author | haftmann |
Sun, 08 Oct 2017 22:28:22 +0200 | |
changeset 66817 | 0b12755ccbb2 |
parent 66816 | 212a3334e7da |
child 66839 | 909ba5ed93dd |
permissions | -rw-r--r-- |
41959 | 1 |
(* Title: HOL/Parity.thy |
2 |
Author: Jeremy Avigad |
|
3 |
Author: Jacques D. Fleuriot |
|
21256 | 4 |
*) |
5 |
||
60758 | 6 |
section \<open>Parity in rings and semirings\<close> |
21256 | 7 |
|
8 |
theory Parity |
|
66815 | 9 |
imports Euclidean_Division |
21256 | 10 |
begin |
11 |
||
61799 | 12 |
subsection \<open>Ring structures with parity and \<open>even\<close>/\<open>odd\<close> predicates\<close> |
58678
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
13 |
|
66815 | 14 |
class semiring_parity = linordered_semidom + unique_euclidean_semiring + |
15 |
assumes of_nat_div: "of_nat (m div n) = of_nat m div of_nat n" |
|
16 |
and odd_imp_mod_2_eq_1: "\<not> 2 dvd a \<Longrightarrow> a mod 2 = 1" |
|
17 |
||
18 |
context semiring_parity |
|
54227
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
haftmann
parents:
47225
diff
changeset
|
19 |
begin |
21256 | 20 |
|
66815 | 21 |
lemma of_nat_dvd_iff: |
22 |
"of_nat m dvd of_nat n \<longleftrightarrow> m dvd n" (is "?P \<longleftrightarrow> ?Q") |
|
23 |
proof (cases "m = 0") |
|
24 |
case True |
|
25 |
then show ?thesis |
|
26 |
by simp |
|
27 |
next |
|
28 |
case False |
|
29 |
show ?thesis |
|
30 |
proof |
|
31 |
assume ?Q |
|
32 |
then show ?P |
|
33 |
by (auto elim: dvd_class.dvdE) |
|
34 |
next |
|
35 |
assume ?P |
|
36 |
with False have "of_nat n = of_nat n div of_nat m * of_nat m" |
|
37 |
by simp |
|
38 |
then have "of_nat n = of_nat (n div m * m)" |
|
39 |
by (simp add: of_nat_div) |
|
40 |
then have "n = n div m * m" |
|
41 |
by (simp only: of_nat_eq_iff) |
|
42 |
then have "n = m * (n div m)" |
|
43 |
by (simp add: ac_simps) |
|
44 |
then show ?Q .. |
|
45 |
qed |
|
46 |
qed |
|
47 |
||
48 |
lemma of_nat_mod: |
|
49 |
"of_nat (m mod n) = of_nat m mod of_nat n" |
|
50 |
proof - |
|
51 |
have "of_nat m div of_nat n * of_nat n + of_nat m mod of_nat n = of_nat m" |
|
52 |
by (simp add: div_mult_mod_eq) |
|
53 |
also have "of_nat m = of_nat (m div n * n + m mod n)" |
|
54 |
by simp |
|
55 |
finally show ?thesis |
|
56 |
by (simp only: of_nat_div of_nat_mult of_nat_add) simp |
|
57 |
qed |
|
58 |
||
59 |
lemma one_div_two_eq_zero [simp]: |
|
60 |
"1 div 2 = 0" |
|
61 |
proof - |
|
62 |
from of_nat_div [symmetric] have "of_nat 1 div of_nat 2 = of_nat 0" |
|
63 |
by (simp only:) simp |
|
64 |
then show ?thesis |
|
65 |
by simp |
|
66 |
qed |
|
67 |
||
68 |
lemma one_mod_two_eq_one [simp]: |
|
69 |
"1 mod 2 = 1" |
|
70 |
proof - |
|
71 |
from of_nat_mod [symmetric] have "of_nat 1 mod of_nat 2 = of_nat 1" |
|
72 |
by (simp only:) simp |
|
73 |
then show ?thesis |
|
74 |
by simp |
|
75 |
qed |
|
59816
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents:
58889
diff
changeset
|
76 |
|
58740 | 77 |
abbreviation even :: "'a \<Rightarrow> bool" |
63654 | 78 |
where "even a \<equiv> 2 dvd a" |
54228 | 79 |
|
58678
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
80 |
abbreviation odd :: "'a \<Rightarrow> bool" |
63654 | 81 |
where "odd a \<equiv> \<not> 2 dvd a" |
58678
