author | krauss |
Sun, 21 Aug 2011 22:13:04 +0200 | |
changeset 44374 | 0b217404522a |
parent 37310 | 96e2b9a6f074 |
child 59058 | a78612c67ec0 |
permissions | -rw-r--r-- |
13404 | 1 |
(* Title: HOL/Tools/rewrite_hol_proof.ML |
2 |
Author: Stefan Berghofer, TU Muenchen |
|
3 |
||
4 |
Rewrite rules for HOL proofs |
|
5 |
*) |
|
6 |
||
7 |
signature REWRITE_HOL_PROOF = |
|
8 |
sig |
|
9 |
val rews: (Proofterm.proof * Proofterm.proof) list |
|
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
10 |
val elim_cong: typ list -> term option list -> Proofterm.proof -> (Proofterm.proof * Proofterm.proof) option |
13404 | 11 |
end; |
12 |
||
13 |
structure RewriteHOLProof : REWRITE_HOL_PROOF = |
|
14 |
struct |
|
15 |
||
33388 | 16 |
val rews = map (pairself (Proof_Syntax.proof_of_term @{theory} true) o |
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
17 |
Logic.dest_equals o Logic.varify_global o Proof_Syntax.read_term @{theory} true propT) |
13404 | 18 |
|
19 |
(** eliminate meta-equality rules **) |
|
20 |
||
21 |
["(equal_elim % x1 % x2 %% \ |
|
22 |
\ (combination % TYPE('T1) % TYPE('T2) % Trueprop % x3 % A % B %% \ |
|
28712
4f2954d995f0
Removed argument prf2 in rewrite rules for equal_elim to make them applicable
berghofe
parents:
28262
diff
changeset
|
23 |
\ (axm.reflexive % TYPE('T3) % x4) %% prf1)) == \ |
13404 | 24 |
\ (iffD1 % A % B %% \ |
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
25 |
\ (meta_eq_to_obj_eq % TYPE(bool) % A % B %% arity_type_bool %% prf1))", |
13404 | 26 |
|
27 |
"(equal_elim % x1 % x2 %% (axm.symmetric % TYPE('T1) % x3 % x4 %% \ |
|
28 |
\ (combination % TYPE('T2) % TYPE('T3) % Trueprop % x5 % A % B %% \ |
|
28712
4f2954d995f0
Removed argument prf2 in rewrite rules for equal_elim to make them applicable
berghofe
parents:
28262
diff
changeset
|
29 |
\ (axm.reflexive % TYPE('T4) % x6) %% prf1))) == \ |
13404 | 30 |
\ (iffD2 % A % B %% \ |
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
31 |
\ (meta_eq_to_obj_eq % TYPE(bool) % A % B %% arity_type_bool %% prf1))", |
13404 | 32 |
|
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
33 |
"(meta_eq_to_obj_eq % TYPE('U) % x1 % x2 %% prfU %% \ |
36042
85efdadee8ae
switched PThm/PAxm etc. to use canonical order of type variables (term variables unchanged)
krauss
parents:
35845
diff
changeset
|
34 |
\ (combination % TYPE('T) % TYPE('U) % f % g % x % y %% prf1 %% prf2)) == \ |
85efdadee8ae
switched PThm/PAxm etc. to use canonical order of type variables (term variables unchanged)
krauss
parents:
35845
diff
changeset
|
35 |
\ (cong % TYPE('T) % TYPE('U) % f % g % x % y %% \ |
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
36 |
\ (OfClass type_class % TYPE('T)) %% prfU %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
37 |
\ (meta_eq_to_obj_eq % TYPE('T => 'U) % f % g %% (OfClass type_class % TYPE('T => 'U)) %% prf1) %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
38 |
\ (meta_eq_to_obj_eq % TYPE('T) % x % y %% (OfClass type_class % TYPE('T)) %% prf2))", |
13404 | 39 |
|
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
40 |
"(meta_eq_to_obj_eq % TYPE('T) % x1 % x2 %% prfT %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
41 |
\ (axm.transitive % TYPE('T) % x % y % z %% prf1 %% prf2)) == \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
42 |
\ (HOL.trans % TYPE('T) % x % y % z %% prfT %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
43 |
\ (meta_eq_to_obj_eq % TYPE('T) % x % y %% prfT %% prf1) %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
44 |
\ (meta_eq_to_obj_eq % TYPE('T) % y % z %% prfT %% prf2))", |
13404 | 45 |
|
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
46 |
"(meta_eq_to_obj_eq % TYPE('T) % x % x %% prfT %% (axm.reflexive % TYPE('T) % x)) == \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
47 |
\ (HOL.refl % TYPE('T) % x %% prfT)", |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
48 |
|
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
49 |
"(meta_eq_to_obj_eq % TYPE('T) % x % y %% prfT %% \ |
13404 | 50 |
