author | lcp |
Thu, 06 Apr 1995 10:55:06 +0200 | |
changeset 1000 | 0ad2b1da57ff |
parent 289 | 78541329ff35 |
permissions | -rw-r--r-- |
0 | 1 |
(* Title: CCL/types |
2 |
ID: $Id$ |
|
3 |
Author: Martin Coen, Cambridge University Computer Laboratory |
|
4 |
Copyright 1992 University of Cambridge |
|
5 |
||
6 |
For types.thy. |
|
7 |
*) |
|
8 |
||
9 |
open Type; |
|
10 |
||
11 |
val simp_type_defs = [Subtype_def,Unit_def,Bool_def,Plus_def,Sigma_def,Pi_def, |
|
12 |
Lift_def,Tall_def,Tex_def]; |
|
13 |
val ind_type_defs = [Nat_def,List_def]; |
|
14 |
||
15 |
val simp_data_defs = [one_def,inl_def,inr_def]; |
|
16 |
val ind_data_defs = [zero_def,succ_def,nil_def,cons_def]; |
|
17 |
||
18 |
goal Set.thy "A <= B <-> (ALL x.x:A --> x:B)"; |
|
19 |
by (fast_tac set_cs 1); |
|
20 |
val subsetXH = result(); |
|
21 |
||
22 |
(*** Exhaustion Rules ***) |
|
23 |
||
24 |
fun mk_XH_tac thy defs rls s = prove_goalw thy defs s (fn _ => [cfast_tac rls 1]); |
|
25 |
val XH_tac = mk_XH_tac Type.thy simp_type_defs []; |
|
26 |
||
27 |
val EmptyXH = XH_tac "a : {} <-> False"; |
|
28 |
val SubtypeXH = XH_tac "a : {x:A.P(x)} <-> (a:A & P(a))"; |
|
29 |
val UnitXH = XH_tac "a : Unit <-> a=one"; |
|
30 |
val BoolXH = XH_tac "a : Bool <-> a=true | a=false"; |
|
31 |
val PlusXH = XH_tac "a : A+B <-> (EX x:A.a=inl(x)) | (EX x:B.a=inr(x))"; |
|
32 |
val PiXH = XH_tac "a : PROD x:A.B(x) <-> (EX b.a=lam x.b(x) & (ALL x:A.b(x):B(x)))"; |
|
33 |
val SgXH = XH_tac "a : SUM x:A.B(x) <-> (EX x:A.EX y:B(x).a=<x,y>)"; |
|
34 |
||
35 |
val XHs = [EmptyXH,SubtypeXH,UnitXH,BoolXH,PlusXH,PiXH,SgXH]; |
|
36 |
||
37 |
val LiftXH = XH_tac "a : [A] <-> (a=bot | a:A)"; |
|
38 |
val TallXH = XH_tac "a : TALL X.B(X) <-> (ALL X. a:B(X))"; |
|
39 |
val TexXH = XH_tac "a : TEX X.B(X) <-> (EX X. a:B(X))"; |
|
40 |
||
41 |
val case_rls = XH_to_Es XHs; |
|
42 |
||
43 |
(*** Canonical Type Rules ***) |
|
44 |
||
45 |
fun mk_canT_tac thy xhs s = prove_goal thy s |
|
46 |
(fn prems => [fast_tac (set_cs addIs (prems @ (xhs RL [iffD2]))) 1]); |
|
47 |
val canT_tac = mk_canT_tac Type.thy XHs; |
|
48 |
||
49 |
val oneT = canT_tac "one : Unit"; |
|
50 |
val trueT = canT_tac "true : Bool"; |
|
51 |
val falseT = canT_tac "false : Bool"; |
|
52 |
val lamT = canT_tac "[| !!x.x:A ==> b(x):B(x) |] ==> lam x.b(x) : Pi(A,B)"; |
|
53 |
val pairT = canT_tac "[| a:A; b:B(a) |] ==> <a,b>:Sigma(A,B)"; |
|
54 |
val inlT = canT_tac "a:A ==> inl(a) : A+B"; |
|
55 |
val inrT = canT_tac "b:B ==> inr(b) : A+B"; |
|
56 |
||
57 |
val canTs = [oneT,trueT,falseT,pairT,lamT,inlT,inrT]; |
|