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
82 |
|
66815 | 83 |
lemma even_iff_mod_2_eq_zero: |
84 |
"even a \<longleftrightarrow> a mod 2 = 0" |
|
85 |
by (fact dvd_eq_mod_eq_0) |
|
86 |
||
87 |
lemma odd_iff_mod_2_eq_one: |
|
88 |
"odd a \<longleftrightarrow> a mod 2 = 1" |
|
89 |
by (auto dest: odd_imp_mod_2_eq_1) |
|
58787 | 90 |
|
66815 | 91 |
lemma parity_cases [case_names even odd]: |
92 |
assumes "even a \<Longrightarrow> a mod 2 = 0 \<Longrightarrow> P" |
|
93 |
assumes "odd a \<Longrightarrow> a mod 2 = 1 \<Longrightarrow> P" |
|
94 |
shows P |
|
95 |
using assms by (cases "even a") (simp_all add: odd_iff_mod_2_eq_one) |
|
96 |
||
97 |
lemma not_mod_2_eq_1_eq_0 [simp]: |
|
98 |
"a mod 2 \<noteq> 1 \<longleftrightarrow> a mod 2 = 0" |
|
99 |
by (cases a rule: parity_cases) simp_all |
|
100 |
||
101 |
lemma not_mod_2_eq_0_eq_1 [simp]: |
|
102 |
"a mod 2 \<noteq> 0 \<longleftrightarrow> a mod 2 = 1" |
|
103 |
by (cases a rule: parity_cases) simp_all |
|
58787 | 104 |
|
58690 | 105 |
lemma evenE [elim?]: |
106 |
assumes "even a" |
|
107 |
obtains b where "a = 2 * b" |
|
58740 | 108 |
using assms by (rule dvdE) |
58690 | 109 |
|
58681 | 110 |
lemma oddE [elim?]: |
58680 | 111 |
assumes "odd a" |
112 |
obtains b where "a = 2 * b + 1" |
|
58787 | 113 |
proof - |
66815 | 114 |
have "a = 2 * (a div 2) + a mod 2" |
115 |
by (simp add: mult_div_mod_eq) |
|
116 |
with assms have "a = 2 * (a div 2) + 1" |
|
117 |
by (simp add: odd_iff_mod_2_eq_one) |
|
118 |
then show ?thesis .. |
|
119 |
qed |
|
120 |
||
121 |
lemma mod_2_eq_odd: |
|
122 |
"a mod 2 = of_bool (odd a)" |
|
123 |
by (auto elim: oddE) |
|
124 |
||
125 |
lemma one_mod_2_pow_eq [simp]: |
|
126 |
"1 mod (2 ^ n) = of_bool (n > 0)" |
|
127 |
proof - |
|
128 |
have "1 mod (2 ^ n) = (of_bool (n > 0) :: nat)" |
|
129 |
by (induct n) (simp_all add: mod_mult2_eq) |
|
130 |
then have "of_nat (1 mod (2 ^ n)) = of_bool (n > 0)" |
|
131 |
by simp |
|
132 |
then show ?thesis |
|
133 |
by (simp add: of_nat_mod) |
|
134 |
qed |
|
135 |
||
136 |
lemma even_of_nat [simp]: |
|
137 |
"even (of_nat a) \<longleftrightarrow> even a" |
|
138 |
proof - |
|
139 |
have "even (of_nat a) \<longleftrightarrow> of_nat 2 dvd of_nat a" |
|
140 |
by simp |
|
141 |
also have "\<dots> \<longleftrightarrow> even a" |
|
142 |
by (simp only: of_nat_dvd_iff) |
|
143 |
finally show ?thesis . |
|
144 |
qed |
|
145 |
||
146 |
lemma even_zero [simp]: |
|
147 |
"even 0" |
|
148 |
by (fact dvd_0_right) |
|
149 |
||
150 |
lemma odd_one [simp]: |
|
151 |
"odd 1" |
|
152 |
proof - |
|
153 |
have "\<not> (2 :: nat) dvd 1" |
|
154 |
by simp |
|
155 |
then have "\<not> of_nat 2 dvd of_nat 1" |
|
156 |
unfolding of_nat_dvd_iff by simp |
|
157 |
then show ?thesis |
|
158 |
by simp |
|
58787 | 159 |
qed |
63654 | 160 |
|
66815 | 161 |
lemma odd_even_add: |
162 |
"even (a + b)" if "odd a" and "odd b" |
|
163 |
proof - |
|
164 |
from that obtain c d where "a = 2 * c + 1" and "b = 2 * d + 1" |
|
165 |
by (blast elim: oddE) |
|
166 |
then have "a + b = 2 * c + 2 * d + (1 + 1)" |
|
167 |
by (simp only: ac_simps) |
|
168 |
also have "\<dots> = 2 * (c + d + 1)" |
|
169 |
by (simp add: algebra_simps) |
|
170 |