\ (axm.symmetric % TYPE('T) % x % y %% prf)) == \ |
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
51 |
\ (sym % TYPE('T) % x % y %% prfT %% (meta_eq_to_obj_eq % TYPE('T) % x % y %% prfT %% prf))", |
13404 | 52 |
|
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
53 |
"(meta_eq_to_obj_eq % TYPE('T => 'U) % x1 % x2 %% prfTU %% \ |
36042
85efdadee8ae
switched PThm/PAxm etc. to use canonical order of type variables (term variables unchanged)
krauss
parents:
35845
diff
changeset
|
54 |
\ (abstract_rule % TYPE('T) % TYPE('U) % f % g %% prf)) == \ |
85efdadee8ae
switched PThm/PAxm etc. to use canonical order of type variables (term variables unchanged)
krauss
parents:
35845
diff
changeset
|
55 |
\ (ext % TYPE('T) % TYPE('U) % f % g %% \ |
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
56 |
\ (OfClass type_class % TYPE('T)) %% (OfClass type_class % TYPE('U)) %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
57 |
\ (Lam (x::'T). meta_eq_to_obj_eq % TYPE('U) % f x % g x %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
58 |
\ (OfClass type_class % TYPE('U)) %% (prf % x)))", |
13404 | 59 |
|
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
60 |
"(meta_eq_to_obj_eq % TYPE('T) % x % y %% prfT %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
61 |
\ (eq_reflection % TYPE('T) % x % y %% prfT %% prf)) == prf", |
13404 | 62 |
|
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
63 |
"(meta_eq_to_obj_eq % TYPE('T) % x1 % x2 %% prfT %% (equal_elim % x3 % x4 %% \ |
36042
85efdadee8ae
switched PThm/PAxm etc. to use canonical order of type variables (term variables unchanged)
krauss
parents:
35845
diff
changeset
|
64 |
\ (combination % TYPE('T) % TYPE(prop) % x7 % x8 % C % D %% \ |
85efdadee8ae
switched PThm/PAxm etc. to use canonical order of type variables (term variables unchanged)
krauss
parents:
35845
diff
changeset
|
65 |
\ (combination % TYPE('T) % TYPE('T3) % op == % op == % A % B %% \ |
13404 | 66 |
\ (axm.reflexive % TYPE('T4) % op ==) %% prf1) %% prf2) %% prf3)) == \ |
67 |
\ (iffD1 % A = C % B = D %% \ |
|
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
68 |
\ (cong % TYPE('T) % TYPE(bool) % op = A % op = B % C % D %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
69 |
\ prfT %% arity_type_bool %% \ |
36042
85efdadee8ae
switched PThm/PAxm etc. to use canonical order of type variables (term variables unchanged)
krauss
parents:
35845
diff
changeset
|
70 |
\ (cong % TYPE('T) % TYPE('T=>bool) % \ |
13404 | 71 |
\ (op = :: 'T=>'T=>bool) % (op = :: 'T=>'T=>bool) % A % B %% \ |
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
72 |
\ prfT %% (OfClass type_class % TYPE('T=>bool)) %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
73 |
\ (HOL.refl % TYPE('T=>'T=>bool) % (op = :: 'T=>'T=>bool) %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
74 |
\ (OfClass type_class % TYPE('T=>'T=>bool))) %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
75 |
\ (meta_eq_to_obj_eq % TYPE('T) % A % B %% prfT %% prf1)) %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
76 |
\ (meta_eq_to_obj_eq % TYPE('T) % C % D %% prfT %% prf2)) %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
77 |
\ (meta_eq_to_obj_eq % TYPE('T) % A % C %% prfT %% prf3))", |
13404 | 78 |
|
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
79 |
"(meta_eq_to_obj_eq % TYPE('T) % x1 % x2 %% prfT %% (equal_elim % x3 % x4 %% \ |
13404 | 80 |
\ (axm.symmetric % TYPE('T2) % x5 % x6 %% \ |
36042
85efdadee8ae
switched PThm/PAxm etc. to use canonical order of type variables (term variables unchanged)
krauss
parents:
35845
diff
changeset
|
81 |
\ (combination % TYPE('T) % TYPE(prop) % x7 % x8 % C % D %% \ |
85efdadee8ae
switched PThm/PAxm etc. to use canonical order of type variables (term variables unchanged)
krauss
parents:
35845
diff
changeset
|
82 |
\ (combination % TYPE('T) % TYPE('T3) % op == % op == % A % B %% \ |
13404 | 83 |
\ (axm.reflexive % TYPE('T4) % op ==) %% prf1) %% prf2)) %% prf3)) == \ |
84 |
\ (iffD2 % A = C % B = D %% \ |
|
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
85 |
