset | 398 | by (subgoal_tac "finite A & A-{x} <= F" 1);
 | 
| 
2313ddc415a1
inserted some "addsimps [subset_empty]"; also tidied (a lot)
 paulson parents: 
9002diff
changeset | 399 | by (blast_tac (claset() addIs [finite_subset]) 2); | 
| 
2313ddc415a1
inserted some "addsimps [subset_empty]"; also tidied (a lot)
 paulson parents: 
9002diff
changeset | 400 | by (dres_inst_tac [("x","A-{x}")] spec 1); 
 | 
| 
2313ddc415a1
inserted some "addsimps [subset_empty]"; also tidied (a lot)
 paulson parents: 
9002diff
changeset | 401 | by (asm_full_simp_tac (simpset() addsimps [card_Diff_singleton_if] | 
| 
2313ddc415a1
inserted some "addsimps [subset_empty]"; also tidied (a lot)
 paulson parents: 
9002diff
changeset | 402 | addsplits [split_if_asm]) 1); | 
| 
2313ddc415a1
inserted some "addsimps [subset_empty]"; also tidied (a lot)
 paulson parents: 
9002diff
changeset | 403 | by (case_tac "card A" 1); | 
| 
2313ddc415a1
inserted some "addsimps [subset_empty]"; also tidied (a lot)
 paulson parents: 
9002diff
changeset | 404 | by Auto_tac; | 
| 
2313ddc415a1
inserted some "addsimps [subset_empty]"; also tidied (a lot)
 paulson parents: 
9002diff
changeset | 405 | qed_spec_mp "card_seteq"; | 
| 3352 | 406 | |
| 9074 
2313ddc415a1
inserted some "addsimps [subset_empty]"; also tidied (a lot)
 paulson parents: 
9002diff
changeset | 407 | Goalw [psubset_def] "[| finite B; A < B |] ==> card A < card B"; | 
| 
2313ddc415a1
inserted some "addsimps [subset_empty]"; also tidied (a lot)
 paulson parents: 
9002diff
changeset | 408 | by (simp_tac (simpset() addsimps [linorder_not_le RS sym]) 1); | 
| 
2313ddc415a1
inserted some "addsimps [subset_empty]"; also tidied (a lot)
 paulson parents: 
9002diff
changeset | 409 | by (blast_tac (claset() addDs [card_seteq]) 1); | 
| 
2313ddc415a1
inserted some "addsimps [subset_empty]"; also tidied (a lot)
 paulson parents: 
9002diff
changeset | 410 | qed "psubset_card_mono" ; | 
| 
2313ddc415a1
inserted some "addsimps [subset_empty]"; also tidied (a lot)
 paulson parents: 
9002diff
changeset | 411 | |
| 
2313ddc415a1
inserted some "addsimps [subset_empty]"; also tidied (a lot)
 paulson parents: 
9002diff
changeset | 412 | Goal "[| finite B; A <= B |] ==> card A <= card B"; | 
| 
2313ddc415a1
inserted some "addsimps [subset_empty]"; also tidied (a lot)
 paulson parents: 
9002diff
changeset | 413 | by (case_tac "A=B" 1); | 
| 
2313ddc415a1
inserted some "addsimps [subset_empty]"; also tidied (a lot)
 paulson parents: 
9002diff
changeset | 414 | by (Asm_simp_tac 1); | 
| 
2313ddc415a1
inserted some "addsimps [subset_empty]"; also tidied (a lot)
 paulson parents: 
9002diff
changeset | 415 | by (simp_tac (simpset() addsimps [linorder_not_less RS sym]) 1); | 
| 
2313ddc415a1
inserted some "addsimps [subset_empty]"; also tidied (a lot)
 paulson parents: 
9002diff
changeset | 416 | by (blast_tac (claset() addDs [card_seteq] addIs [order_less_imp_le]) 1); | 
| 
2313ddc415a1
inserted some "addsimps [subset_empty]"; also tidied (a lot)
 paulson parents: 
9002diff
changeset | 417 | qed "card_mono" ; | 
| 5416 
9f029e382b5d
New law card_Un_Int.  Removed card_insert from simpset
 paulson parents: 
5413diff
changeset | 418 | |
| 
9f029e382b5d
New law card_Un_Int.  Removed card_insert from simpset
 paulson parents: 
5413diff
changeset | 419 | Goal "[| finite A; finite B |] \ | 
| 
9f029e382b5d
New law card_Un_Int.  Removed card_insert from simpset
 paulson parents: 
5413diff
changeset | 420 | \ ==> card A + card B = card (A Un B) + card (A Int B)"; | 
| 3352 | 421 | by (etac finite_induct 1); | 
| 5416 
9f029e382b5d
New law card_Un_Int.  Removed card_insert from simpset
 paulson parents: 
5413diff
changeset | 422 | by (Simp_tac 1); | 
| 
9f029e382b5d
New law card_Un_Int.  Removed card_insert from simpset
 paulson parents: 
5413diff
changeset | 423 | by (asm_simp_tac (simpset() addsimps [insert_absorb, Int_insert_left]) 1); | 
| 
9f029e382b5d
New law card_Un_Int.  Removed card_insert from simpset
 paulson parents: 
5413diff
changeset | 424 | qed "card_Un_Int"; | 
| 
9f029e382b5d
New law card_Un_Int.  Removed card_insert from simpset
 paulson parents: 
5413diff
changeset | 425 | |
| 
9f029e382b5d
New law card_Un_Int.  Removed card_insert from simpset
 paulson parents: 
5413diff
changeset | 426 | Goal "[| finite A; finite B; A Int B = {} |] \
 | 
| 
9f029e382b5d
New law card_Un_Int.  Removed card_insert from simpset
 paulson parents: 
5413diff
changeset | 427 | \ ==> card (A Un B) = card A + card B"; | 
| 
9f029e382b5d
New law card_Un_Int.  Removed card_insert from simpset
 paulson parents: 
5413diff
changeset | 428 | by (asm_simp_tac (simpset() addsimps [card_Un_Int]) 1); | 
| 
9f029e382b5d
New law card_Un_Int.  Removed card_insert from simpset
 paulson parents: 
5413diff
changeset | 429 | qed "card_Un_disjoint"; | 
| 3352 | 430 | |
| 5143 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 paulson parents: 
5069diff
changeset | 431 | Goal "[| finite A; B<=A |] ==> card A - card B = card (A - B)"; | 
| 3352 | 432 | by (subgoal_tac "(A-B) Un B = A" 1); | 
| 433 | by (Blast_tac 2); | |
| 3457 | 434 | by (rtac (add_right_cancel RS iffD1) 1); | 
| 435 | by (rtac (card_Un_disjoint RS subst) 1); | |
| 436 | by (etac ssubst 4); | |
| 3352 | 437 | by (Blast_tac 3); | 
| 438 | by (ALLGOALS | |
| 439 | (asm_simp_tac | |