58 |
||
59 |
(*** Non-Canonical Type Rules ***) |
|
60 |
||
61 |
local |
|
62 |
val lemma = prove_goal Type.thy "[| a:B(u); u=v |] ==> a : B(v)" |
|
63 |
(fn prems => [cfast_tac prems 1]); |
|
64 |
in |
|
65 |
fun mk_ncanT_tac thy defs top_crls crls s = prove_goalw thy defs s |
|
66 |
(fn major::prems => [(resolve_tac ([major] RL top_crls) 1), |
|
67 |
(REPEAT_SOME (eresolve_tac (crls @ [exE,bexE,conjE,disjE]))), |
|
8
c3d2c6dcf3f0
Installation of new simplfier. Previously appeared to set up the old
lcp
parents:
0
diff
changeset
|
68 |
(ALLGOALS (asm_simp_tac term_ss)), |
0 | 69 |
(ALLGOALS (ares_tac (prems RL [lemma]) ORELSE' |
70 |
eresolve_tac [bspec])), |
|
71 |
(safe_tac (ccl_cs addSIs prems))]); |
|
72 |
end; |
|
73 |
||
74 |
val ncanT_tac = mk_ncanT_tac Type.thy [] case_rls case_rls; |
|
75 |
||
76 |
val ifT = ncanT_tac |
|
77 |
"[| b:Bool; b=true ==> t:A(true); b=false ==> u:A(false) |] ==> \ |
|
78 |
\ if b then t else u : A(b)"; |
|
79 |
||
80 |
val applyT = ncanT_tac |
|
81 |
"[| f : Pi(A,B); a:A |] ==> f ` a : B(a)"; |
|
82 |
||
83 |
val splitT = ncanT_tac |
|
84 |
"[| p:Sigma(A,B); !!x y. [| x:A; y:B(x); p=<x,y> |] ==> c(x,y):C(<x,y>) |] ==> \ |
|
85 |
\ split(p,c):C(p)"; |
|
86 |
||
87 |
val whenT = ncanT_tac |
|
88 |
"[| p:A+B; !!x.[| x:A; p=inl(x) |] ==> a(x):C(inl(x)); \ |
|
89 |
\ !!y.[| y:B; p=inr(y) |] ==> b(y):C(inr(y)) |] ==> \ |
|
90 |
\ when(p,a,b) : C(p)"; |
|
91 |
||
92 |
val ncanTs = [ifT,applyT,splitT,whenT]; |
|
93 |
||
94 |
(*** Subtypes ***) |
|
95 |
||
96 |
val SubtypeD1 = standard ((SubtypeXH RS iffD1) RS conjunct1); |
|
97 |
val SubtypeD2 = standard ((SubtypeXH RS iffD1) RS conjunct2); |
|
98 |
||
99 |
val prems = goal Type.thy |
|
100 |
"[| a:A; P(a) |] ==> a : {x:A. P(x)}"; |
|
101 |
by (REPEAT (resolve_tac (prems@[SubtypeXH RS iffD2,conjI]) 1)); |
|
102 |
val SubtypeI = result(); |
|
103 |
||
104 |
val prems = goal Type.thy |
|
105 |
"[| a : {x:A. P(x)}; [| a:A; P(a) |] ==> Q |] ==> Q"; |
|
106 |
by (REPEAT (resolve_tac (prems@[SubtypeD1,SubtypeD2]) 1)); |
|
107 |
val SubtypeE = result(); |
|
108 |
||
109 |
(*** Monotonicity ***) |
|
110 |
||
111 |
goal Type.thy "mono (%X.X)"; |
|
112 |
by (REPEAT (ares_tac [monoI] 1)); |
|
113 |
val idM = result(); |
|
114 |
||
115 |
goal Type.thy "mono(%X.A)"; |
|
116 |
by (REPEAT (ares_tac [monoI,subset_refl] 1)); |
|
117 |
val constM = result(); |
|
118 |
||
119 |
val major::prems = goal Type.thy |
|
120 |
"mono(%X.A(X)) ==> mono(%X.[A(X)])"; |
|
121 |
br (subsetI RS monoI) 1; |
|
122 |
bd (LiftXH RS iffD1) 1; |
|
123 |
be disjE 1; |