\ (cong % TYPE('T) % TYPE(bool) % op = A % op = B % C % D %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
86 |
\ prfT %% arity_type_bool %% \ |
36042
85efdadee8ae
switched PThm/PAxm etc. to use canonical order of type variables (term variables unchanged)
krauss
parents:
35845
diff
changeset
|
87 |
\ (cong % TYPE('T) % TYPE('T=>bool) % \ |
13404 | 88 |
\ (op = :: 'T=>'T=>bool) % (op = :: 'T=>'T=>bool) % A % B %% \ |
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
89 |
\ prfT %% (OfClass type_class % TYPE('T=>bool)) %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
90 |
\ (HOL.refl % TYPE('T=>'T=>bool) % (op = :: 'T=>'T=>bool) %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
91 |
\ (OfClass type_class % TYPE('T=>'T=>bool))) %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
92 |
\ (meta_eq_to_obj_eq % TYPE('T) % A % B %% prfT %% prf1)) %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
93 |
\ (meta_eq_to_obj_eq % TYPE('T) % C % D %% prfT %% prf2)) %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
94 |
\ (meta_eq_to_obj_eq % TYPE('T) % B % D %% prfT %% prf3))", |
13404 | 95 |
|
96 |
(** rewriting on bool: insert proper congruence rules for logical connectives **) |
|
97 |
||
98 |
(* All *) |
|
99 |
||
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
100 |
"(iffD1 % All P % All Q %% (cong % TYPE('T1) % TYPE('T2) % All % All % P % Q %% prfT1 %% prfT2 %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
101 |
\ (HOL.refl % TYPE('T3) % x1 %% prfT3) %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
102 |
\ (ext % TYPE('a) % TYPE(bool) % x2 % x3 %% prfa %% prfb %% prf)) %% prf') == \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
103 |
\ (allI % TYPE('a) % Q %% prfa %% \ |
13404 | 104 |
\ (Lam x. \ |
105 |
\ iffD1 % P x % Q x %% (prf % x) %% \ |
|
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
106 |
\ (spec % TYPE('a) % P % x %% prfa %% prf')))", |
13404 | 107 |
|
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
108 |
"(iffD2 % All P % All Q %% (cong % TYPE('T1) % TYPE('T2) % All % All % P % Q %% prfT1 %% prfT2 %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
109 |
\ (HOL.refl % TYPE('T3) % x1 %% prfT3) %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
110 |
\ (ext % TYPE('a) % TYPE(bool) % x2 % x3 %% prfa %% prfb %% prf)) %% prf') == \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
111 |
\ (allI % TYPE('a) % P %% prfa %% \ |
13404 | 112 |
\ (Lam x. \ |
113 |
\ iffD2 % P x % Q x %% (prf % x) %% \ |
|
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
114 |
\ (spec % TYPE('a) % Q % x %% prfa %% prf')))", |
13404 | 115 |
|
116 |
(* Ex *) |
|
117 |
||
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
118 |
"(iffD1 % Ex P % Ex Q %% (cong % TYPE('T1) % TYPE('T2) % Ex % Ex % P % Q %% prfT1 %% prfT2 %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
119 |
\ (HOL.refl % TYPE('T3) % x1 %% prfT3) %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
120 |
\ (ext % TYPE('a) % TYPE(bool) % x2 % x3 %% prfa %% prfb %% prf)) %% prf') == \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
121 |
\ (exE % TYPE('a) % P % EX x. Q x %% prfa %% prf' %% \ |
13404 | 122 |
\ (Lam x H : P x. \ |
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
123 |
\ exI % TYPE('a) % Q % x %% prfa %% \ |
13404 | 124 |
\ (iffD1 % P x % Q x %% (prf % x) %% H)))", |
125 |
||
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
126 |
"(iffD2 % Ex P % Ex Q %% (cong % TYPE('T1) % TYPE('T2) % Ex % Ex % P % Q %% prfT1 %% prfT2 %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
127 |
\ (HOL.refl % TYPE('T3) % x1 %% prfT3) %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
128 |
\ (ext % TYPE('a) % TYPE(bool) % x2 % x3 %% prfa %% prfb %% prf)) %% prf') == \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
129 |
\ (exE % TYPE('a) % Q % EX x. P x %% prfa %% prf' %% \ |
13404 | 130 |
\ (Lam x H : Q x. \ |
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
131 |
\ exI % TYPE('a) % P % x %% prfa %% \ |
13404 | 132 |
\ (iffD2 % P x % Q x %% (prf % x) %% H)))", |