finally show ?thesis .. |
|
171 |
qed |
|
172 |
||
173 |
lemma even_add [simp]: |
|
174 |
"even (a + b) \<longleftrightarrow> (even a \<longleftrightarrow> even b)" |
|
175 |
by (auto simp add: dvd_add_right_iff dvd_add_left_iff odd_even_add) |
|
176 |
||
177 |
lemma odd_add [simp]: |
|
178 |
"odd (a + b) \<longleftrightarrow> \<not> (odd a \<longleftrightarrow> odd b)" |
|
179 |
by simp |
|
180 |
||
181 |
lemma even_plus_one_iff [simp]: |
|
182 |
"even (a + 1) \<longleftrightarrow> odd a" |
|
183 |
by (auto simp add: dvd_add_right_iff intro: odd_even_add) |
|
184 |
||
185 |
lemma even_mult_iff [simp]: |
|
186 |
"even (a * b) \<longleftrightarrow> even a \<or> even b" (is "?P \<longleftrightarrow> ?Q") |
|
187 |
proof |
|
188 |
assume ?Q |
|
189 |
then show ?P |
|
190 |
by auto |
|
191 |
next |
|
192 |
assume ?P |
|
193 |
show ?Q |
|
194 |
proof (rule ccontr) |
|
195 |
assume "\<not> (even a \<or> even b)" |
|
196 |
then have "odd a" and "odd b" |
|
197 |
by auto |
|
198 |
then obtain r s where "a = 2 * r + 1" and "b = 2 * s + 1" |
|
199 |
by (blast elim: oddE) |
|
200 |
then have "a * b = (2 * r + 1) * (2 * s + 1)" |
|
201 |
by simp |
|
202 |
also have "\<dots> = 2 * (2 * r * s + r + s) + 1" |
|
203 |
by (simp add: algebra_simps) |
|
204 |
finally have "odd (a * b)" |
|
205 |
by simp |
|
206 |
with \<open>?P\<close> show False |
|
207 |
by auto |
|
208 |
qed |
|
209 |
qed |
|
58678
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
210 |
|
63654 | 211 |
lemma even_numeral [simp]: "even (numeral (Num.Bit0 n))" |
58678
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
212 |
proof - |
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
213 |
have "even (2 * numeral n)" |
66815 | 214 |
unfolding even_mult_iff by simp |
58678
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
215 |
then have "even (numeral n + numeral n)" |
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
216 |
unfolding mult_2 . |
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
217 |
then show ?thesis |
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
218 |
unfolding numeral.simps . |
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
219 |
qed |
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
220 |
|
63654 | 221 |
lemma odd_numeral [simp]: "odd (numeral (Num.Bit1 n))" |
58678
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
222 |
proof |
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
223 |
assume "even (numeral (num.Bit1 n))" |
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
224 |
then have "even (numeral n + numeral n + 1)" |
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
225 |
unfolding numeral.simps . |
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
226 |
then have "even (2 * numeral n + 1)" |
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
227 |
unfolding mult_2 . |
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
228 |
then have "2 dvd numeral n * 2 + 1" |
58740 | 229 |
by (simp add: ac_simps) |
63654 | 230 |
then have "2 dvd 1" |
231 |
using dvd_add_times_triv_left_iff [of 2 "numeral n" 1] by simp |
|
58678
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
232 |