| 4089 | 440 | (simpset() addsimps [add_commute, not_less_iff_le, | 
| 5416 
9f029e382b5d
New law card_Un_Int.  Removed card_insert from simpset
 paulson parents: 
5413diff
changeset | 441 | add_diff_inverse, card_mono, finite_subset]))); | 
| 3352 | 442 | qed "card_Diff_subset"; | 
| 1531 | 443 | |
| 5143 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 paulson parents: 
5069diff
changeset | 444 | Goal "[| finite A; x: A |] ==> card(A-{x}) < card A";
 | 
| 2031 | 445 | by (rtac Suc_less_SucD 1); | 
| 5626 | 446 | by (asm_simp_tac (simpset() addsimps [card_Suc_Diff1]) 1); | 
| 447 | qed "card_Diff1_less"; | |
| 1618 | 448 | |
| 10375 
d943898cc3a9
new lemma card_Diff2_less for mulilated chess board
 paulson parents: 
10098diff
changeset | 449 | Goal "[| finite A; x: A; y: A |] ==> card(A-{x}-{y}) < card A"; 
 | 
| 
d943898cc3a9
new lemma card_Diff2_less for mulilated chess board
 paulson parents: 
10098diff
changeset | 450 | by (case_tac "x=y" 1); | 
| 
d943898cc3a9
new lemma card_Diff2_less for mulilated chess board
 paulson parents: 
10098diff
changeset | 451 | by (asm_simp_tac (simpset() addsimps [card_Diff1_less]) 1); | 
| 
d943898cc3a9
new lemma card_Diff2_less for mulilated chess board
 paulson parents: 
10098diff
changeset | 452 | by (rtac less_trans 1); | 
| 
d943898cc3a9
new lemma card_Diff2_less for mulilated chess board
 paulson parents: 
10098diff
changeset | 453 | by (ALLGOALS (force_tac (claset() addSIs [card_Diff1_less], simpset()))); | 
| 
d943898cc3a9
new lemma card_Diff2_less for mulilated chess board
 paulson parents: 
10098diff
changeset | 454 | qed "card_Diff2_less"; | 
| 
d943898cc3a9
new lemma card_Diff2_less for mulilated chess board
 paulson parents: 
10098diff
changeset | 455 | |
| 5143 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 paulson parents: 
5069diff
changeset | 456 | Goal "finite A ==> card(A-{x}) <= card A";
 | 
| 4768 
c342d63173e9
New theorems card_Diff_le and card_insert_le; tidied
 paulson parents: 
4763diff
changeset | 457 | by (case_tac "x: A" 1); | 
| 5626 | 458 | by (ALLGOALS (asm_simp_tac (simpset() addsimps [card_Diff1_less, less_imp_le]))); | 
| 459 | qed "card_Diff1_le"; | |
| 1531 | 460 | |
| 5626 | 461 | Goal "[| finite B; A <= B; card A < card B |] ==> A < B"; | 
| 462 | by (etac psubsetI 1); | |
| 463 | by (Blast_tac 1); | |
| 464 | qed "card_psubset"; | |
| 465 | ||
| 466 | (*** Cardinality of image ***) | |
| 467 | ||
| 10832 | 468 | Goal "finite A ==> card (f ` A) <= card A"; | 
| 5626 | 469 | by (etac finite_induct 1); | 
| 9074 
2313ddc415a1
inserted some "addsimps [subset_empty]"; also tidied (a lot)
 paulson parents: 
9002diff
changeset | 470 | by (Simp_tac 1); | 
| 
2313ddc415a1
inserted some "addsimps [subset_empty]"; also tidied (a lot)
 paulson parents: 
9002diff
changeset | 471 | by (asm_simp_tac (simpset() addsimps [le_SucI, finite_imageI, | 
| 
2313ddc415a1
inserted some "addsimps [subset_empty]"; also tidied (a lot)
 paulson parents: 
9002diff
changeset | 472 | card_insert_if]) 1); | 
| 5626 | 473 | qed "card_image_le"; | 
| 474 | ||
| 10832 | 475 | Goal "finite(A) ==> inj_on f A --> card (f ` A) = card A"; | 
| 5626 | 476 | by (etac finite_induct 1); | 
| 477 | by (ALLGOALS Asm_simp_tac); | |
| 478 | by Safe_tac; | |
| 479 | by (rewtac inj_on_def); | |
| 480 | by (Blast_tac 1); | |
| 481 | by (stac card_insert_disjoint 1); | |
| 482 | by (etac finite_imageI 1); | |
| 483 | by (Blast_tac 1); | |
| 484 | by (Blast_tac 1); | |
| 485 | qed_spec_mp "card_image"; | |
| 486 | ||
| 10832 | 487 | Goal "[| finite A; f`A <= A; inj_on f A |] ==> f`A = A"; | 
| 9074 
2313ddc415a1
inserted some "addsimps [subset_empty]"; also tidied (a lot)
 paulson parents: 
9002diff
changeset | 488 | by (asm_simp_tac (simpset() addsimps [card_seteq, card_image]) 1); | 
| 5626 | 489 | qed "endo_inj_surj"; | 
| 490 | ||
| 491 | (*** Cardinality of the Powerset ***) | |
| 492 | ||
| 11701 
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
 wenzelm parents: 
11451diff
changeset | 493 | Goal "finite A ==> card (Pow A) = Suc (Suc 0) ^ card A"; (* FIXME numeral 2 (!?) *) | 
| 5626 | 494 | by (etac finite_induct 1); | 
| 495 | by (ALLGOALS (asm_simp_tac (simpset() addsimps [Pow_insert]))); | |
| 496 | by (stac card_Un_disjoint 1); | |
| 497 | by (EVERY (map (blast_tac (claset() addIs [finite_imageI])) [3,2,1])); | |
| 498 | by (subgoal_tac "inj_on (insert x) (Pow F)" 1); | |
| 499 | by (asm_simp_tac (simpset() addsimps [card_image, Pow_insert]) 1); | |
| 500 | by (rewtac inj_on_def); | |
| 501 | by (blast_tac (claset() addSEs [equalityE]) 1); | |
| 502 | qed "card_Pow"; | |
| 503 | ||
| 3368 | 504 | |
| 3430 | 505 | (*Relates to equivalence classes. Based on a theorem of F. Kammueller's. | 
| 3368 | 506 | The "finite C" premise is redundant*) | 
| 5143 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 paulson parents: 
5069diff
changeset | 507 | Goal "finite C ==> finite (Union C) --> \ | 
| 9096 
5c4d4364f854
tidied; weakened the (impossible) premises of setsum_UN_disjoint
 paulson parents: 
9086diff
changeset | 508 | \ (ALL c : C. k dvd card c) --> \ | 
| 
5c4d4364f854
tidied; weakened the (impossible) premises of setsum_UN_disjoint
 paulson parents: 
9086diff
changeset | 509 | \          (ALL c1: C. ALL c2: C. c1 ~= c2 --> c1 Int c2 = {}) \
 | 