133 |
||
134 |
(* & *) |
|
135 |
||
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
136 |
"(iffD1 % A & C % B & D %% (cong % TYPE('T1) % TYPE('T2) % x1 % x2 % C % D %% prfT1 %% prfT2 %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
137 |
\ (cong % TYPE('T3) % TYPE('T4) % op & % op & % A % B %% prfT3 %% prfT4 %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
138 |
\ (HOL.refl % TYPE('T5) % op & %% prfT5) %% prf1) %% prf2) %% prf3) == \ |
13404 | 139 |
\ (conjI % B % D %% \ |
140 |
\ (iffD1 % A % B %% prf1 %% (conjunct1 % A % C %% prf3)) %% \ |
|
141 |
\ (iffD1 % C % D %% prf2 %% (conjunct2 % A % C %% prf3)))", |
|
142 |
||
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
143 |
"(iffD2 % A & C % B & D %% (cong % TYPE('T1) % TYPE('T2) % x1 % x2 % C % D %% prfT1 %% prfT2 %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
144 |
\ (cong % TYPE('T3) % TYPE('T4) % op & % op & % A % B %% prfT3 %% prfT4 %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
145 |
\ (HOL.refl % TYPE('T5) % op & %% prfT5) %% prf1) %% prf2) %% prf3) == \ |
13404 | 146 |
\ (conjI % A % C %% \ |
147 |
\ (iffD2 % A % B %% prf1 %% (conjunct1 % B % D %% prf3)) %% \ |
|
148 |
\ (iffD2 % C % D %% prf2 %% (conjunct2 % B % D %% prf3)))", |
|
149 |
||
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
150 |
"(cong % TYPE(bool) % TYPE(bool) % op & A % op & A % B % C %% prfb %% prfb %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
151 |
\ (HOL.refl % TYPE(bool=>bool) % op & A %% prfbb)) == \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
152 |
\ (cong % TYPE(bool) % TYPE(bool) % op & A % op & A % B % C %% prfb %% prfb %% \ |
36042
85efdadee8ae
switched PThm/PAxm etc. to use canonical order of type variables (term variables unchanged)
krauss
parents:
35845
diff
changeset
|
153 |
\ (cong % TYPE(bool) % TYPE(bool=>bool) % \ |
13602
4cecd1e0f4a9
- additional congruence rules for boolean operators
berghofe
parents:
13404
diff
changeset
|
154 |
\ (op & :: bool=>bool=>bool) % (op & :: bool=>bool=>bool) % A % A %% \ |
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
155 |
\ prfb %% prfbb %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
156 |
\ (HOL.refl % TYPE(bool=>bool=>bool) % (op & :: bool=>bool=>bool) %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
157 |
\ (OfClass type_class % TYPE(bool=>bool=>bool))) %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
158 |
\ (HOL.refl % TYPE(bool) % A %% prfb)))", |
13602
4cecd1e0f4a9
- additional congruence rules for boolean operators
berghofe
parents:
13404
diff
changeset
|
159 |
|
13404 | 160 |
(* | *) |
161 |
||
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
162 |
"(iffD1 % A | C % B | D %% (cong % TYPE('T1) % TYPE('T2) % x1 % x2 % C % D %% prfT1 %% prfT2 %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
163 |
\ (cong % TYPE('T3) % TYPE('T4) % op | % op | % A % B %% prfT3 %% prfT4 %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
164 |
\ (HOL.refl % TYPE('T5) % op | %% prfT5) %% prf1) %% prf2) %% prf3) == \ |
13404 | 165 |
\ (disjE % A % C % B | D %% prf3 %% \ |
166 |
\ (Lam H : A. disjI1 % B % D %% (iffD1 % A % B %% prf1 %% H)) %% \ |
|
167 |
\ (Lam H : C. disjI2 % D % B %% (iffD1 % C % D %% prf2 %% H)))", |
|
168 |
||
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
169 |
"(iffD2 % A | C % B | D %% (cong % TYPE('T1) % TYPE('T2) % x1 % x2 % C % D %% prfT1 %% prfT2 %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
170 |
\ (cong % TYPE('T3) % TYPE('T4) % op | % op | % A % B %% prfT3 %% prfT4 %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
171 |
\ (HOL.refl % TYPE('T5) % op | %% prfT5) %% prf1) %% prf2) %% prf3) == \ |
13404 | 172 |
\ (disjE % B % D % A | C %% prf3 %% \ |
173 |
\ (Lam H : B. disjI1 % A % C %% (iffD2 % A % B %% prf1 %% H)) %% \ |
|
174 |
\ (Lam H : D. disjI2 % C % A %% (iffD2 % C % D %% prf2 %% H)))", |
|
175 |
||
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
176 |
"(cong % TYPE(bool) % TYPE(bool) % op | A % op | A % B % C %% prfb %% prfb %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