then show False by simp |
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
233 |
qed |
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
234 |
|
63654 | 235 |
lemma even_power [simp]: "even (a ^ n) \<longleftrightarrow> even a \<and> n > 0" |
58680 | 236 |
by (induct n) auto |
237 |
||
66815 | 238 |
lemma even_succ_div_two [simp]: |
239 |
"even a \<Longrightarrow> (a + 1) div 2 = a div 2" |
|
240 |
by (cases "a = 0") (auto elim!: evenE dest: mult_not_zero) |
|
241 |
||
242 |
lemma odd_succ_div_two [simp]: |
|
243 |
"odd a \<Longrightarrow> (a + 1) div 2 = a div 2 + 1" |
|
244 |
by (auto elim!: oddE simp add: add.assoc) |
|
245 |
||
246 |
lemma even_two_times_div_two: |
|
247 |
"even a \<Longrightarrow> 2 * (a div 2) = a" |
|
248 |
by (fact dvd_mult_div_cancel) |
|
249 |
||
250 |
lemma odd_two_times_div_two_succ [simp]: |
|
251 |
"odd a \<Longrightarrow> 2 * (a div 2) + 1 = a" |
|
252 |
using mult_div_mod_eq [of 2 a] |
|
253 |
by (simp add: even_iff_mod_2_eq_zero) |
|
254 |
||
58678
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
255 |
end |
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
256 |
|
59816
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents:
58889
diff
changeset
|
257 |
class ring_parity = ring + semiring_parity |
58679 | 258 |
begin |
259 |
||
59816
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents:
58889
diff
changeset
|
260 |
subclass comm_ring_1 .. |
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents:
58889
diff
changeset
|
261 |
|
66815 | 262 |
lemma even_minus [simp]: |
263 |
"even (- a) \<longleftrightarrow> even a" |
|
58740 | 264 |
by (fact dvd_minus_iff) |
58679 | 265 |
|
66815 | 266 |
lemma even_diff [simp]: |
267 |
"even (a - b) \<longleftrightarrow> even (a + b)" |
|
58680 | 268 |
using even_add [of a "- b"] by simp |
269 |
||
58679 | 270 |
end |
271 |
||
66808
1907167b6038
elementary definition of division on natural numbers
haftmann
parents:
66582
diff
changeset
|
272 |
|
66815 | 273 |
subsection \<open>Instance for @{typ nat}\<close> |
66808
1907167b6038
elementary definition of division on natural numbers
haftmann
parents:
66582
diff
changeset
|
274 |
|
66815 | 275 |
instance nat :: semiring_parity |
276 |
by standard (simp_all add: dvd_eq_mod_eq_0) |
|
66808
1907167b6038
elementary definition of division on natural numbers
haftmann
parents:
66582
diff
changeset
|
277 |
|
66815 | 278 |
lemma even_Suc_Suc_iff [simp]: |
279 |
"even (Suc (Suc n)) \<longleftrightarrow> even n" |
|
58787 | 280 |
using dvd_add_triv_right_iff [of 2 n] by simp |
58687 | 281 |
|
66815 | 282 |
lemma even_Suc [simp]: "even (Suc n) \<longleftrightarrow> odd n" |
283 |
using even_plus_one_iff [of n] by simp |
|
58787 | 284 |
|
66815 | 285 |
lemma even_diff_nat [simp]: |
286 |
"even (m - n) \<longleftrightarrow> m < n \<or> even (m + n)" for m n :: nat |
|
58787 | 287 |
proof (cases "n \<le> m") |
288 |
case True |
|
289 |
then have "m - n + n * 2 = m + n" by (simp add: mult_2_right) |
|
66815 | 290 |
moreover have "even (m - n) \<longleftrightarrow> even (m - n + n * 2)" by simp |
291 |
ultimately have "even (m - n) \<longleftrightarrow> even (m + n)" by (simp only:) |
|
58787 | 292 |