| 3368 | 510 | \ --> k dvd card(Union C)"; | 
| 511 | by (etac finite_induct 1); | |
| 512 | by (ALLGOALS Asm_simp_tac); | |
| 3708 | 513 | by (Clarify_tac 1); | 
| 3368 | 514 | by (stac card_Un_disjoint 1); | 
| 515 | by (ALLGOALS | |
| 4089 | 516 | (asm_full_simp_tac (simpset() | 
| 3368 | 517 | addsimps [dvd_add, disjoint_eq_subset_Compl]))); | 
| 9096 
5c4d4364f854
tidied; weakened the (impossible) premises of setsum_UN_disjoint
 paulson parents: 
9086diff
changeset | 518 | by (thin_tac "ALL c:F. ?PP(c)" 1); | 
| 
5c4d4364f854
tidied; weakened the (impossible) premises of setsum_UN_disjoint
 paulson parents: 
9086diff
changeset | 519 | by (thin_tac "ALL c:F. ?PP(c) & ?QQ(c)" 1); | 
| 3708 | 520 | by (Clarify_tac 1); | 
| 3368 | 521 | by (ball_tac 1); | 
| 522 | by (Blast_tac 1); | |
| 523 | qed_spec_mp "dvd_partition"; | |
| 524 | ||
| 5616 | 525 | |
| 526 | (*** foldSet ***) | |
| 527 | ||
| 9108 | 528 | bind_thm ("empty_foldSetE", foldSet.mk_cases "({}, x) : foldSet f e");
 | 
| 5616 | 529 | |
| 530 | AddSEs [empty_foldSetE]; | |
| 531 | AddIs foldSet.intrs; | |
| 532 | ||
| 533 | Goal "[| (A-{x},y) : foldSet f e;  x: A |] ==> (A, f x y) : foldSet f e";
 | |
| 534 | by (etac (insert_Diff RS subst) 1 THEN resolve_tac foldSet.intrs 1); | |
| 535 | by Auto_tac; | |
| 5626 | 536 | qed "Diff1_foldSet"; | 
| 5616 | 537 | |
| 538 | Goal "(A, x) : foldSet f e ==> finite(A)"; | |
| 539 | by (eresolve_tac [foldSet.induct] 1); | |
| 540 | by Auto_tac; | |
| 541 | qed "foldSet_imp_finite"; | |
| 542 | ||
| 543 | Addsimps [foldSet_imp_finite]; | |
| 544 | ||
| 545 | ||
| 546 | Goal "finite(A) ==> EX x. (A, x) : foldSet f e"; | |
| 547 | by (etac finite_induct 1); | |
| 548 | by Auto_tac; | |
| 549 | qed "finite_imp_foldSet"; | |
| 550 | ||
| 551 | ||
| 552 | Open_locale "LC"; | |
| 553 | ||
| 5782 
7559f116cb10
locales now implicitly quantify over free variables
 paulson parents: 
5626diff
changeset | 554 | val f_lcomm = thm "lcomm"; | 
| 5616 | 555 | |
| 556 | ||
| 557 | Goal "ALL A x. card(A) < n --> (A, x) : foldSet f e --> \ | |
| 558 | \ (ALL y. (A, y) : foldSet f e --> y=x)"; | |
| 559 | by (induct_tac "n" 1); | |
| 560 | by (auto_tac (claset(), simpset() addsimps [less_Suc_eq])); | |
| 561 | by (etac foldSet.elim 1); | |
| 562 | by (Blast_tac 1); | |
| 563 | by (etac foldSet.elim 1); | |
| 564 | by (Blast_tac 1); | |
| 565 | by (Clarify_tac 1); | |
| 566 | (*force simplification of "card A < card (insert ...)"*) | |
| 567 | by (etac rev_mp 1); | |
| 568 | by (asm_simp_tac (simpset() addsimps [less_Suc_eq_le]) 1); | |
| 569 | by (rtac impI 1); | |
| 570 | (** LEVEL 10 **) | |
| 11122 | 571 | by (rename_tac "Aa xa ya Ab xb yb" 1 THEN case_tac "xa=xb" 1); | 
| 5616 | 572 | by (subgoal_tac "Aa = Ab" 1); | 
| 9837 | 573 | by (blast_tac (claset() addSEs [equalityE]) 2); | 
| 5616 | 574 | by (Blast_tac 1); | 
| 575 | (*case xa ~= xb*) | |
| 576 | by (subgoal_tac "Aa-{xb} = Ab-{xa} & xb : Aa & xa : Ab" 1);
 | |
| 9837 | 577 | by (blast_tac (claset() addSEs [equalityE]) 2); | 
| 5616 | 578 | by (Clarify_tac 1); | 
| 579 | by (subgoal_tac "Aa = insert xb Ab - {xa}" 1);
 | |
| 9837 | 580 | by (Blast_tac 2); | 
| 5616 | 581 | (** LEVEL 20 **) | 
| 582 | by (subgoal_tac "card Aa <= card Ab" 1); | |
| 583 | by (rtac (Suc_le_mono RS subst) 2); | |
| 5626 | 584 | by (asm_simp_tac (simpset() addsimps [card_Suc_Diff1]) 2); | 
| 5616 | 585 | by (res_inst_tac [("A1", "Aa-{xb}"), ("f1","f")] 
 | 
| 586 | (finite_imp_foldSet RS exE) 1); | |
| 587 | by (blast_tac (claset() addIs [foldSet_imp_finite, finite_Diff]) 1); | |
| 7499 | 588 | by (ftac Diff1_foldSet 1 THEN assume_tac 1); | 
| 5616 | 589 | by (subgoal_tac "ya = f xb x" 1); | 
| 9837 | 590 | by (blast_tac (claset() delrules [equalityCE]) 2); | 
| 5616 | 591 | by (subgoal_tac "(Ab - {xa}, x) : foldSet f e" 1);
 | 
| 592 | by (Asm_full_simp_tac 2); | |
| 593 | by (subgoal_tac "yb = f xa x" 1); | |
| 9837 | 594 | by (blast_tac (claset() delrules [equalityCE] | 
| 595 | addDs [Diff1_foldSet]) 2); | |
| 5616 | 596 | by (asm_simp_tac (simpset() addsimps [f_lcomm]) 1); | 
| 597 | val lemma = result(); | |
| 598 | ||
| 599 | ||
| 600 | Goal "[| (A, x) : foldSet f e; (A, y) : foldSet f e |] ==> y=x"; | |
| 11770 | 601 | by (blast_tac (claset() addIs [ObjectLogic.rulify lemma]) 1); | 
| 5616 | 602 | qed "foldSet_determ"; | 
| 603 | ||
| 604 | Goalw [fold_def] "(A,y) : foldSet f e ==> fold f e A = y"; | |
| 605 | by (blast_tac (claset() addIs [foldSet_determ]) 1); | |
| 606 | qed "fold_equality"; | |
| 607 | ||
| 608 | Goalw [fold_def] "fold f e {} = e";
 | |
| 609 | by (Blast_tac 1); | |
| 610 | qed "fold_empty"; | |
| 611 | Addsimps [fold_empty]; | |
| 612 | ||
| 5626 | 613 | |
| 5616 | 614 | Goal "x ~: A ==> \ | 
| 615 | \ ((insert x A, v) : foldSet f e) = \ | |
| 616 | \ (EX y. (A, y) : foldSet f e & v = f x y)"; | |
| 617 | by Auto_tac; | |
| 618 | by (res_inst_tac [("A1", "A"), ("f1","f")] (finite_imp_foldSet RS exE) 1);
 | |
| 619 | by (force_tac (claset() addDs [foldSet_imp_finite], simpset()) 1); | |
| 620 | by (blast_tac (claset() addIs [foldSet_determ]) 1); | |
| 621 | val lemma = result(); | |
| 622 | ||
| 623 | Goalw [fold_def] | |
| 624 | "[| finite A; x ~: A |] ==> fold f e (insert x A) = f x (fold f e A)"; | |
| 625 | by (asm_simp_tac (simpset() addsimps [lemma]) 1); | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: 
