author | lcp |
Thu, 06 Apr 1995 10:55:06 +0200 | |
changeset 1000 | 0ad2b1da57ff |
parent 757 | 2ca12511676d |
child 1459 | d12da312eff4 |
permissions | -rw-r--r-- |
0 | 1 |
(* Title: CCL/subset |
2 |
ID: $Id$ |
|
3 |
||
4 |
Modified version of |
|
5 |
Title: HOL/subset |
|
6 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
7 |
Copyright 1991 University of Cambridge |
|
8 |
||
9 |
Derived rules involving subsets |
|
10 |
Union and Intersection as lattice operations |
|
11 |
*) |
|
12 |
||
13 |
(*** Big Union -- least upper bound of a set ***) |
|
14 |
||
15 |
val prems = goal Set.thy |
|
16 |
"B:A ==> B <= Union(A)"; |
|
17 |
by (REPEAT (ares_tac (prems@[subsetI,UnionI]) 1)); |
|
757 | 18 |
qed "Union_upper"; |
0 | 19 |
|
20 |
val prems = goal Set.thy |
|
21 |
"[| !!X. X:A ==> X<=C |] ==> Union(A) <= C"; |
|
22 |
by (REPEAT (ares_tac [subsetI] 1 |
|
23 |
ORELSE eresolve_tac ([UnionE] @ (prems RL [subsetD])) 1)); |
|
757 | 24 |
qed "Union_least"; |
0 | 25 |
|
26 |
||
27 |
(*** Big Intersection -- greatest lower bound of a set ***) |
|
28 |
||
29 |
val prems = goal Set.thy |
|
30 |
"B:A ==> Inter(A) <= B"; |
|
31 |
by (REPEAT (resolve_tac (prems@[subsetI]) 1 |
|
32 |
ORELSE etac InterD 1)); |
|
757 | 33 |
qed "Inter_lower"; |
0 | 34 |
|
35 |
val prems = goal Set.thy |
|
36 |
"[| !!X. X:A ==> C<=X |] ==> C <= Inter(A)"; |
|
37 |
by (REPEAT (ares_tac [subsetI,InterI] 1 |
|
38 |
ORELSE eresolve_tac (prems RL [subsetD]) 1)); |
|
757 | 39 |
qed "Inter_greatest"; |
0 | 40 |
|
41 |
(*** Finite Union -- the least upper bound of 2 sets ***) |
|
42 |
||
43 |
goal Set.thy "A <= A Un B"; |
|
44 |
by (REPEAT (ares_tac [subsetI,UnI1] 1)); |
|
757 | 45 |
qed "Un_upper1"; |
0 | 46 |
|
47 |
goal Set.thy "B <= A Un B"; |
|
48 |
by (REPEAT (ares_tac [subsetI,UnI2] 1)); |
|
757 | 49 |
qed "Un_upper2"; |
0 | 50 |
|
51 |
val prems = goal Set.thy "[| A<=C; B<=C |] ==> A Un B <= C"; |
|
52 |
by (cut_facts_tac prems 1); |
|
53 |
by (DEPTH_SOLVE (ares_tac [subsetI] 1 |
|
54 |
ORELSE eresolve_tac [UnE,subsetD] 1)); |
|
757 | 55 |
qed "Un_least"; |
0 | 56 |
|
57 |
(*** Finite Intersection -- the greatest lower bound of 2 sets *) |
|
58 |
||
59 |
goal Set.thy "A Int B <= A"; |
|
60 |
by (REPEAT (ares_tac [subsetI] 1 ORELSE etac IntE 1)); |
|
757 | 61 |
qed "Int_lower1"; |
0 | 62 |
|
63 |
goal Set.thy "A Int B <= B"; |
|
64 |
by (REPEAT (ares_tac [subsetI] 1 ORELSE etac IntE 1)); |
|
757 | 65 |
qed "Int_lower2"; |