then show ?thesis by auto |
293 |
next |
|
294 |
case False |
|
295 |
then show ?thesis by simp |
|
63654 | 296 |
qed |
297 |
||
66815 | 298 |
lemma odd_pos: |
299 |
"odd n \<Longrightarrow> 0 < n" for n :: nat |
|
58690 | 300 |
by (auto elim: oddE) |
60343
063698416239
correct sort constraints for abbreviations in type classes
haftmann
parents:
59816
diff
changeset
|
301 |
|
66815 | 302 |
lemma Suc_double_not_eq_double: |
303 |
"Suc (2 * m) \<noteq> 2 * n" |
|
62597 | 304 |
proof |
305 |
assume "Suc (2 * m) = 2 * n" |
|
306 |
moreover have "odd (Suc (2 * m))" and "even (2 * n)" |
|
307 |
by simp_all |
|
308 |
ultimately show False by simp |
|
309 |
qed |
|
310 |
||
66815 | 311 |
lemma double_not_eq_Suc_double: |
312 |
"2 * m \<noteq> Suc (2 * n)" |
|
62597 | 313 |
using Suc_double_not_eq_double [of n m] by simp |
314 |
||
66815 | 315 |
lemma odd_Suc_minus_one [simp]: "odd n \<Longrightarrow> Suc (n - Suc 0) = n" |
316 |
by (auto elim: oddE) |
|
60343
063698416239
correct sort constraints for abbreviations in type classes
haftmann
parents:
59816
diff
changeset
|
317 |
|
66815 | 318 |
lemma even_Suc_div_two [simp]: |
319 |
"even n \<Longrightarrow> Suc n div 2 = n div 2" |
|
320 |
using even_succ_div_two [of n] by simp |
|
60343
063698416239
correct sort constraints for abbreviations in type classes
haftmann
parents:
59816
diff
changeset
|
321 |
|
66815 | 322 |
lemma odd_Suc_div_two [simp]: |
323 |
"odd n \<Longrightarrow> Suc n div 2 = Suc (n div 2)" |
|
324 |
using odd_succ_div_two [of n] by simp |
|
60343
063698416239
correct sort constraints for abbreviations in type classes
haftmann
parents:
59816
diff
changeset
|
325 |
|
66815 | 326 |
lemma odd_two_times_div_two_nat [simp]: |
327 |
assumes "odd n" |
|
328 |
shows "2 * (n div 2) = n - (1 :: nat)" |
|
329 |
proof - |
|
330 |
from assms have "2 * (n div 2) + 1 = n" |
|
331 |
by (rule odd_two_times_div_two_succ) |
|
332 |
then have "Suc (2 * (n div 2)) - 1 = n - 1" |
|
58787 | 333 |
by simp |
66815 | 334 |
then show ?thesis |
335 |
by simp |
|
58787 | 336 |
qed |
58680 | 337 |
|
66815 | 338 |
lemma parity_induct [case_names zero even odd]: |
339 |
assumes zero: "P 0" |
|
340 |
assumes even: "\<And>n. P n \<Longrightarrow> P (2 * n)" |
|
341 |
assumes odd: "\<And>n. P n \<Longrightarrow> P (Suc (2 * n))" |
|
342 |
shows "P n" |
|
343 |
proof (induct n rule: less_induct) |
|
344 |
case (less n) |
|
345 |
show "P n" |
|
346 |
proof (cases "n = 0") |
|
347 |
case True with zero show ?thesis by simp |
|
348 |
next |
|
349 |
case False |
|
350 |
with less have hyp: "P (n div 2)" by simp |
|
351 |
show ?thesis |
|
352 |
proof (cases "even n") |
|
353 |
case True |
|
354 |
with hyp even [of "n div 2"] show ?thesis |
|
355 |
by simp |
|
356 |
next |
|
357 |
case False |
|
358 |
with hyp odd [of "n div 2"] show ?thesis |
|
359 |
by simp |
|
360 |
qed |
|
361 |
qed |
|
362 |
qed |
|
58687 | 363 |
|
364 |
||
60758 | 365 |
subsection \<open>Parity and powers\<close> |
58689 | 366 |
|
61531
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
60867
diff
changeset
|
367 |
context ring_1 |
58689 | 368 |
begin |
369 |
||
63654 | 370 |
lemma power_minus_even [simp]: "even n \<Longrightarrow> (- a) ^ n = a ^ n" |