11122diff
changeset | 626 | by (rtac the_equality 1); | 
| 5616 | 627 | by (auto_tac (claset() addIs [finite_imp_foldSet], | 
| 628 | simpset() addcongs [conj_cong] | |
| 629 | addsimps [symmetric fold_def, | |
| 630 | fold_equality])); | |
| 631 | qed "fold_insert"; | |
| 632 | ||
| 8911 
c35b74bad518
fold_commute, fold_nest_Un_Int, setsum_Un and other new results
 paulson parents: 
8889diff
changeset | 633 | Goal "finite A ==> ALL e. f x (fold f e A) = fold f (f x e) A"; | 
| 
c35b74bad518
fold_commute, fold_nest_Un_Int, setsum_Un and other new results
 paulson parents: 
8889diff
changeset | 634 | by (etac finite_induct 1); | 
| 
c35b74bad518
fold_commute, fold_nest_Un_Int, setsum_Un and other new results
 paulson parents: 
8889diff
changeset | 635 | by (Simp_tac 1); | 
| 
c35b74bad518
fold_commute, fold_nest_Un_Int, setsum_Un and other new results
 paulson parents: 
8889diff
changeset | 636 | by (asm_simp_tac (simpset() addsimps [f_lcomm, fold_insert]) 1); | 
| 
c35b74bad518
fold_commute, fold_nest_Un_Int, setsum_Un and other new results
 paulson parents: 
8889diff
changeset | 637 | qed_spec_mp "fold_commute"; | 
| 
c35b74bad518
fold_commute, fold_nest_Un_Int, setsum_Un and other new results
 paulson parents: 
8889diff
changeset | 638 | |
| 
c35b74bad518
fold_commute, fold_nest_Un_Int, setsum_Un and other new results
 paulson parents: 
8889diff
changeset | 639 | Goal "[| finite A; finite B |] \ | 
| 
c35b74bad518
fold_commute, fold_nest_Un_Int, setsum_Un and other new results
 paulson parents: 
8889diff
changeset | 640 | \ ==> fold f (fold f e B) A = fold f (fold f e (A Int B)) (A Un B)"; | 
| 
c35b74bad518
fold_commute, fold_nest_Un_Int, setsum_Un and other new results
 paulson parents: 
8889diff
changeset | 641 | by (etac finite_induct 1); | 
| 
c35b74bad518
fold_commute, fold_nest_Un_Int, setsum_Un and other new results
 paulson parents: 
8889diff
changeset | 642 | by (Simp_tac 1); | 
| 
c35b74bad518
fold_commute, fold_nest_Un_Int, setsum_Un and other new results
 paulson parents: 
8889diff
changeset | 643 | by (asm_simp_tac (simpset() addsimps [fold_insert, fold_commute, | 
| 
c35b74bad518
fold_commute, fold_nest_Un_Int, setsum_Un and other new results
 paulson parents: 
8889diff
changeset | 644 | Int_insert_left, insert_absorb]) 1); | 
| 
c35b74bad518
fold_commute, fold_nest_Un_Int, setsum_Un and other new results
 paulson parents: 
8889diff
changeset | 645 | qed "fold_nest_Un_Int"; | 
| 
c35b74bad518
fold_commute, fold_nest_Un_Int, setsum_Un and other new results
 paulson parents: 
8889diff
changeset | 646 | |
| 
c35b74bad518
fold_commute, fold_nest_Un_Int, setsum_Un and other new results
 paulson parents: 
8889diff
changeset | 647 | Goal "[| finite A; finite B; A Int B = {} |] \
 | 
| 
c35b74bad518
fold_commute, fold_nest_Un_Int, setsum_Un and other new results
 paulson parents: 
8889diff
changeset | 648 | \ ==> fold f e (A Un B) = fold f (fold f e B) A"; | 
| 
c35b74bad518
fold_commute, fold_nest_Un_Int, setsum_Un and other new results
 paulson parents: 
8889diff
changeset | 649 | by (asm_simp_tac (simpset() addsimps [fold_nest_Un_Int]) 1); | 
| 
c35b74bad518
fold_commute, fold_nest_Un_Int, setsum_Un and other new results
 paulson parents: 
8889diff
changeset | 650 | qed "fold_nest_Un_disjoint"; | 
| 
c35b74bad518
fold_commute, fold_nest_Un_Int, setsum_Un and other new results
 paulson parents: 
8889diff
changeset | 651 | |
| 5626 | 652 | (* Delete rules to do with foldSet relation: obsolete *) | 
| 653 | Delsimps [foldSet_imp_finite]; | |
| 654 | Delrules [empty_foldSetE]; | |
| 655 | Delrules foldSet.intrs; | |
| 656 | ||
| 6024 | 657 | Close_locale "LC"; | 
| 5616 | 658 | |
| 659 | Open_locale "ACe"; | |
| 660 | ||
| 8911 
c35b74bad518
fold_commute, fold_nest_Un_Int, setsum_Un and other new results
 paulson parents: 
8889diff
changeset | 661 | (*We enter a more restrictive framework, with f :: ['a,'a] => 'a | 
| 
c35b74bad518
fold_commute, fold_nest_Un_Int, setsum_Un and other new results
 paulson parents: 
8889diff
changeset | 662 | instead of ['b,'a] => 'a | 
| 
c35b74bad518
fold_commute, fold_nest_Un_Int, setsum_Un and other new results
 paulson parents: 
8889diff
changeset | 663 | At present, none of these results are used!*) | 
| 
c35b74bad518
fold_commute, fold_nest_Un_Int, setsum_Un and other new results
 paulson parents: 
8889diff
changeset | 664 | |
| 5782 
7559f116cb10
locales now implicitly quantify over free variables
 paulson parents: 
5626diff
changeset | 665 | val f_ident = thm "ident"; | 
| 
7559f116cb10
locales now implicitly quantify over free variables
 paulson parents: 
5626diff
changeset | 666 | val f_commute = thm "commute"; | 
| 
7559f116cb10
locales now implicitly quantify over free variables
 paulson parents: 
5626diff
changeset | 667 | val f_assoc = thm "assoc"; | 
| 5616 | 668 | |
| 669 | ||
| 670 | Goal "f x (f y z) = f y (f x z)"; | |
| 671 | by (rtac (f_commute RS trans) 1); | |
| 672 | by (rtac (f_assoc RS trans) 1); | |
| 673 | by (rtac (f_commute RS arg_cong) 1); | |
| 674 | qed "f_left_commute"; | |
| 675 | ||
| 676 | val f_ac = [f_assoc, f_commute, f_left_commute]; | |
| 677 | ||
| 678 | Goal "f e x = x"; | |
| 679 | by (stac f_commute 1); | |
| 680 | by (rtac f_ident 1); | |
| 681 | qed "f_left_ident"; | |
| 682 | ||