177 |
\ (HOL.refl % TYPE(bool=>bool) % op | A %% prfbb)) == \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
178 |
\ (cong % TYPE(bool) % TYPE(bool) % op | A % op | A % B % C %% prfb %% prfb %% \ |
36042
85efdadee8ae
switched PThm/PAxm etc. to use canonical order of type variables (term variables unchanged)
krauss
parents:
35845
diff
changeset
|
179 |
\ (cong % TYPE(bool) % TYPE(bool=>bool) % \ |
13602
4cecd1e0f4a9
- additional congruence rules for boolean operators
berghofe
parents:
13404
diff
changeset
|
180 |
\ (op | :: bool=>bool=>bool) % (op | :: bool=>bool=>bool) % A % A %% \ |
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
181 |
\ prfb %% prfbb %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
182 |
\ (HOL.refl % TYPE(bool=>bool=>bool) % (op | :: bool=>bool=>bool) %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
183 |
\ (OfClass type_class % TYPE(bool=>bool=>bool))) %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
184 |
\ (HOL.refl % TYPE(bool) % A %% prfb)))", |
13602
4cecd1e0f4a9
- additional congruence rules for boolean operators
berghofe
parents:
13404
diff
changeset
|
185 |
|
13404 | 186 |
(* --> *) |
187 |
||
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
188 |
"(iffD1 % A --> C % B --> D %% (cong % TYPE('T1) % TYPE('T2) % x1 % x2 % C % D %% prfT1 %% prfT2 %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
189 |
\ (cong % TYPE('T3) % TYPE('T4) % op --> % op --> % A % B %% prfT3 %% prfT4 %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
190 |
\ (HOL.refl % TYPE('T5) % op --> %% prfT5) %% prf1) %% prf2) %% prf3) == \ |
13404 | 191 |
\ (impI % B % D %% (Lam H: B. iffD1 % C % D %% prf2 %% \ |
192 |
\ (mp % A % C %% prf3 %% (iffD2 % A % B %% prf1 %% H))))", |
|
193 |
||
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
194 |
"(iffD2 % A --> C % B --> D %% (cong % TYPE('T1) % TYPE('T2) % x1 % x2 % C % D %% prfT1 %% prfT2 %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
195 |
\ (cong % TYPE('T3) % TYPE('T4) % op --> % op --> % A % B %% prfT3 %% prfT4 %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
196 |
\ (HOL.refl % TYPE('T5) % op --> %% prfT5) %% prf1) %% prf2) %% prf3) == \ |
13404 | 197 |
\ (impI % A % C %% (Lam H: A. iffD2 % C % D %% prf2 %% \ |
198 |
\ (mp % B % D %% prf3 %% (iffD1 % A % B %% prf1 %% H))))", |
|
199 |
||
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
200 |
"(cong % TYPE(bool) % TYPE(bool) % op --> A % op --> A % B % C %% prfb %% prfb %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
201 |
\ (HOL.refl % TYPE(bool=>bool) % op --> A %% prfbb)) == \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
202 |
\ (cong % TYPE(bool) % TYPE(bool) % op --> A % op --> A % B % C %% prfb %% prfb %% \ |
36042
85efdadee8ae
switched PThm/PAxm etc. to use canonical order of type variables (term variables unchanged)
krauss
parents:
35845
diff
changeset
|
203 |
\ (cong % TYPE(bool) % TYPE(bool=>bool) % \ |
13602
4cecd1e0f4a9
- additional congruence rules for boolean operators
berghofe
parents:
13404
diff
changeset
|
204 |
\ (op --> :: bool=>bool=>bool) % (op --> :: bool=>bool=>bool) % A % A %% \ |
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
205 |
\ prfb %% prfbb %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
206 |
\ (HOL.refl % TYPE(bool=>bool=>bool) % (op --> :: bool=>bool=>bool) %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
207 |
\ (OfClass type_class % TYPE(bool=>bool=>bool))) %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
208 |
\ (HOL.refl % TYPE(bool) % A %% prfb)))", |
13602
4cecd1e0f4a9
- additional congruence rules for boolean operators
berghofe
parents:
13404
diff
changeset
|
209 |
|
13404 | 210 |
(* ~ *) |
211 |
||
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
212 |
"(iffD1 % ~ P % ~ Q %% (cong % TYPE('T1) % TYPE('T2) % Not % Not % P % Q %% prfT1 %% prfT2 %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
213 |
\ (HOL.refl % TYPE('T3) % Not %% prfT3) %% prf1) %% prf2) == \ |
13404 | 214 |
\ (notI % Q %% (Lam H: Q. \ |
215 |