|
124 |
be (disjI1 RS (LiftXH RS iffD2)) 1; |
|
125 |
br (disjI2 RS (LiftXH RS iffD2)) 1; |
|
126 |
be (major RS monoD RS subsetD) 1; |
|
127 |
ba 1; |
|
128 |
val LiftM = result(); |
|
129 |
||
130 |
val prems = goal Type.thy |
|
131 |
"[| mono(%X.A(X)); !!x X. x:A(X) ==> mono(%X.B(X,x)) |] ==> \ |
|
132 |
\ mono(%X.Sigma(A(X),B(X)))"; |
|
133 |
by (REPEAT (ares_tac ([subsetI RS monoI] @ canTs) 1 ORELSE |
|
134 |
eresolve_tac ([bspec,exE,conjE,disjE,bexE] @ case_rls) 1 ORELSE |
|
135 |
(resolve_tac (prems RL [monoD RS subsetD]) 1 THEN assume_tac 1) ORELSE |
|
136 |
hyp_subst_tac 1)); |
|
137 |
val SgM = result(); |
|
138 |
||
139 |
val prems = goal Type.thy |
|
140 |
"[| !!x. x:A ==> mono(%X.B(X,x)) |] ==> mono(%X.Pi(A,B(X)))"; |
|
141 |
by (REPEAT (ares_tac ([subsetI RS monoI] @ canTs) 1 ORELSE |
|
142 |
eresolve_tac ([bspec,exE,conjE,disjE,bexE] @ case_rls) 1 ORELSE |
|
143 |
(resolve_tac (prems RL [monoD RS subsetD]) 1 THEN assume_tac 1) ORELSE |
|
144 |
hyp_subst_tac 1)); |
|
145 |
val PiM = result(); |
|
146 |
||
147 |
val prems = goal Type.thy |
|
148 |
"[| mono(%X.A(X)); mono(%X.B(X)) |] ==> mono(%X.A(X)+B(X))"; |
|
149 |
by (REPEAT (ares_tac ([subsetI RS monoI] @ canTs) 1 ORELSE |
|
150 |
eresolve_tac ([bspec,exE,conjE,disjE,bexE] @ case_rls) 1 ORELSE |
|
151 |
(resolve_tac (prems RL [monoD RS subsetD]) 1 THEN assume_tac 1) ORELSE |
|
152 |
hyp_subst_tac 1)); |
|
153 |
val PlusM = result(); |
|
154 |
||
155 |
(**************** RECURSIVE TYPES ******************) |
|
156 |
||
157 |
(*** Conversion Rules for Fixed Points via monotonicity and Tarski ***) |
|
158 |
||
159 |
goal Type.thy "mono(%X.Unit+X)"; |
|
160 |
by (REPEAT (ares_tac [PlusM,constM,idM] 1)); |
|
161 |
val NatM = result(); |
|
162 |
val def_NatB = result() RS (Nat_def RS def_lfp_Tarski); |
|
163 |
||
164 |
goal Type.thy "mono(%X.(Unit+Sigma(A,%y.X)))"; |
|
165 |
by (REPEAT (ares_tac [PlusM,SgM,constM,idM] 1)); |
|
166 |
val ListM = result(); |
|
167 |
val def_ListB = result() RS (List_def RS def_lfp_Tarski); |
|
168 |
val def_ListsB = result() RS (Lists_def RS def_gfp_Tarski); |
|
169 |
||
170 |
goal Type.thy "mono(%X.({} + Sigma(A,%y.X)))"; |
|
171 |
by (REPEAT (ares_tac [PlusM,SgM,constM,idM] 1)); |
|
172 |
val IListsM = result(); |
|
173 |
val def_IListsB = result() RS (ILists_def RS def_gfp_Tarski); |
|
174 |
||
175 |
val ind_type_eqs = [def_NatB,def_ListB,def_ListsB,def_IListsB]; |
|
176 |
||
177 |
(*** Exhaustion Rules ***) |
|
178 |
||
179 |
fun mk_iXH_tac teqs ddefs rls s = prove_goalw Type.thy ddefs s |
|
180 |