| 683 | val f_idents = [f_left_ident, f_ident]; | |
| 684 | ||
| 685 | Goal "[| finite A; finite B |] \ | |
| 686 | \ ==> f (fold f e A) (fold f e B) = \ | |
| 687 | \ f (fold f e (A Un B)) (fold f e (A Int B))"; | |
| 688 | by (etac finite_induct 1); | |
| 689 | by (simp_tac (simpset() addsimps f_idents) 1); | |
| 690 | by (asm_simp_tac (simpset() addsimps f_ac @ f_idents @ | |
| 691 | [export fold_insert,insert_absorb, Int_insert_left]) 1); | |
| 692 | qed "fold_Un_Int"; | |
| 693 | ||
| 694 | Goal "[| finite A; finite B; A Int B = {} |] \
 | |
| 695 | \ ==> fold f e (A Un B) = f (fold f e A) (fold f e B)"; | |
| 696 | by (asm_simp_tac (simpset() addsimps fold_Un_Int::f_idents) 1); | |
| 697 | qed "fold_Un_disjoint"; | |
| 698 | ||
| 699 | Goal | |
| 700 |  "[| finite A; finite B |] ==> A Int B = {} --> \
 | |
| 9096 
5c4d4364f854
tidied; weakened the (impossible) premises of setsum_UN_disjoint
 paulson parents: 
9086diff
changeset | 701 | \ fold (f o g) e (A Un B) = f (fold (f o g) e A) (fold (f o g) e B)"; | 
| 5616 | 702 | by (etac finite_induct 1); | 
| 703 | by (simp_tac (simpset() addsimps f_idents) 1); | |
| 704 | by (asm_full_simp_tac (simpset() addsimps f_ac @ f_idents @ | |
| 705 | [export fold_insert,insert_absorb, Int_insert_left]) 1); | |
| 706 | qed "fold_Un_disjoint2"; | |
| 707 | ||
| 6024 | 708 | Close_locale "ACe"; | 
| 5616 | 709 | |
| 710 | ||
| 8981 | 711 | (*** setsum: generalized summation over a set ***) | 
| 5616 | 712 | |
| 713 | Goalw [setsum_def] "setsum f {} = 0";
 | |
| 6162 | 714 | by (Simp_tac 1); | 
| 5616 | 715 | qed "setsum_empty"; | 
| 716 | Addsimps [setsum_empty]; | |
| 717 | ||
| 718 | Goalw [setsum_def] | |
| 11786 | 719 | "!!f. [| finite F; a ~: F |] ==> \ | 
| 720 | \ setsum f (insert a F) = f a + setsum f F"; | |
| 8963 
0d4abacae6aa
setsum is now overloaded on plus_ac0;  lemmas about lessThan, etc.
 paulson parents: 
8911diff
changeset | 721 | by (asm_simp_tac (simpset() addsimps [export fold_insert, | 
| 
0d4abacae6aa
setsum is now overloaded on plus_ac0;  lemmas about lessThan, etc.
 paulson parents: 
8911diff
changeset | 722 | thm "plus_ac0_left_commute"]) 1); | 
| 5616 | 723 | qed "setsum_insert"; | 
| 724 | Addsimps [setsum_insert]; | |
| 725 | ||
| 11786 | 726 | Goal "setsum (%i. 0) A = 0"; | 
| 9086 
e4592e43e703
now setsum f A = 0 unless A is finite; proved setsum_cong
 paulson parents: 
9074diff
changeset | 727 | by (case_tac "finite A" 1); | 
| 
e4592e43e703
now setsum f A = 0 unless A is finite; proved setsum_cong
 paulson parents: 
9074diff
changeset | 728 | by (asm_simp_tac (simpset() addsimps [setsum_def]) 2); | 
| 9002 | 729 | by (etac finite_induct 1); | 
| 730 | by Auto_tac; | |
| 731 | qed "setsum_0"; | |
| 732 | ||
| 9086 
e4592e43e703
now setsum f A = 0 unless A is finite; proved setsum_cong
 paulson parents: 
9074diff
changeset | 733 | Goal "finite F ==> (setsum f F = 0) = (ALL a:F. f a = (0::nat))"; | 
| 9002 | 734 | by (etac finite_induct 1); | 
| 735 | by Auto_tac; | |
| 736 | qed "setsum_eq_0_iff"; | |
| 737 | Addsimps [setsum_eq_0_iff]; | |
| 738 | ||
| 9086 
e4592e43e703
now setsum f A = 0 unless A is finite; proved setsum_cong
 paulson parents: 
9074diff
changeset | 739 | Goal "setsum f A = Suc n ==> EX a:A. 0 < f a"; | 
| 
e4592e43e703
now setsum f A = 0 unless A is finite; proved setsum_cong
 paulson parents: 
9074diff
changeset | 740 | by (case_tac "finite A" 1); | 
| 
e4592e43e703
now setsum f A = 0 unless A is finite; proved setsum_cong
 paulson parents: 
9074diff
changeset | 741 | by (asm_full_simp_tac (simpset() addsimps [setsum_def]) 2); | 
| 9002 | 742 | by (etac rev_mp 1); | 
| 743 | by (etac finite_induct 1); | |
| 744 | by Auto_tac; | |
| 745 | qed "setsum_SucD"; | |
| 746 | ||
| 8911 
c35b74bad518
fold_commute, fold_nest_Un_Int, setsum_Un and other new results
 paulson parents: 
8889diff
changeset | 747 | (*Could allow many "card" proofs to be simplified*) | 
| 
c35b74bad518
fold_commute, fold_nest_Un_Int, setsum_Un and other new results
 paulson parents: 
8889diff
changeset | 748 | Goal "finite A ==> card A = setsum (%x. 1) A"; | 
| 
c35b74bad518
fold_commute, fold_nest_Un_Int, setsum_Un and other new results
 paulson parents: 
8889diff
changeset | 749 | by (etac finite_induct 1); | 
| 
c35b74bad518
fold_commute, fold_nest_Un_Int, setsum_Un and other new results
 paulson parents: 
8889diff
changeset | 750 | by Auto_tac; | 
| 
c35b74bad518
fold_commute, fold_nest_Un_Int, setsum_Un and other new results
 paulson parents: 
8889diff
changeset | 751 | qed "card_eq_setsum"; | 
| 5616 | 752 | |
| 9002 | 753 | (*The reversed orientation looks more natural, but LOOPS as a simprule!*) | 
| 11786 | 754 | Goal "!!g. [| finite A; finite B |] \ | 
| 8911 
c35b74bad518
fold_commute, fold_nest_Un_Int, setsum_Un and other new results
 paulson parents: 
8889diff
changeset | 755 | \ ==> setsum g (A Un B) + setsum g (A Int B) = setsum g A + setsum g B"; | 
| 
c35b74bad518
fold_commute, fold_nest_Un_Int, setsum_Un and other new results
 paulson parents: 
8889diff
changeset | 756 | by (etac finite_induct 1); | 
| 
c35b74bad518
fold_commute, fold_nest_Un_Int, setsum_Un and other new results
 paulson parents: 
8889diff
changeset | 757 | by (Simp_tac 1); | 
| 8963 
0d4abacae6aa
setsum is now overloaded on plus_ac0;  lemmas about lessThan, etc.
