| author | blanchet | 
| Fri, 01 Aug 2014 14:43:57 +0200 | |
| changeset 57743 | 0af2d5dfb0ac | 
| parent 47071 | 2884ee1ffbf0 | 
| child 58871 | c399ae4b836f | 
| permissions | -rw-r--r-- | 
| 1478 | 1  | 
(* Title: ZF/Cardinal_AC.thy  | 
2  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
|
| 484 | 3  | 
Copyright 1994 University of Cambridge  | 
4  | 
||
| 13134 | 5  | 
These results help justify infinite-branching datatypes  | 
| 484 | 6  | 
*)  | 
7  | 
||
| 13328 | 8  | 
header{*Cardinal Arithmetic Using AC*}
 | 
9  | 
||
| 16417 | 10  | 
theory Cardinal_AC imports CardinalArith Zorn begin  | 
| 13134 | 11  | 
|
| 13356 | 12  | 
subsection{*Strengthened Forms of Existing Theorems on Cardinals*}
 | 
| 13134 | 13  | 
|
| 46954 | 14  | 
lemma cardinal_eqpoll: "|A| \<approx> A"  | 
| 13134 | 15  | 
apply (rule AC_well_ord [THEN exE])  | 
16  | 
apply (erule well_ord_cardinal_eqpoll)  | 
|
17  | 
done  | 
|
18  | 
||
| 14046 | 19  | 
text{*The theorem @{term "||A|| = |A|"} *}
 | 
| 45602 | 20  | 
lemmas cardinal_idem = cardinal_eqpoll [THEN cardinal_cong, simp]  | 
| 13134 | 21  | 
|
| 46954 | 22  | 
lemma cardinal_eqE: "|X| = |Y| ==> X \<approx> Y"  | 
| 13134 | 23  | 
apply (rule AC_well_ord [THEN exE])  | 
24  | 
apply (rule AC_well_ord [THEN exE])  | 
|
| 13269 | 25  | 
apply (rule well_ord_cardinal_eqE, assumption+)  | 
| 13134 | 26  | 
done  | 
27  | 
||
| 46954 | 28  | 
lemma cardinal_eqpoll_iff: "|X| = |Y| \<longleftrightarrow> X \<approx> Y"  | 
| 13269 | 29  | 
by (blast intro: cardinal_cong cardinal_eqE)  | 
| 13134 | 30  | 
|
| 
13615
 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 
paulson 
parents: 
13356 
diff
changeset
 | 
31  | 
lemma cardinal_disjoint_Un:  | 
| 46820 | 32  | 
"[| |A|=|B|; |C|=|D|; A \<inter> C = 0; B \<inter> D = 0 |]  | 
33  | 
==> |A \<union> C| = |B \<union> D|"  | 
|
| 
13615
 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 
paulson 
parents: 
13356 
diff
changeset
 | 
34  | 
by (simp add: cardinal_eqpoll_iff eqpoll_disjoint_Un)  | 
| 13134 | 35  | 
|
| 46954 | 36  | 
lemma lepoll_imp_Card_le: "A \<lesssim> B ==> |A| \<le> |B|"  | 
| 13134 | 37  | 
apply (rule AC_well_ord [THEN exE])  | 
| 13269 | 38  | 
apply (erule well_ord_lepoll_imp_Card_le, assumption)  | 
| 13134 | 39  | 
done  | 
40  | 
||
| 
46821
 
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
 
paulson 
parents: 
46820 
diff
changeset
 | 
41  | 
lemma cadd_assoc: "(i \<oplus> j) \<oplus> k = i \<oplus> (j \<oplus> k)"  | 
| 13134 | 42  | 
apply (rule AC_well_ord [THEN exE])  | 
43  | 
apply (rule AC_well_ord [THEN exE])  | 
|
44  | 
apply (rule AC_well_ord [THEN exE])  | 
|
| 13269 | 45  | 
apply (rule well_ord_cadd_assoc, assumption+)  | 
| 13134 | 46  | 
done  | 
47  | 
||
| 
46821
 
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
 
paulson 
parents: 
46820 
diff
changeset
 | 
48  | 
lemma cmult_assoc: "(i \<otimes> j) \<otimes> k = i \<otimes> (j \<otimes> k)"  | 
| 13134 | 49  | 
apply (rule AC_well_ord [THEN exE])  | 
50  | 
apply (rule AC_well_ord [THEN exE])  | 
|
51  | 
apply (rule AC_well_ord [THEN exE])  | 
|
| 13269 | 52  | 
apply (rule well_ord_cmult_assoc, assumption+)  | 
| 13134 | 53  | 
done  | 
54  | 
||
| 
46821
 