(fn _ => [resolve_tac (teqs RL [XHlemma1]) 1, |
|
181 |
fast_tac (set_cs addSIs canTs addSEs case_rls) 1]); |
|
182 |
||
183 |
val iXH_tac = mk_iXH_tac ind_type_eqs ind_data_defs []; |
|
184 |
||
185 |
val NatXH = iXH_tac "a : Nat <-> (a=zero | (EX x:Nat.a=succ(x)))"; |
|
289 | 186 |
val ListXH = iXH_tac "a : List(A) <-> (a=[] | (EX x:A.EX xs:List(A).a=x$xs))"; |
187 |
val ListsXH = iXH_tac "a : Lists(A) <-> (a=[] | (EX x:A.EX xs:Lists(A).a=x$xs))"; |
|
188 |
val IListsXH = iXH_tac "a : ILists(A) <-> (EX x:A.EX xs:ILists(A).a=x$xs)"; |
|
0 | 189 |
|
190 |
val iXHs = [NatXH,ListXH]; |
|
191 |
val icase_rls = XH_to_Es iXHs; |
|
192 |
||
193 |
(*** Type Rules ***) |
|
194 |
||
195 |
val icanT_tac = mk_canT_tac Type.thy iXHs; |
|
196 |
val incanT_tac = mk_ncanT_tac Type.thy [] icase_rls case_rls; |
|
197 |
||
198 |
val zeroT = icanT_tac "zero : Nat"; |
|
199 |
val succT = icanT_tac "n:Nat ==> succ(n) : Nat"; |
|
200 |
val nilT = icanT_tac "[] : List(A)"; |
|
289 | 201 |
val consT = icanT_tac "[| h:A; t:List(A) |] ==> h$t : List(A)"; |
0 | 202 |
|
203 |
val icanTs = [zeroT,succT,nilT,consT]; |
|
204 |
||
205 |
val ncaseT = incanT_tac |
|
206 |
"[| n:Nat; n=zero ==> b:C(zero); \ |
|
207 |
\ !!x.[| x:Nat; n=succ(x) |] ==> c(x):C(succ(x)) |] ==> \ |
|
208 |
\ ncase(n,b,c) : C(n)"; |
|
209 |
||
210 |
val lcaseT = incanT_tac |
|
211 |
"[| l:List(A); l=[] ==> b:C([]); \ |
|
289 | 212 |
\ !!h t.[| h:A; t:List(A); l=h$t |] ==> c(h,t):C(h$t) |] ==> \ |
0 | 213 |
\ lcase(l,b,c) : C(l)"; |
214 |
||
215 |
val incanTs = [ncaseT,lcaseT]; |
|
216 |
||
217 |
(*** Induction Rules ***) |
|
218 |
||
219 |
val ind_Ms = [NatM,ListM]; |
|
220 |
||
221 |
fun mk_ind_tac ddefs tdefs Ms canTs case_rls s = prove_goalw Type.thy ddefs s |
|
222 |
(fn major::prems => [resolve_tac (Ms RL ([major] RL (tdefs RL [def_induct]))) 1, |
|
223 |
fast_tac (set_cs addSIs (prems @ canTs) addSEs case_rls) 1]); |
|
224 |
||
225 |
val ind_tac = mk_ind_tac ind_data_defs ind_type_defs ind_Ms canTs case_rls; |
|
226 |
||
227 |
val Nat_ind = ind_tac |
|
228 |
"[| n:Nat; P(zero); !!x.[| x:Nat; P(x) |] ==> P(succ(x)) |] ==> \ |
|
229 |
\ P(n)"; |
|
230 |
||
231 |
val List_ind = ind_tac |
|
232 |
"[| l:List(A); P([]); \ |
|
289 | 233 |
\ !!x xs.[| x:A; xs:List(A); P(xs) |] ==> P(x$xs) |] ==> \ |
0 | 234 |
\ P(l)"; |
235 |
||
236 |
val inds = [Nat_ind,List_ind]; |
|
237 |
||
238 |
(*** Primitive Recursive Rules ***) |
|
239 |
||
240 |
fun mk_prec_tac inds s = prove_goal Type.thy s |
|
241 |
(fn major::prems => [resolve_tac ([major] RL inds) 1, |
|
8
c3d2c6dcf3f0