 paulson parents: 
8911diff
changeset | 758 | by (asm_full_simp_tac (simpset() addsimps (thms "plus_ac0") @ | 
| 
0d4abacae6aa
setsum is now overloaded on plus_ac0;  lemmas about lessThan, etc.
 paulson parents: 
8911diff
changeset | 759 | [Int_insert_left, insert_absorb]) 1); | 
| 8911 
c35b74bad518
fold_commute, fold_nest_Un_Int, setsum_Un and other new results
 paulson parents: 
8889diff
changeset | 760 | qed "setsum_Un_Int"; | 
| 
c35b74bad518
fold_commute, fold_nest_Un_Int, setsum_Un and other new results
 paulson parents: 
8889diff
changeset | 761 | |
| 8981 | 762 | Goal "[| finite A; finite B; A Int B = {} |] \
 | 
| 11786 | 763 | \ ==> setsum g (A Un B) = setsum g A + setsum g B"; | 
| 8981 | 764 | by (stac (setsum_Un_Int RS sym) 1); | 
| 765 | by Auto_tac; | |
| 766 | qed "setsum_Un_disjoint"; | |
| 767 | ||
| 11092 
69c1abb9a129
Definition of setsum (sort constraint) relaxed to {zero, plus}.
 ballarin parents: 
10832diff
changeset | 768 | Goal "!!f::'a=>'b::plus_ac0. finite I \ | 
| 9096 
5c4d4364f854
tidied; weakened the (impossible) premises of setsum_UN_disjoint
 paulson parents: 
9086diff
changeset | 769 | \ ==> (ALL i:I. finite (A i)) --> \ | 
| 
5c4d4364f854
tidied; weakened the (impossible) premises of setsum_UN_disjoint
 paulson parents: 
9086diff
changeset | 770 | \         (ALL i:I. ALL j:I. i~=j --> A i Int A j = {}) --> \
 | 
| 
5c4d4364f854
tidied; weakened the (impossible) premises of setsum_UN_disjoint
 paulson parents: 
9086diff
changeset | 771 | \ setsum f (UNION I A) = setsum (%i. setsum f (A i)) I"; | 
| 8981 | 772 | by (etac finite_induct 1); | 
| 9096 
5c4d4364f854
tidied; weakened the (impossible) premises of setsum_UN_disjoint
 paulson parents: 
9086diff
changeset | 773 | by (Simp_tac 1); | 
| 
5c4d4364f854
tidied; weakened the (impossible) premises of setsum_UN_disjoint
 paulson parents: 
9086diff
changeset | 774 | by (Clarify_tac 1); | 
| 
5c4d4364f854
tidied; weakened the (impossible) premises of setsum_UN_disjoint
 paulson parents: 
9086diff
changeset | 775 | by (subgoal_tac "ALL i:F. x ~= i" 1); | 
| 
5c4d4364f854
tidied; weakened the (impossible) premises of setsum_UN_disjoint
 paulson parents: 
9086diff
changeset | 776 | by (Blast_tac 2); | 
| 
5c4d4364f854
tidied; weakened the (impossible) premises of setsum_UN_disjoint
 paulson parents: 
9086diff
changeset | 777 | by (subgoal_tac "A x Int UNION F A = {}" 1);
 | 
| 
5c4d4364f854
tidied; weakened the (impossible) premises of setsum_UN_disjoint
 paulson parents: 
9086diff
changeset | 778 | by (Blast_tac 2); | 
| 8981 | 779 | by (asm_simp_tac (simpset() addsimps [setsum_Un_disjoint]) 1); | 
| 780 | qed_spec_mp "setsum_UN_disjoint"; | |
| 781 | ||
| 11786 | 782 | Goal "setsum (%x. f x + g x) A = (setsum f A + setsum g A)"; | 
| 9086 
e4592e43e703
now setsum f A = 0 unless A is finite; proved setsum_cong
 paulson parents: 
9074diff
changeset | 783 | by (case_tac "finite A" 1); | 
| 
e4592e43e703
now setsum f A = 0 unless A is finite; proved setsum_cong
 paulson parents: 
9074diff
changeset | 784 | by (asm_full_simp_tac (simpset() addsimps [setsum_def]) 2); | 
| 8981 | 785 | by (etac finite_induct 1); | 
| 786 | by Auto_tac; | |
| 787 | by (simp_tac (simpset() addsimps (thms "plus_ac0")) 1); | |
| 788 | qed "setsum_addf"; | |
| 789 | ||
| 790 | (** For the natural numbers, we have subtraction **) | |
| 791 | ||
| 8911 
c35b74bad518
fold_commute, fold_nest_Un_Int, setsum_Un and other new results
 paulson parents: 
8889diff
changeset | 792 | Goal "[| finite A; finite B |] \ | 
| 8963 
0d4abacae6aa
setsum is now overloaded on plus_ac0;  lemmas about lessThan, etc.
 paulson parents: 
8911diff
changeset | 793 | \ ==> (setsum f (A Un B) :: nat) = \ | 
| 
0d4abacae6aa
setsum is now overloaded on plus_ac0;  lemmas about lessThan, etc.