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
 
paulson 
parents: 
46820 
diff
changeset
 | 
55  | 
lemma cadd_cmult_distrib: "(i \<oplus> j) \<otimes> k = (i \<otimes> k) \<oplus> (j \<otimes> k)"  | 
| 13134 | 56  | 
apply (rule AC_well_ord [THEN exE])  | 
57  | 
apply (rule AC_well_ord [THEN exE])  | 
|
58  | 
apply (rule AC_well_ord [THEN exE])  | 
|
| 13269 | 59  | 
apply (rule well_ord_cadd_cmult_distrib, assumption+)  | 
| 13134 | 60  | 
done  | 
61  | 
||
| 46954 | 62  | 
lemma InfCard_square_eq: "InfCard(|A|) ==> A*A \<approx> A"  | 
| 13134 | 63  | 
apply (rule AC_well_ord [THEN exE])  | 
| 13269 | 64  | 
apply (erule well_ord_InfCard_square_eq, assumption)  | 
| 13134 | 65  | 
done  | 
66  | 
||
67  | 
||
| 14046 | 68  | 
subsection {*The relationship between cardinality and le-pollence*}
 | 
| 13134 | 69  | 
|
| 46954 | 70  | 
lemma Card_le_imp_lepoll:  | 
71  | 
assumes "|A| \<le> |B|" shows "A \<lesssim> B"  | 
|
72  | 
proof -  | 
|
73  | 
have "A \<approx> |A|"  | 
|
74  | 
by (rule cardinal_eqpoll [THEN eqpoll_sym])  | 
|
75  | 
also have "... \<lesssim> |B|"  | 
|
76  | 
by (rule le_imp_subset [THEN subset_imp_lepoll]) (rule assms)  | 
|
77  | 
also have "... \<approx> B"  | 
|
78  | 
by (rule cardinal_eqpoll)  | 
|
79  | 
finally show ?thesis .  | 
|
80  | 
qed  | 
|
| 13134 | 81  | 
|
| 46954 | 82  | 
lemma le_Card_iff: "Card(K) ==> |A| \<le> K \<longleftrightarrow> A \<lesssim> K"  | 
| 46820 | 83  | 
apply (erule Card_cardinal_eq [THEN subst], rule iffI,  | 
| 13269 | 84  | 
erule Card_le_imp_lepoll)  | 
| 46820 | 85  | 
apply (erule lepoll_imp_Card_le)  | 
| 13134 | 86  | 
done  | 
87  | 
||
| 46954 | 88  | 
lemma cardinal_0_iff_0 [simp]: "|A| = 0 \<longleftrightarrow> A = 0"  | 
| 46820 | 89  | 
apply auto  | 
| 14046 | 90  | 
apply (drule cardinal_0 [THEN ssubst])  | 
91  | 
apply (blast intro: eqpoll_0_iff [THEN iffD1] cardinal_eqpoll_iff [THEN iffD1])  | 
|
92  | 
done  | 
|
93  | 
||
| 46954 | 94  | 
lemma cardinal_lt_iff_lesspoll:  | 
95  | 
assumes i: "Ord(i)" shows "i < |A| \<longleftrightarrow> i \<prec> A"  | 
|
96  | 
proof  | 
|
97  | 
assume "i < |A|"  | 
|
98  | 
hence "i \<prec> |A|"  | 
|
99  | 
by (blast intro: lt_Card_imp_lesspoll Card_cardinal)  | 
|
100  | 
also have "... \<approx> A"  | 
|
101  | 
by (rule cardinal_eqpoll)  | 
|
102  | 
finally show "i \<prec> A" .  | 
|
103  | 
next  | 
|
104  | 
assume "i \<prec> A"  | 
|
105  | 
also have "... \<approx> |A|"  | 
|
106  | 
by (blast intro: cardinal_eqpoll eqpoll_sym)  | 
|
107  | 
finally have "i \<prec> |A|" .  | 
|
108  | 
thus "i < |A|" using i  | 
|
109  | 
by (force intro: cardinal_lt_imp_lt lesspoll_cardinal_lt)  | 
|
110  | 
qed  | 
|
| 14046 | 111  | 
|
112  | 
lemma cardinal_le_imp_lepoll: " i \<le> |A| ==> i \<lesssim> A"  | 
|
| 46954 | 113  | 
by (blast intro: lt_Ord Card_le_imp_lepoll Ord_cardinal_le le_trans)  | 
| 14046 | 114  | 
|
115  | 
||
116  | 
subsection{*Other Applications of AC*}
 | 
|
117  | 
||
| 47052 | 118  | 
lemma surj_implies_inj:  | 
119  | 
assumes f: "f \<in> surj(X,Y)" shows "\<exists>g. g \<in> inj(Y,X)"  | 
|
120  | 
proof -  | 
|
121  | 
  from f AC_Pi [of Y "%y. f-``{y}"]
 | 
|
122  | 
  obtain z where z: "z \<in> (\<Pi> y\<in>Y. f -`` {y})"  
 | 
|
123  | 