Installation of new simplfier. Previously appeared to set up the old
lcp
parents:
0
diff
changeset
|
242 |
ALLGOALS (simp_tac term_ss THEN' |
0 | 243 |
fast_tac (set_cs addSIs prems))]); |
244 |
val prec_tac = mk_prec_tac inds; |
|
245 |
||
246 |
val nrecT = prec_tac |
|
247 |
"[| n:Nat; b:C(zero); \ |
|
248 |
\ !!x g.[| x:Nat; g:C(x) |] ==> c(x,g):C(succ(x)) |] ==> \ |
|
249 |
\ nrec(n,b,c) : C(n)"; |
|
250 |
||
251 |
val lrecT = prec_tac |
|
252 |
"[| l:List(A); b:C([]); \ |
|
289 | 253 |
\ !!x xs g.[| x:A; xs:List(A); g:C(xs) |] ==> c(x,xs,g):C(x$xs) |] ==> \ |
0 | 254 |
\ lrec(l,b,c) : C(l)"; |
255 |
||
256 |
val precTs = [nrecT,lrecT]; |
|
257 |
||
258 |
||
259 |
(*** Theorem proving ***) |
|
260 |
||
261 |
val [major,minor] = goal Type.thy |
|
262 |
"[| <a,b> : Sigma(A,B); [| a:A; b:B(a) |] ==> P \ |
|
263 |
\ |] ==> P"; |
|
264 |
br (major RS (XH_to_E SgXH)) 1; |
|
265 |
br minor 1; |
|
266 |
by (ALLGOALS (fast_tac term_cs)); |
|
267 |
val SgE2 = result(); |
|
268 |
||
269 |
(* General theorem proving ignores non-canonical term-formers, *) |
|
270 |
(* - intro rules are type rules for canonical terms *) |
|
271 |
(* - elim rules are case rules (no non-canonical terms appear) *) |
|
272 |
||
273 |
val type_cs = term_cs addSIs (SubtypeI::(canTs @ icanTs)) |
|
274 |
addSEs (SubtypeE::(XH_to_Es XHs)); |
|
275 |
||
276 |
||
277 |
(*** Infinite Data Types ***) |
|
278 |
||
279 |
val [mono] = goal Type.thy "mono(f) ==> lfp(f) <= gfp(f)"; |
|
280 |
br (lfp_lowerbound RS subset_trans) 1; |
|
281 |
br (mono RS gfp_lemma3) 1; |
|
282 |
br subset_refl 1; |
|
283 |
val lfp_subset_gfp = result(); |
|
284 |
||
285 |
val prems = goal Type.thy |
|
286 |
"[| a:A; !!x X.[| x:A; ALL y:A.t(y):X |] ==> t(x) : B(X) |] ==> \ |
|
287 |
\ t(a) : gfp(B)"; |
|
288 |
br coinduct 1; |
|
289 |
by (res_inst_tac [("P","%x.EX y:A.x=t(y)")] CollectI 1); |
|
290 |
by (ALLGOALS (fast_tac (ccl_cs addSIs prems))); |
|
291 |
val gfpI = result(); |
|
292 |
||
293 |
val rew::prem::prems = goal Type.thy |
|
294 |
"[| C==gfp(B); a:A; !!x X.[| x:A; ALL y:A.t(y):X |] ==> t(x) : B(X) |] ==> \ |
|
295 |
\ t(a) : C"; |
|
296 |
by (rewtac rew); |
|
297 |
by (REPEAT (ares_tac ((prem RS gfpI)::prems) 1)); |
|
298 |
val def_gfpI = result(); |
|
299 |
||
300 |
(* EG *) |
|
301 |
||
302 |
val prems = goal Type.thy |
|
289 | 303 |
"letrec g x be zero$g(x) in g(bot) : Lists(Nat)"; |
0 | 304 |
by (rtac (refl RS (XH_to_I UnitXH) RS (Lists_def RS def_gfpI)) 1); |
305 |
br (letrecB RS ssubst) 1; |
|
306 |
bw cons_def; |
|
307 |
by (fast_tac type_cs 1); |
|
308 |
result(); |