 paulson parents: 
8911diff
changeset | 794 | \ setsum f A + setsum f B - setsum f (A Int B)"; | 
| 8911 
c35b74bad518
fold_commute, fold_nest_Un_Int, setsum_Un and other new results
 paulson parents: 
8889diff
changeset | 795 | by (stac (setsum_Un_Int RS sym) 1); | 
| 
c35b74bad518
fold_commute, fold_nest_Un_Int, setsum_Un and other new results
 paulson parents: 
8889diff
changeset | 796 | by Auto_tac; | 
| 
c35b74bad518
fold_commute, fold_nest_Un_Int, setsum_Un and other new results
 paulson parents: 
8889diff
changeset | 797 | qed "setsum_Un"; | 
| 
c35b74bad518
fold_commute, fold_nest_Un_Int, setsum_Un and other new results
 paulson parents: 
8889diff
changeset | 798 | |
| 9086 
e4592e43e703
now setsum f A = 0 unless A is finite; proved setsum_cong
 paulson parents: 
9074diff
changeset | 799 | Goal "(setsum f (A-{a}) :: nat) = \
 | 
| 
e4592e43e703
now setsum f A = 0 unless A is finite; proved setsum_cong
 paulson parents: 
9074diff
changeset | 800 | \ (if a:A then setsum f A - f a else setsum f A)"; | 
| 
e4592e43e703
now setsum f A = 0 unless A is finite; proved setsum_cong
 paulson parents: 
9074diff
changeset | 801 | by (case_tac "finite A" 1); | 
| 
e4592e43e703
now setsum f A = 0 unless A is finite; proved setsum_cong
 paulson parents: 
9074diff
changeset | 802 | by (asm_full_simp_tac (simpset() addsimps [setsum_def]) 2); | 
| 6162 | 803 | by (etac finite_induct 1); | 
| 804 | by (auto_tac (claset(), simpset() addsimps [insert_Diff_if])); | |
| 805 | by (dres_inst_tac [("a","a")] mk_disjoint_insert 1);
 | |
| 8911 
c35b74bad518
fold_commute, fold_nest_Un_Int, setsum_Un and other new results
 paulson parents: 
8889diff
changeset | 806 | by Auto_tac; | 
| 5616 | 807 | qed_spec_mp "setsum_diff1"; | 
| 7834 | 808 | |
| 9086 
e4592e43e703
now setsum f A = 0 unless A is finite; proved setsum_cong
 paulson parents: 
9074diff
changeset | 809 | val prems = Goal | 
| 11092 
69c1abb9a129
Definition of setsum (sort constraint) relaxed to {zero, plus}.
 ballarin parents: 
10832diff
changeset | 810 | "[| A = B; !!x. x:B ==> f x = g x|] \ | 
| 11786 | 811 | \ ==> setsum f A = setsum g B"; | 
| 9086 
e4592e43e703
now setsum f A = 0 unless A is finite; proved setsum_cong
 paulson parents: 
9074diff
changeset | 812 | by (case_tac "finite B" 1); | 
| 
e4592e43e703
now setsum f A = 0 unless A is finite; proved setsum_cong
 paulson parents: 
9074diff
changeset | 813 | by (asm_simp_tac (simpset() addsimps [setsum_def]@prems) 2); | 
| 
e4592e43e703
now setsum f A = 0 unless A is finite; proved setsum_cong
 paulson parents: 
9074diff
changeset | 814 | by (simp_tac (simpset() addsimps prems) 1); | 
| 
e4592e43e703
now setsum f A = 0 unless A is finite; proved setsum_cong
 paulson parents: 
9074diff
changeset | 815 | by (subgoal_tac | 
| 
e4592e43e703
now setsum f A = 0 unless A is finite; proved setsum_cong
 paulson parents: 
9074diff
changeset | 816 | "ALL C. C <= B --> (ALL x:C. f x = g x) --> setsum f C = setsum g C" 1); | 
| 9399 | 817 | by (asm_simp_tac (simpset() addsimps prems) 1); | 
| 9086 
e4592e43e703
now setsum f A = 0 unless A is finite; proved setsum_cong
 paulson parents: 
9074diff
changeset | 818 | by (etac finite_induct 1); | 
| 9338 | 819 | by (Simp_tac 1); | 
| 9399 | 820 | by (asm_simp_tac (simpset() addsimps subset_insert_iff::prems) 1); | 
| 9086 
e4592e43e703
now setsum f A = 0 unless A is finite; proved setsum_cong
 paulson parents: 
9074diff
changeset | 821 | by (Clarify_tac 1); | 
| 
e4592e43e703
now setsum f A = 0 unless A is finite; proved setsum_cong
 paulson parents: 
9074diff
changeset | 822 | by (subgoal_tac "finite C" 1); | 
| 
e4592e43e703
now setsum f A = 0 unless A is finite; proved setsum_cong
 paulson parents: 
9074diff
changeset | 823 | by (blast_tac (claset() addDs [rotate_prems 1 finite_subset]) 2); | 
| 
e4592e43e703
now setsum f A = 0 unless A is finite; proved setsum_cong
 paulson parents: 
9074diff
changeset | 824 | by (subgoal_tac "C = insert x (C-{x})" 1); 
 | 
| 
e4592e43e703
now setsum f A = 0 unless A is finite; proved setsum_cong
 paulson parents: 
9074diff
changeset | 825 | by (Blast_tac 2); | 
| 
e4592e43e703
now setsum f A = 0 unless A is finite; proved setsum_cong
 paulson parents: 
9074diff
changeset | 826 | by (etac ssubst 1); | 
| 
e4592e43e703
now setsum f A = 0 unless A is finite; proved setsum_cong
 paulson parents: 
9074diff
changeset | 827 | by (dtac spec 1); | 
| 
e4592e43e703
now setsum f A = 0 unless A is finite; proved setsum_cong
 paulson parents: 
9074diff
changeset | 828 | by (mp_tac 1); | 
| 9399 | 829 | by (asm_full_simp_tac (simpset() addsimps Ball_def::prems) 1); | 
| 9086 
e4592e43e703
now setsum f A = 0 unless A is finite; proved setsum_cong
 paulson parents: 
9074diff
changeset | 830 | qed "setsum_cong"; | 
| 
e4592e43e703
now setsum f A = 0 unless A is finite; proved setsum_cong
 paulson parents: 
9074diff
changeset | 831 | |
| 7834 | 832 | |
| 833 | (*** Basic theorem about "choose". By Florian Kammueller, tidied by LCP ***) | |
| 834 | ||
| 835 | Goal "finite A ==> card {B. B <= A & card B = 0} = 1";
 | |
| 836 | by (asm_simp_tac (simpset() addcongs [conj_cong] | |
| 10098 
ab0a3188f398
deleted card_0_empty_iff because it is the same as card_0_eq;
 paulson parents: 
9969diff
changeset | 837 | addsimps [finite_subset RS card_0_eq]) 1); | 
| 7834 | 838 | by (simp_tac (simpset() addcongs [rev_conj_cong]) 1); | 
| 839 | qed "card_s_0_eq_empty"; | |
| 840 | ||