58690 | 371 |
by (auto elim: evenE) |
58689 | 372 |
|
63654 | 373 |
lemma power_minus_odd [simp]: "odd n \<Longrightarrow> (- a) ^ n = - (a ^ n)" |
58690 | 374 |
by (auto elim: oddE) |
375 |
||
66815 | 376 |
lemma uminus_power_if: |
377 |
"(- a) ^ n = (if even n then a ^ n else - (a ^ n))" |
|
378 |
by auto |
|
379 |
||
63654 | 380 |
lemma neg_one_even_power [simp]: "even n \<Longrightarrow> (- 1) ^ n = 1" |
58690 | 381 |
by simp |
58689 | 382 |
|
63654 | 383 |
lemma neg_one_odd_power [simp]: "odd n \<Longrightarrow> (- 1) ^ n = - 1" |
58690 | 384 |
by simp |
58689 | 385 |
|
66582 | 386 |
lemma neg_one_power_add_eq_neg_one_power_diff: "k \<le> n \<Longrightarrow> (- 1) ^ (n + k) = (- 1) ^ (n - k)" |
387 |
by (cases "even (n + k)") auto |
|
388 |
||
63654 | 389 |
end |
58689 | 390 |
|
391 |
context linordered_idom |
|
392 |
begin |
|
393 |
||
63654 | 394 |
lemma zero_le_even_power: "even n \<Longrightarrow> 0 \<le> a ^ n" |
58690 | 395 |
by (auto elim: evenE) |
58689 | 396 |
|
63654 | 397 |
lemma zero_le_odd_power: "odd n \<Longrightarrow> 0 \<le> a ^ n \<longleftrightarrow> 0 \<le> a" |
58689 | 398 |
by (auto simp add: power_even_eq zero_le_mult_iff elim: oddE) |
399 |
||
63654 | 400 |
lemma zero_le_power_eq: "0 \<le> a ^ n \<longleftrightarrow> even n \<or> odd n \<and> 0 \<le> a" |
58787 | 401 |
by (auto simp add: zero_le_even_power zero_le_odd_power) |
63654 | 402 |
|
403 |
lemma zero_less_power_eq: "0 < a ^ n \<longleftrightarrow> n = 0 \<or> even n \<and> a \<noteq> 0 \<or> odd n \<and> 0 < a" |
|
58689 | 404 |
proof - |
405 |
have [simp]: "0 = a ^ n \<longleftrightarrow> a = 0 \<and> n > 0" |
|
58787 | 406 |
unfolding power_eq_0_iff [of a n, symmetric] by blast |
58689 | 407 |
show ?thesis |
63654 | 408 |
unfolding less_le zero_le_power_eq by auto |
58689 | 409 |
qed |
410 |
||
63654 | 411 |
lemma power_less_zero_eq [simp]: "a ^ n < 0 \<longleftrightarrow> odd n \<and> a < 0" |
58689 | 412 |
unfolding not_le [symmetric] zero_le_power_eq by auto |
413 |
||
63654 | 414 |
lemma power_le_zero_eq: "a ^ n \<le> 0 \<longleftrightarrow> n > 0 \<and> (odd n \<and> a \<le> 0 \<or> even n \<and> a = 0)" |
415 |
unfolding not_less [symmetric] zero_less_power_eq by auto |
|
416 |
||
417 |
lemma power_even_abs: "even n \<Longrightarrow> \<bar>a\<bar> ^ n = a ^ n" |
|
58689 | 418 |
using power_abs [of a n] by (simp add: zero_le_even_power) |
419 |
||
420 |
lemma power_mono_even: |
|
421 |
assumes "even n" and "\<bar>a\<bar> \<le> \<bar>b\<bar>" |
|
422 |
shows "a ^ n \<le> b ^ n" |
|
423 |
proof - |
|
424 |
have "0 \<le> \<bar>a\<bar>" by auto |
|
63654 | 425 |
with \<open>\<bar>a\<bar> \<le> \<bar>b\<bar>\<close> have "\<bar>a\<bar> ^ n \<le> \<bar>b\<bar> ^ n" |
426 |
by (rule power_mono) |
|
427 |
with \<open>even n\<close> show ?thesis |
|
428 |
by (simp add: power_even_abs) |
|
58689 | 429 |
qed |
430 |
||
431 |
lemma power_mono_odd: |
|
432 |
assumes "odd n" and "a \<le> b" |
|
433 |
shows "a ^ n \<le> b ^ n" |
|
434 |
proof (cases "b < 0") |
|
63654 | 435 |
case True |
436 |
with \<open>a \<le> b\<close> have "- b \<le> - a" and "0 \<le> - b" by auto |
|
437 |
then have "(- b) ^ n \<le> (- a) ^ n" by (rule power_mono) |