by (auto simp add: surj_def) (fast dest: apply_Pair)  | 
|
124  | 
show ?thesis  | 
|
125  | 
proof  | 
|
126  | 
show "z \<in> inj(Y, X)" using z surj_is_fun [OF f]  | 
|
127  | 
by (blast dest: apply_type Pi_memberD  | 
|
128  | 
intro: apply_equality Pi_type f_imp_injective)  | 
|
129  | 
qed  | 
|
130  | 
qed  | 
|
| 13134 | 131  | 
|
| 47052 | 132  | 
text{*Kunen's Lemma 10.20*}
 | 
133  | 
lemma surj_implies_cardinal_le:  | 
|
134  | 
assumes f: "f \<in> surj(X,Y)" shows "|Y| \<le> |X|"  | 
|
135  | 
proof (rule lepoll_imp_Card_le)  | 
|
136  | 
from f [THEN surj_implies_inj] obtain g where "g \<in> inj(Y,X)" ..  | 
|
137  | 
thus "Y \<lesssim> X"  | 
|
138  | 
by (auto simp add: lepoll_def)  | 
|
139  | 
qed  | 
|
| 13134 | 140  | 
|
| 47052 | 141  | 
text{*Kunen's Lemma 10.21*}
 | 
| 
13615
 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 
paulson 
parents: 
13356 
diff
changeset
 | 
142  | 
lemma cardinal_UN_le:  | 
| 46963 | 143  | 
assumes K: "InfCard(K)"  | 
144  | 
shows "(!!i. i\<in>K ==> |X(i)| \<le> K) ==> |\<Union>i\<in>K. X(i)| \<le> K"  | 
|
145  | 
proof (simp add: K InfCard_is_Card le_Card_iff)  | 
|
146  | 
have [intro]: "Ord(K)" by (blast intro: InfCard_is_Card Card_is_Ord K)  | 
|
147  | 
assume "!!i. i\<in>K ==> X(i) \<lesssim> K"  | 
|
148  | 
hence "!!i. i\<in>K ==> \<exists>f. f \<in> inj(X(i), K)" by (simp add: lepoll_def)  | 
|
149  | 
with AC_Pi obtain f where f: "f \<in> (\<Pi> i\<in>K. inj(X(i), K))"  | 
|
| 47052 | 150  | 
by force  | 
| 46963 | 151  | 
  { fix z
 | 
152  | 
assume z: "z \<in> (\<Union>i\<in>K. X(i))"  | 
|
153  | 
then obtain i where i: "i \<in> K" "Ord(i)" "z \<in> X(i)"  | 
|
154  | 
by (blast intro: Ord_in_Ord [of K])  | 
|
155  | 
hence "(LEAST i. z \<in> X(i)) \<le> i" by (fast intro: Least_le)  | 
|
156  | 
hence "(LEAST i. z \<in> X(i)) < K" by (best intro: lt_trans1 ltI i)  | 
|
157  | 
hence "(LEAST i. z \<in> X(i)) \<in> K" and "z \<in> X(LEAST i. z \<in> X(i))"  | 
|
158  | 
by (auto intro: LeastI ltD i)  | 
|
159  | 
} note mems = this  | 
|
160  | 
have "(\<Union>i\<in>K. X(i)) \<lesssim> K \<times> K"  | 
|
161  | 
proof (unfold lepoll_def)  | 
|
162  | 
show "\<exists>f. f \<in> inj(\<Union>RepFun(K, X), K \<times> K)"  | 
|
163  | 
apply (rule exI)  | 
|
164  | 
apply (rule_tac c = "%z. \<langle>LEAST i. z \<in> X(i), f ` (LEAST i. z \<in> X(i)) ` z\<rangle>"  | 
|
165  | 
and d = "%\<langle>i,j\<rangle>. converse (f`i) ` j" in lam_injective)  | 
|
166  | 
apply (force intro: f inj_is_fun mems apply_type Perm.left_inverse)+  | 
|
167  | 
done  | 
|
168  | 
qed  | 
|
169  | 
also have "... \<approx> K"  | 
|
170  | 
by (simp add: K InfCard_square_eq InfCard_is_Card Card_cardinal_eq)  | 
|
171  | 
finally show "(\<Union>i\<in>K. X(i)) \<lesssim> K" .  | 
|
172  | 
qed  | 
|
| 13134 | 173  | 
|
| 46963 | 174  | 
text{*The same again, using @{term csucc}*}
 | 
| 13134 | 175  | 
lemma cardinal_UN_lt_csucc:  | 
| 
47071
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
47052 
diff
changeset
 | 
176  | 
"[| InfCard(K); \<And>i. i\<in>K \<Longrightarrow> |X(i)| < csucc(K) |]  | 
| 
13615
 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 
paulson 
parents: 
13356 
diff
changeset
 | 
177  | 
==> |\<Union>i\<in>K. X(i)| < csucc(K)"  | 