\ notE % P % False %% prf2 %% (iffD2 % P % Q %% prf1 %% H)))", |
|
216 |
||
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
217 |
"(iffD2 % ~ P % ~ Q %% (cong % TYPE('T1) % TYPE('T2) % Not % Not % P % Q %% prfT1 %% prfT2 %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
218 |
\ (HOL.refl % TYPE('T3) % Not %% prfT3) %% prf1) %% prf2) == \ |
13404 | 219 |
\ (notI % P %% (Lam H: P. \ |
220 |
\ notE % Q % False %% prf2 %% (iffD1 % P % Q %% prf1 %% H)))", |
|
221 |
||
222 |
(* = *) |
|
223 |
||
224 |
"(iffD1 % B % D %% \ |
|
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
225 |
\ (iffD1 % A = C % B = D %% (cong % TYPE(bool) % TYPE('T1) % x1 % x2 % C % D %% prfb %% prfT1 %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
226 |
\ (cong % TYPE(bool) % TYPE('T2) % op = % op = % A % B %% prfb %% prfT2 %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
227 |
\ (HOL.refl % TYPE('T3) % op = %% prfT3) %% prf1) %% prf2) %% prf3) %% prf4) == \ |
13404 | 228 |
\ (iffD1 % C % D %% prf2 %% \ |
229 |
\ (iffD1 % A % C %% prf3 %% (iffD2 % A % B %% prf1 %% prf4)))", |
|
230 |
||
231 |
"(iffD2 % B % D %% \ |
|
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
232 |
\ (iffD1 % A = C % B = D %% (cong % TYPE(bool) % TYPE('T1) % x1 % x2 % C % D %% prfb %% prfT1 %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
233 |
\ (cong % TYPE(bool) % TYPE('T2) % op = % op = % A % B %% prfb %% prfT2 %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
234 |
\ (HOL.refl % TYPE('T3) % op = %% prfT3) %% prf1) %% prf2) %% prf3) %% prf4) == \ |
13404 | 235 |
\ (iffD1 % A % B %% prf1 %% \ |
236 |
\ (iffD2 % A % C %% prf3 %% (iffD2 % C % D %% prf2 %% prf4)))", |
|
237 |
||
238 |
"(iffD1 % A % C %% \ |
|
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
239 |
\ (iffD2 % A = C % B = D %% (cong % TYPE(bool) % TYPE('T1) % x1 % x2 % C % D %% prfb %% prfT1 %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
240 |
\ (cong % TYPE(bool) % TYPE('T2) % op = % op = % A % B %% prfb %% prfT2 %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
241 |
\ (HOL.refl % TYPE('T3) % op = %% prfT3) %% prf1) %% prf2) %% prf3) %% prf4)== \ |
13404 | 242 |
\ (iffD2 % C % D %% prf2 %% \ |
243 |
\ (iffD1 % B % D %% prf3 %% (iffD1 % A % B %% prf1 %% prf4)))", |
|
244 |
||
245 |
"(iffD2 % A % C %% \ |
|
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
246 |
\ (iffD2 % A = C % B = D %% (cong % TYPE(bool) % TYPE('T1) % x1 % x2 % C % D %% prfb %% prfT1 %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
247 |
\ (cong % TYPE(bool) % TYPE('T2) % op = % op = % A % B %% prfb %% prfT2 %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
248 |
\ (HOL.refl % TYPE('T3) % op = %% prfT3) %% prf1) %% prf2) %% prf3) %% prf4) == \ |
13404 | 249 |
\ (iffD2 % A % B %% prf1 %% \ |
250 |
\ (iffD2 % B % D %% prf3 %% (iffD1 % C % D %% prf2 %% prf4)))", |
|
251 |
||
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
252 |
"(cong % TYPE(bool) % TYPE(bool) % op = A % op = A % B % C %% prfb %% prfb %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
253 |
\ (HOL.refl % TYPE(bool=>bool) % op = A %% prfbb)) == \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
254 |
\ (cong % TYPE(bool) % TYPE(bool) % op = A % op = A % B % C %% prfb %% prfb %% \ |
36042
85efdadee8ae
switched PThm/PAxm etc. to use canonical order of type variables (term variables unchanged)
krauss
parents:
35845
diff
changeset
|
255 |
\ (cong % TYPE(bool) % TYPE(bool=>bool) % \ |
13404 | 256 |
\ (op = :: bool=>bool=>bool) % (op = :: bool=>bool=>bool) % A % A %% \ |
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
257 |
\ prfb %% prfbb %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
258 |
\ (HOL.refl % TYPE(bool=>bool=>bool) % (op = :: bool=>bool=>bool) %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
259 |
\ (OfClass type_class % TYPE(bool=>bool=>bool))) %% \ |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
260 |
\ (HOL.refl % TYPE(bool) % A %% prfb)))", |
13404 | 261 |
|
13916
f078a758e5d8
elim_cong now eta-expands proofs on the fly if required.