|
60758 | 438 |
with \<open>odd n\<close> show ?thesis by simp |
58689 | 439 |
next |
63654 | 440 |
case False |
441 |
then have "0 \<le> b" by auto |
|
58689 | 442 |
show ?thesis |
443 |
proof (cases "a < 0") |
|
63654 | 444 |
case True |
445 |
then have "n \<noteq> 0" and "a \<le> 0" using \<open>odd n\<close> [THEN odd_pos] by auto |
|
60758 | 446 |
then have "a ^ n \<le> 0" unfolding power_le_zero_eq using \<open>odd n\<close> by auto |
63654 | 447 |
moreover from \<open>0 \<le> b\<close> have "0 \<le> b ^ n" by auto |
58689 | 448 |
ultimately show ?thesis by auto |
449 |
next |
|
63654 | 450 |
case False |
451 |
then have "0 \<le> a" by auto |
|
452 |
with \<open>a \<le> b\<close> show ?thesis |
|
453 |
using power_mono by auto |
|
58689 | 454 |
qed |
455 |
qed |
|
62083 | 456 |
|
60758 | 457 |
text \<open>Simplify, when the exponent is a numeral\<close> |
58689 | 458 |
|
459 |
lemma zero_le_power_eq_numeral [simp]: |
|
460 |
"0 \<le> a ^ numeral w \<longleftrightarrow> even (numeral w :: nat) \<or> odd (numeral w :: nat) \<and> 0 \<le> a" |
|
461 |
by (fact zero_le_power_eq) |
|
462 |
||
463 |
lemma zero_less_power_eq_numeral [simp]: |
|
63654 | 464 |
"0 < a ^ numeral w \<longleftrightarrow> |
465 |
numeral w = (0 :: nat) \<or> |
|
466 |
even (numeral w :: nat) \<and> a \<noteq> 0 \<or> |
|
467 |
odd (numeral w :: nat) \<and> 0 < a" |
|
58689 | 468 |
by (fact zero_less_power_eq) |
469 |
||
470 |
lemma power_le_zero_eq_numeral [simp]: |
|
63654 | 471 |
"a ^ numeral w \<le> 0 \<longleftrightarrow> |
472 |
(0 :: nat) < numeral w \<and> |
|
473 |
(odd (numeral w :: nat) \<and> a \<le> 0 \<or> even (numeral w :: nat) \<and> a = 0)" |
|
58689 | 474 |
by (fact power_le_zero_eq) |
475 |
||
476 |
lemma power_less_zero_eq_numeral [simp]: |
|
477 |
"a ^ numeral w < 0 \<longleftrightarrow> odd (numeral w :: nat) \<and> a < 0" |
|
478 |
by (fact power_less_zero_eq) |
|
479 |
||
480 |
lemma power_even_abs_numeral [simp]: |
|
481 |
"even (numeral w :: nat) \<Longrightarrow> \<bar>a\<bar> ^ numeral w = a ^ numeral w" |
|
482 |
by (fact power_even_abs) |
|
483 |
||
484 |
end |
|
485 |
||
66816
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66815
diff
changeset
|
486 |
|
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66815
diff
changeset
|
487 |
subsection \<open>Instance for @{typ int}\<close> |
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66815
diff
changeset
|
488 |
|
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66815
diff
changeset
|
489 |
instance int :: ring_parity |
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66815
diff
changeset
|
490 |
proof |
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66815
diff
changeset
|
491 |
fix k l :: int |
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66815
diff
changeset
|
492 |
show "k mod 2 = 1" if "\<not> 2 dvd k" |
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66815
diff
changeset
|
493 |
proof (rule order_antisym) |
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66815
diff
changeset
|
494 |
have "0 \<le> k mod 2" and "k mod 2 < 2" |
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66815
diff
changeset
|
495 |