| 841 | Goal "[| finite M; x ~: M |] \ | |
| 842 | \  ==> {s. s <= insert x M & card(s) = Suc k} \
 | |
| 843 | \      = {s. s <= M & card(s) = Suc k} Un \
 | |
| 844 | \        {s. EX t. t <= M & card(t) = k & s = insert x t}";
 | |
| 845 | by Safe_tac; | |
| 846 | by (auto_tac (claset() addIs [finite_subset RS card_insert_disjoint], | |
| 847 | simpset())); | |
| 848 | by (dres_inst_tac [("x","xa - {x}")] spec 1);
 | |
| 849 | by (subgoal_tac ("x ~: xa") 1);
 | |
| 850 | by Auto_tac; | |
| 851 | by (etac rev_mp 1 THEN stac card_Diff_singleton 1); | |
| 7958 | 852 | by (auto_tac (claset() addIs [finite_subset], simpset())); | 
| 7834 | 853 | qed "choose_deconstruct"; | 
| 854 | ||
| 10832 | 855 | Goal "[| finite(A); finite(B); f`A <= B; inj_on f A |] \ | 
| 7834 | 856 | \ ==> card A <= card B"; | 
| 857 | by (auto_tac (claset() addIs [card_mono], | |
| 8140 | 858 | simpset() addsimps [card_image RS sym])); | 
| 7834 | 859 | qed "card_inj_on_le"; | 
| 860 | ||
| 861 | Goal "[| finite A; finite B; \ | |
| 10832 | 862 | \ f`A <= B; inj_on f A; g`B <= A; inj_on g B |] \ | 
| 7834 | 863 | \ ==> card(A) = card(B)"; | 
| 864 | by (auto_tac (claset() addIs [le_anti_sym,card_inj_on_le], simpset())); | |
| 865 | qed "card_bij_eq"; | |
| 866 | ||
| 10098 
ab0a3188f398
deleted card_0_empty_iff because it is the same as card_0_eq;
 paulson parents: 
9969diff
changeset | 867 | Goal "[| finite A; x ~: A |] \ | 
| 
ab0a3188f398
deleted card_0_empty_iff because it is the same as card_0_eq;
 paulson parents: 
9969diff
changeset | 868 | \     ==> card{B. EX C. C <= A & card(C) = k & B = insert x C} = \
 | 
| 
ab0a3188f398
deleted card_0_empty_iff because it is the same as card_0_eq;
 paulson parents: 
9969diff
changeset | 869 | \         card {B. B <= A & card(B) = k}";
 | 
| 8140 | 870 | by (res_inst_tac [("f", "%s. s - {x}"), ("g","insert x")] card_bij_eq 1);
 | 
| 10098 
ab0a3188f398
deleted card_0_empty_iff because it is the same as card_0_eq;
 paulson parents: 
9969diff
changeset | 871 | by (res_inst_tac [("B","Pow(insert x A)")] finite_subset 1);
 | 
| 
ab0a3188f398
deleted card_0_empty_iff because it is the same as card_0_eq;
 paulson parents: 
9969diff
changeset | 872 | by (res_inst_tac [("B","Pow(A)")] finite_subset 3);
 | 
| 8320 | 873 | by (REPEAT(Fast_tac 1)); | 
| 7834 | 874 | (* arity *) | 
| 8140 | 875 | by (auto_tac (claset() addSEs [equalityE], simpset() addsimps [inj_on_def])); | 
| 7834 | 876 | by (stac Diff_insert0 1); | 
| 877 | by Auto_tac; | |
| 878 | qed "constr_bij"; | |
| 879 | ||
| 880 | (* Main theorem: combinatorial theorem about number of subsets of a set *) | |
| 10098 
ab0a3188f398
deleted card_0_empty_iff because it is the same as card_0_eq;
 paulson parents: 
9969diff
changeset | 881 | Goal "(ALL A. finite A --> card {B. B <= A & card B = k} = (card A choose k))";
 | 
| 7834 | 882 | by (induct_tac "k" 1); | 
| 9074 
2313ddc415a1
inserted some "addsimps [subset_empty]"; also tidied (a lot)
 paulson parents: 
9002diff
changeset | 883 | by (simp_tac (simpset() addsimps [card_s_0_eq_empty]) 1); | 
| 7834 | 884 | (* first 0 case finished *) | 
| 7842 
6858c98385c3
simplified and generalized n_sub_lemma and n_subsets
 paulson parents: 
7834diff
changeset | 885 | (* prepare finite set induction *) | 
| 
6858c98385c3
simplified and generalized n_sub_lemma and n_subsets
 paulson parents: 
7834diff
changeset | 886 | by (rtac allI 1 THEN rtac impI 1); | 
| 7834 | 887 | (* second induction *) | 
| 888 | by (etac finite_induct 1); | |
| 7842 
6858c98385c3
simplified and generalized n_sub_lemma and n_subsets
 paulson parents: 
7834diff
changeset | 889 | by (ALLGOALS | 
| 9074 
2313ddc415a1
inserted some "addsimps [subset_empty]"; also tidied (a lot)
 paulson parents: 
9002diff
changeset | 890 | (asm_simp_tac (simpset() addcongs [conj_cong] | 
| 10098 
ab0a3188f398
deleted card_0_empty_iff because it is the same as card_0_eq;
 paulson parents: 
9969diff
changeset | 891 | addsimps [card_s_0_eq_empty, choose_deconstruct]))); | 
| 7834 | 892 | by (stac card_Un_disjoint 1); | 
| 9074 
2313ddc415a1
inserted some "addsimps [subset_empty]"; also tidied (a lot)
 paulson parents: 
9002diff
changeset | 893 | by (force_tac (claset(), simpset() addsimps [constr_bij]) 4); | 
| 
2313ddc415a1
inserted some "addsimps [subset_empty]"; also tidied (a lot)
 paulson parents: 
9002diff
changeset | 894 | by (Force_tac 3); | 
| 
2313ddc415a1
inserted some "addsimps [subset_empty]"; also tidied (a lot)
 paulson parents: 
9002diff
changeset | 895 | by (blast_tac (claset() addIs [finite_Pow_iff RS iffD2, | 
| 
2313ddc415a1
inserted some "addsimps [subset_empty]"; also tidied (a lot)
 paulson parents: 
9002diff
changeset | 896 | inst "B" "Pow (insert ?x ?F)" finite_subset]) 2); | 
| 
2313ddc415a1
inserted some "addsimps [subset_empty]"; also tidied (a lot)
 paulson parents: 
9002diff
changeset | 897 | by (blast_tac (claset() addIs [finite_Pow_iff RS iffD2 | 
| 
2313ddc415a1
inserted some "addsimps [subset_empty]"; also tidied (a lot)
 paulson parents: 
9002diff
changeset | 898 | RSN (2, finite_subset)]) 1); | 
| 7834 | 899 | qed "n_sub_lemma"; | 
| 900 | ||
| 10098 
ab0a3188f398
deleted card_0_empty_iff because it is the same as card_0_eq;
 paulson parents: 
9969diff
changeset | 901 | Goal "finite A ==> card {B. B <= A & card(B) = k} = ((card A) choose k)";
 | 
| 7834 | 902 | by (asm_simp_tac (simpset() addsimps [n_sub_lemma]) 1); | 
| 903 | qed "n_subsets"; |