berghofe
parents:
13602
diff
changeset
|
262 |
(** transitivity, reflexivity, and symmetry **) |
f078a758e5d8
elim_cong now eta-expands proofs on the fly if required.
berghofe
parents:
13602
diff
changeset
|
263 |
|
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
264 |
"(iffD1 % A % C %% (HOL.trans % TYPE(bool) % A % B % C %% prfb %% prf1 %% prf2) %% prf3) == \ |
13404 | 265 |
\ (iffD1 % B % C %% prf2 %% (iffD1 % A % B %% prf1 %% prf3))", |
266 |
||
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
267 |
"(iffD2 % A % C %% (HOL.trans % TYPE(bool) % A % B % C %% prfb %% prf1 %% prf2) %% prf3) == \ |
13404 | 268 |
\ (iffD2 % A % B %% prf1 %% (iffD2 % B % C %% prf2 %% prf3))", |
269 |
||
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
270 |
"(iffD1 % A % A %% (HOL.refl % TYPE(bool) % A %% prfb) %% prf) == prf", |
13404 | 271 |
|
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
272 |
"(iffD2 % A % A %% (HOL.refl % TYPE(bool) % A %% prfb) %% prf) == prf", |
13404 | 273 |
|
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
274 |
"(iffD1 % A % B %% (sym % TYPE(bool) % B % A %% prfb %% prf)) == (iffD2 % B % A %% prf)", |
13602
4cecd1e0f4a9
- additional congruence rules for boolean operators
berghofe
parents:
13404
diff
changeset
|
275 |
|
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
276 |
"(iffD2 % A % B %% (sym % TYPE(bool) % B % A %% prfb %% prf)) == (iffD1 % B % A %% prf)", |
13602
4cecd1e0f4a9
- additional congruence rules for boolean operators
berghofe
parents:
13404
diff
changeset
|
277 |
|
13404 | 278 |
(** normalization of HOL proofs **) |
279 |
||
280 |
"(mp % A % B %% (impI % A % B %% prf)) == prf", |
|
281 |
||
282 |
"(impI % A % B %% (mp % A % B %% prf)) == prf", |
|
283 |
||
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
284 |
"(spec % TYPE('a) % P % x %% prfa %% (allI % TYPE('a) % P %% prfa %% prf)) == prf % x", |
13404 | 285 |
|
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
286 |
"(allI % TYPE('a) % P %% prfa %% (Lam x::'a. spec % TYPE('a) % P % x %% prfa %% prf)) == prf", |
13404 | 287 |
|
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
288 |
"(exE % TYPE('a) % P % Q %% prfa %% (exI % TYPE('a) % P % x %% prfa %% prf1) %% prf2) == (prf2 % x %% prf1)", |
13602
4cecd1e0f4a9
- additional congruence rules for boolean operators
berghofe
parents:
13404
diff
changeset
|
289 |
|
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
290 |
"(exE % TYPE('a) % P % Q %% prfa %% prf %% (exI % TYPE('a) % P %% prfa)) == prf", |
13602
4cecd1e0f4a9
- additional congruence rules for boolean operators
berghofe
parents:
13404
diff
changeset
|
291 |
|
13404 | 292 |
"(disjE % P % Q % R %% (disjI1 % P % Q %% prf1) %% prf2 %% prf3) == (prf2 %% prf1)", |
293 |
||
294 |
"(disjE % P % Q % R %% (disjI2 % Q % P %% prf1) %% prf2 %% prf3) == (prf3 %% prf1)", |
|
295 |
||
296 |
"(conjunct1 % P % Q %% (conjI % P % Q %% prf1 %% prf2)) == prf1", |
|
297 |
||
298 |
"(conjunct2 % P % Q %% (conjI % P % Q %% prf1 %% prf2)) == prf2", |
|
299 |
||
300 |
"(iffD1 % A % B %% (iffI % A % B %% prf1 %% prf2)) == prf1", |
|
301 |
||
302 |
"(iffD2 % A % B %% (iffI % A % B %% prf1 %% prf2)) == prf2"]; |
|
303 |
||
304 |
||
305 |
(** Replace congruence rules by substitution rules **) |
|
306 |
||
28801
fc45401bdf6f
ProofSyntax.proof_of_term: removed obsolete disambiguisation table;
wenzelm
parents:
28712
diff
changeset
|
307 |
fun strip_cong ps (PThm (_, (("HOL.cong", _, _), _)) % _ % _ % SOME x % SOME y %% |
