doc-src/TutorialI/Overview/Sets.thy
author paulson
Fri, 03 Aug 2001 18:04:55 +0200
changeset 11458 09a6c44a48ea
parent 11235 860c65c7388a
child 12815 1f073030b97a
permissions -rw-r--r--
numerous stylistic changes and indexing
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
     1
theory Sets = Main:
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
     2
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
     3
section{*Sets, Functions and Relations*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
     4
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
     5
subsection{*Set Notation*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
     6
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
     7
term "A \<union> B"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
     8
term "A \<inter> B"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
     9
term "A - B"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    10
term "a \<in> A"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    11
term "b \<notin> A"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    12
term "{a,b}"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    13
term "{x. P x}"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    14
term "{x+y+eps |x y. x < y}"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    15
term "\<Union> M"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    16
term "\<Union>a \<in> A. F a"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    17
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    18
subsection{*Functions*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    19
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    20
thm id_def
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    21
thm o_assoc
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    22
thm image_Int
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    23
thm vimage_Compl
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    24
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    25
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    26
subsection{*Relations*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    27
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    28
thm Id_def
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    29
thm converse_comp
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    30
thm Image_def
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    31
thm relpow.simps
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    32
thm rtrancl_idemp
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    33
thm trancl_converse
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    34
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    35
subsection{*Wellfoundedness*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    36
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    37
thm wf_def
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    38
thm wf_iff_no_infinite_down_chain
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    39
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    40
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    41
subsection{*Fixed Point Operators*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    42
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    43
thm lfp_def gfp_def
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    44
thm lfp_unfold
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    45
thm lfp_induct
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    46
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    47
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    48
subsection{*Case Study: Verified Model Checking*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    49
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    50
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    51
typedecl state
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    52
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    53
consts M :: "(state \<times> state)set";
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    54
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    55
typedecl atom
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    56
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    57
consts L :: "state \<Rightarrow> atom set"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    58
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    59
datatype formula = Atom atom
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    60
                  | Neg formula
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    61
                  | And formula formula
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    62
                  | AX formula
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    63
                  | EF formula
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    64
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    65
consts valid :: "state \<Rightarrow> formula \<Rightarrow> bool"   ("(_ \<Turnstile> _)" [80,80] 80)
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    66
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    67
primrec
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    68
"s \<Turnstile> Atom a  = (a \<in> L s)"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    69
"s \<Turnstile> Neg f   = (\<not>(s \<Turnstile> f))"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    70
"s \<Turnstile> And f g = (s \<Turnstile> f \<and> s \<Turnstile> g)"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    71
"s \<Turnstile> AX f    = (\<forall>t. (s,t) \<in> M \<longrightarrow> t \<Turnstile> f)"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    72
"s \<Turnstile> EF f    = (\<exists>t. (s,t) \<in> M\<^sup>* \<and> t \<Turnstile> f)";
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    73
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    74
consts mc :: "formula \<Rightarrow> state set";
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    75
primrec
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    76
"mc(Atom a)  = {s. a \<in> L s}"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    77
"mc(Neg f)   = -mc f"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    78
"mc(And f g) = mc f \<inter> mc g"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    79
"mc(AX f)    = {s. \<forall>t. (s,t) \<in> M  \<longrightarrow> t \<in> mc f}"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    80
"mc(EF f)    = lfp(\<lambda>T. mc f \<union> (M\<inverse> `` T))"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    81
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    82
lemma mono_ef: "mono(\<lambda>T. A \<union> (M\<inverse> `` T))"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    83
apply(rule monoI)
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    84
apply blast
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    85
done
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    86
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    87
lemma EF_lemma:
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    88
  "lfp(\<lambda>T. A \<union> (M\<inverse> `` T)) = {s. \<exists>t. (s,t) \<in> M\<^sup>* \<and> t \<in> A}"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    89
apply(rule equalityI)
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    90
 thm lfp_lowerbound
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    91
 apply(rule lfp_lowerbound)
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    92
 apply(blast intro: rtrancl_trans);
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    93
apply(rule subsetI)
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    94
apply(simp, clarify)
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    95
apply(erule converse_rtrancl_induct)
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    96
thm lfp_unfold[OF mono_ef]
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    97
 apply(subst lfp_unfold[OF mono_ef])
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    98
 apply(blast)
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    99
apply(subst lfp_unfold[OF mono_ef])
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   100
apply(blast)
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   101
done
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   102
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   103
theorem "mc f = {s. s \<Turnstile> f}";
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   104
apply(induct_tac f);
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   105
apply(auto simp add:EF_lemma);
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   106
done;
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   107
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   108
text{*
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   109
\begin{exercise}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   110
@{term AX} has a dual operator @{term EN}\footnote{We cannot use the customary @{text EX}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   111
as that is the \textsc{ascii}-equivalent of @{text"\<exists>"}}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   112
(``there exists a next state such that'') with the intended semantics
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   113
@{prop[display]"(s \<Turnstile> EN f) = (EX t. (s,t) : M & t \<Turnstile> f)"}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   114
Fortunately, @{term"EN f"} can already be expressed as a PDL formula. How?
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   115
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   116
Show that the semantics for @{term EF} satisfies the following recursion equation:
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   117
@{prop[display]"(s \<Turnstile> EF f) = (s \<Turnstile> f | s \<Turnstile> EN(EF f))"}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   118
\end{exercise}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   119
*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   120
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   121
end
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   122
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   123