by auto |
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66815
diff
changeset
|
496 |
moreover have "k mod 2 \<noteq> 0" |
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66815
diff
changeset
|
497 |
using that by (simp add: dvd_eq_mod_eq_0) |
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66815
diff
changeset
|
498 |
ultimately have "0 < k mod 2" |
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66815
diff
changeset
|
499 |
by (simp only: less_le) simp |
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66815
diff
changeset
|
500 |
then show "1 \<le> k mod 2" |
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66815
diff
changeset
|
501 |
by simp |
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66815
diff
changeset
|
502 |
from \<open>k mod 2 < 2\<close> show "k mod 2 \<le> 1" |
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66815
diff
changeset
|
503 |
by (simp only: less_le) simp |
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66815
diff
changeset
|
504 |
qed |
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66815
diff
changeset
|
505 |
qed (simp_all add: dvd_eq_mod_eq_0 divide_int_def) |
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66815
diff
changeset
|
506 |
|
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66815
diff
changeset
|
507 |
lemma even_diff_iff [simp]: |
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66815
diff
changeset
|
508 |
"even (k - l) \<longleftrightarrow> even (k + l)" for k l :: int |
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66815
diff
changeset
|
509 |
using dvd_add_times_triv_right_iff [of 2 "k - l" l] by (simp add: mult_2_right) |
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66815
diff
changeset
|
510 |
|
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66815
diff
changeset
|
511 |
lemma even_abs_add_iff [simp]: |
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66815
diff
changeset
|
512 |
"even (\<bar>k\<bar> + l) \<longleftrightarrow> even (k + l)" for k l :: int |
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66815
diff
changeset
|
513 |
by (cases "k \<ge> 0") (simp_all add: ac_simps) |
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66815
diff
changeset
|
514 |
|
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66815
diff
changeset
|
515 |
lemma even_add_abs_iff [simp]: |
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66815
diff
changeset
|
516 |
"even (k + \<bar>l\<bar>) \<longleftrightarrow> even (k + l)" for k l :: int |
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66815
diff
changeset
|
517 |
using even_abs_add_iff [of l k] by (simp add: ac_simps) |
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66815
diff
changeset
|
518 |
|
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66815
diff
changeset
|
519 |
lemma even_nat_iff: "0 \<le> k \<Longrightarrow> even (nat k) \<longleftrightarrow> even k" |
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66815
diff
changeset
|
520 |
by (simp add: even_of_nat [of "nat k", where ?'a = int, symmetric]) |
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66815
diff
changeset
|
521 |
|
58770 | 522 |
end |