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
308 |
prfa %% prfT %% prf1 %% prf2) = strip_cong (((x, y), (prf2, prfa)) :: ps) prf1 |
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
309 |
| strip_cong ps (PThm (_, (("HOL.refl", _, _), _)) % SOME f %% _) = SOME (f, ps) |
15531 | 310 |
| strip_cong _ _ = NONE; |
13404 | 311 |
|
37310 | 312 |
val subst_prf = fst (Proofterm.strip_combt (fst (Proofterm.strip_combP (Thm.proof_of subst)))); |
313 |
val sym_prf = fst (Proofterm.strip_combt (fst (Proofterm.strip_combP (Thm.proof_of sym)))); |
|
13404 | 314 |
|
315 |
fun make_subst Ts prf xs (_, []) = prf |
|
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
316 |
| make_subst Ts prf xs (f, ((x, y), (prf', clprf)) :: ps) = |
13404 | 317 |
let val T = fastype_of1 (Ts, x) |
318 |
in if x aconv y then make_subst Ts prf (xs @ [x]) (f, ps) |
|
37310 | 319 |
else Proofterm.change_type (SOME [T]) subst_prf %> x %> y %> |
13404 | 320 |
Abs ("z", T, list_comb (incr_boundvars 1 f, |
321 |
map (incr_boundvars 1) xs @ Bound 0 :: |
|
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
322 |
map (incr_boundvars 1 o snd o fst) ps)) %% clprf %% prf' %% |
13404 | 323 |
make_subst Ts prf (xs @ [x]) (f, ps) |
324 |
end; |
|
325 |
||
37233
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
berghofe
parents:
36042
diff
changeset
|
326 |
fun make_sym Ts ((x, y), (prf, clprf)) = |
37310 | 327 |
((y, x), |
328 |
(Proofterm.change_type (SOME [fastype_of1 (Ts, x)]) sym_prf %> x %> y %% clprf %% prf, clprf)); |
|
13404 | 329 |
|
22277 | 330 |
fun mk_AbsP P t = AbsP ("H", Option.map HOLogic.mk_Trueprop P, t); |
13916
f078a758e5d8
elim_cong now eta-expands proofs on the fly if required.
berghofe
parents:
13602
diff
changeset
|
331 |
|
33722
e588744f14da
generalized procs for rewrite_proof: allow skeleton;
wenzelm
parents:
33388
diff
changeset
|
332 |
fun elim_cong_aux Ts (PThm (_, (("HOL.iffD1", _, _), _)) % _ % _ %% prf1 %% prf2) = |
15570 | 333 |
Option.map (make_subst Ts prf2 []) (strip_cong [] prf1) |
33722
e588744f14da
generalized procs for rewrite_proof: allow skeleton;
wenzelm
parents:
33388
diff
changeset
|
334 |
| elim_cong_aux Ts (PThm (_, (("HOL.iffD1", _, _), _)) % P % _ %% prf) = |
15570 | 335 |
Option.map (mk_AbsP P o make_subst Ts (PBound 0) []) |
37310 | 336 |
(strip_cong [] (Proofterm.incr_pboundvars 1 0 prf)) |
33722
e588744f14da
generalized procs for rewrite_proof: allow skeleton;
wenzelm
parents:
33388
diff
changeset
|
337 |
| elim_cong_aux Ts (PThm (_, (("HOL.iffD2", _, _), _)) % _ % _ %% prf1 %% prf2) = |
15570 | 338 |
Option.map (make_subst Ts prf2 [] o |
13404 | 339 |
apsnd (map (make_sym Ts))) (strip_cong [] prf1) |
33722
e588744f14da
generalized procs for rewrite_proof: allow skeleton;
wenzelm
parents:
33388
diff
changeset
|
340 |
| elim_cong_aux Ts (PThm (_, (("HOL.iffD2", _, _), _)) % _ % P %% prf) = |
15570 | 341 |
Option.map (mk_AbsP P o make_subst Ts (PBound 0) [] o |
37310 | 342 |
apsnd (map (make_sym Ts))) (strip_cong [] (Proofterm.incr_pboundvars 1 0 prf)) |
33722
e588744f14da
generalized procs for rewrite_proof: allow skeleton;
wenzelm
parents:
33388
diff
changeset
|
343 |
| elim_cong_aux _ _ = NONE; |
e588744f14da
generalized procs for rewrite_proof: allow skeleton;
wenzelm
parents:
33388
diff
changeset
|
344 |
|
37310 | 345 |
fun elim_cong Ts hs prf = Option.map (rpair Proofterm.no_skel) (elim_cong_aux Ts prf); |
13404 | 346 |
|
347 |
end; |