| 
 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 
paulson 
parents: 
13356 
diff
changeset
 | 
178  | 
by (simp add: Card_lt_csucc_iff cardinal_UN_le InfCard_is_Card Card_cardinal)  | 
| 13134 | 179  | 
|
| 47052 | 180  | 
text{*The same again, for a union of ordinals.  In use, j(i) is a bit like rank(i),
 | 
181  | 
the least ordinal j such that i:Vfrom(A,j). *}  | 
|
| 13134 | 182  | 
lemma cardinal_UN_Ord_lt_csucc:  | 
| 
47071
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
47052 
diff
changeset
 | 
183  | 
"[| InfCard(K); \<And>i. i\<in>K \<Longrightarrow> j(i) < csucc(K) |]  | 
| 
13615
 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 
paulson 
parents: 
13356 
diff
changeset
 | 
184  | 
==> (\<Union>i\<in>K. j(i)) < csucc(K)"  | 
| 13269 | 185  | 
apply (rule cardinal_UN_lt_csucc [THEN Card_lt_imp_lt], assumption)  | 
| 13134 | 186  | 
apply (blast intro: Ord_cardinal_le [THEN lt_trans1] elim: ltE)  | 
187  | 
apply (blast intro!: Ord_UN elim: ltE)  | 
|
188  | 
apply (erule InfCard_is_Card [THEN Card_is_Ord, THEN Card_csucc])  | 
|
189  | 
done  | 
|
190  | 
||
191  | 
||
| 
47071
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
47052 
diff
changeset
 | 
192  | 
subsection{*The Main Result for Infinite-Branching Datatypes*}
 | 
| 13134 | 193  | 
|
| 
47071
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
47052 
diff
changeset
 | 
194  | 
text{*As above, but the index set need not be a cardinal. Work
 | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
47052 
diff
changeset
 | 
195  | 
backwards along the injection from @{term W} into @{term K}, given
 | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
47052 
diff
changeset
 | 
196  | 
that @{term"W\<noteq>0"}.*}
 | 
| 46954 | 197  | 
|
| 13134 | 198  | 
lemma inj_UN_subset:  | 
| 46954 | 199  | 
assumes f: "f \<in> inj(A,B)" and a: "a \<in> A"  | 
200  | 
shows "(\<Union>x\<in>A. C(x)) \<subseteq> (\<Union>y\<in>B. C(if y \<in> range(f) then converse(f)`y else a))"  | 
|
201  | 
proof (rule UN_least)  | 
|
202  | 
fix x  | 
|
203  | 
assume x: "x \<in> A"  | 
|
204  | 
hence fx: "f ` x \<in> B" by (blast intro: f inj_is_fun [THEN apply_type])  | 
|
205  | 
have "C(x) \<subseteq> C(if f ` x \<in> range(f) then converse(f) ` (f ` x) else a)"  | 
|
206  | 
using f x by (simp add: inj_is_fun [THEN apply_rangeI])  | 
|
207  | 
also have "... \<subseteq> (\<Union>y\<in>B. C(if y \<in> range(f) then converse(f) ` y else a))"  | 
|
208  | 
by (rule UN_upper [OF fx])  | 
|
209  | 
finally show "C(x) \<subseteq> (\<Union>y\<in>B. C(if y \<in> range(f) then converse(f)`y else a))" .  | 
|
210  | 
qed  | 
|
| 13134 | 211  | 
|
| 
47071
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
47052 
diff
changeset
 | 
212  | 
theorem le_UN_Ord_lt_csucc:  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
47052 
diff
changeset
 | 
213  | 
assumes IK: "InfCard(K)" and WK: "|W| \<le> K" and j: "\<And>w. w\<in>W \<Longrightarrow> j(w) < csucc(K)"  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
47052 
diff
changeset
 | 
214  | 
shows "(\<Union>w\<in>W. j(w)) < csucc(K)"  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
47052 
diff
changeset
 | 
215  | 