0 | 66 |
|
67 |
val prems = goal Set.thy "[| C<=A; C<=B |] ==> C <= A Int B"; |
|
68 |
by (cut_facts_tac prems 1); |
|
69 |
by (REPEAT (ares_tac [subsetI,IntI] 1 |
|
70 |
ORELSE etac subsetD 1)); |
|
757 | 71 |
qed "Int_greatest"; |
0 | 72 |
|
73 |
(*** Monotonicity ***) |
|
74 |
||
75 |
val [prem] = goalw Set.thy [mono_def] |
|
76 |
"[| !!A B. A <= B ==> f(A) <= f(B) |] ==> mono(f)"; |
|
77 |
by (REPEAT (ares_tac [allI, impI, prem] 1)); |
|
757 | 78 |
qed "monoI"; |
0 | 79 |
|
80 |
val [major,minor] = goalw Set.thy [mono_def] |
|
81 |
"[| mono(f); A <= B |] ==> f(A) <= f(B)"; |
|
82 |
by (rtac (major RS spec RS spec RS mp) 1); |
|
83 |
by (rtac minor 1); |
|
757 | 84 |
qed "monoD"; |
0 | 85 |
|
86 |
val [prem] = goal Set.thy "mono(f) ==> f(A) Un f(B) <= f(A Un B)"; |
|
87 |
by (rtac Un_least 1); |
|
88 |
by (rtac (Un_upper1 RS (prem RS monoD)) 1); |
|
89 |
by (rtac (Un_upper2 RS (prem RS monoD)) 1); |
|
757 | 90 |
qed "mono_Un"; |
0 | 91 |
|
92 |
val [prem] = goal Set.thy "mono(f) ==> f(A Int B) <= f(A) Int f(B)"; |
|
93 |
by (rtac Int_greatest 1); |
|
94 |
by (rtac (Int_lower1 RS (prem RS monoD)) 1); |
|
95 |
by (rtac (Int_lower2 RS (prem RS monoD)) 1); |
|
757 | 96 |
qed "mono_Int"; |
0 | 97 |
|
98 |
(****) |
|
99 |
||
100 |
val set_cs = FOL_cs |
|
101 |
addSIs [ballI, subsetI, InterI, INT_I, CollectI, |
|
102 |
ComplI, IntI, UnCI, singletonI] |
|
103 |
addIs [bexI, UnionI, UN_I] |
|
104 |
addSEs [bexE, UnionE, UN_E, |
|
105 |
CollectE, ComplE, IntE, UnE, emptyE, singletonE] |
|
106 |
addEs [ballE, InterD, InterE, INT_D, INT_E, subsetD, subsetCE]; |
|
107 |
||
108 |
fun cfast_tac prems = cut_facts_tac prems THEN' fast_tac set_cs; |
|
109 |
||
110 |
fun prover s = prove_goal Set.thy s (fn _=>[fast_tac set_cs 1]); |
|
111 |
||
112 |
val mem_rews = [trivial_set,empty_eq] @ (map prover |
|
113 |
[ "(a : A Un B) <-> (a:A | a:B)", |
|
114 |
"(a : A Int B) <-> (a:A & a:B)", |
|
115 |
"(a : Compl(B)) <-> (~a:B)", |
|
116 |
"(a : {b}) <-> (a=b)", |
|
117 |
"(a : {}) <-> False", |
|
118 |
"(a : {x.P(x)}) <-> P(a)" ]); |
|
119 |
||
8
c3d2c6dcf3f0
Installation of new simplfier. Previously appeared to set up the old
lcp
parents:
0
diff
changeset
|
120 |
val set_congs = [ball_cong, bex_cong, INT_cong, UN_cong]; |
0 | 121 |
|
8
c3d2c6dcf3f0
Installation of new simplfier. Previously appeared to set up the old
lcp
parents:
0
diff
changeset
|
122 |
val set_ss = FOL_ss addcongs set_congs addsimps mem_rews; |