proof -  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
47052 
diff
changeset
 | 
216  | 
have CK: "Card(K)"  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
47052 
diff
changeset
 | 
217  | 
by (simp add: InfCard_is_Card IK)  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
47052 
diff
changeset
 | 
218  | 
then obtain f where f: "f \<in> inj(W, K)" using WK  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
47052 
diff
changeset
 | 
219  | 
by(auto simp add: le_Card_iff lepoll_def)  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
47052 
diff
changeset
 | 
220  | 
have OU: "Ord(\<Union>w\<in>W. j(w))" using j  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
47052 
diff
changeset
 | 
221  | 
by (blast elim: ltE)  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
47052 
diff
changeset
 | 
222  | 
note lt_subset_trans [OF _ _ OU, trans]  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
47052 
diff
changeset
 | 
223  | 
show ?thesis  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
47052 
diff
changeset
 | 
224  | 
proof (cases "W=0")  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
47052 
diff
changeset
 | 
225  | 
      case True  --{*solve the easy 0 case*}
 | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
47052 
diff
changeset
 | 
226  | 
thus ?thesis by (simp add: CK Card_is_Ord Card_csucc Ord_0_lt_csucc)  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
47052 
diff
changeset
 | 
227  | 
next  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
47052 
diff
changeset
 | 
228  | 
case False  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
47052 
diff
changeset
 | 
229  | 
then obtain x where x: "x \<in> W" by blast  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
47052 
diff
changeset
 | 
230  | 
have "(\<Union>x\<in>W. j(x)) \<subseteq> (\<Union>k\<in>K. j(if k \<in> range(f) then converse(f) ` k else x))"  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
47052 
diff
changeset
 | 
231  | 
by (rule inj_UN_subset [OF f x])  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
47052 
diff
changeset
 | 
232  | 
also have "... < csucc(K)" using IK  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
47052 
diff
changeset
 | 
233  | 
proof (rule cardinal_UN_Ord_lt_csucc)  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
47052 
diff
changeset
 | 
234  | 
fix k  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
47052 
diff
changeset
 | 
235  | 
assume "k \<in> K"  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
47052 
diff
changeset
 | 
236  | 
thus "j(if k \<in> range(f) then converse(f) ` k else x) < csucc(K)" using f x j  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
47052 
diff
changeset
 | 
237  | 
by (simp add: inj_converse_fun [THEN apply_type])  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
47052 
diff
changeset
 | 
238  | 
qed  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
47052 
diff
changeset
 | 
239  | 
finally show ?thesis .  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
47052 
diff
changeset
 | 
240  | 
qed  | 
| 
 
2884ee1ffbf0
More structured proofs for infinite cardinalities
 
paulson 
parents: 
47052 
diff
changeset
 | 
241  | 
qed  | 
| 13134 | 242  | 
|
243  | 
end  |