| 
15283
 | 
     1  | 
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
  | 
| 
 | 
     2  | 
  | 
| 
15582
 | 
     3  | 
<!-- $Id$ -->
  | 
| 
 | 
     4  | 
  | 
| 
 | 
     5  | 
<HTML>
  | 
| 
 | 
     6  | 
  | 
| 
 | 
     7  | 
<HEAD>
  | 
| 
 | 
     8  | 
  <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
  | 
| 
 | 
     9  | 
  <TITLE>HOL/Real/HahnBanach/README</TITLE>
  | 
| 
 | 
    10  | 
</HEAD>
  | 
| 
 | 
    11  | 
  | 
| 
 | 
    12  | 
<BODY>
  | 
| 
7655
 | 
    13  | 
  | 
| 
15283
 | 
    14  | 
<H3>The Hahn-Banach Theorem for Real Vector Spaces (Isabelle/Isar)</H3>
  | 
| 
7655
 | 
    15  | 
  | 
| 
15283
 | 
    16  | 
Author: Gertrud Bauer, Technische Universität München<P>
  | 
| 
7655
 | 
    17  | 
  | 
| 
 | 
    18  | 
This directory contains the proof of the Hahn-Banach theorem for real vectorspaces,
  | 
| 
 | 
    19  | 
following H. Heuser, Funktionalanalysis, p. 228 -232.
  | 
| 
 | 
    20  | 
The Hahn-Banach theorem is one of the fundamental theorems of functioal analysis.
  | 
| 
 | 
    21  | 
It is a conclusion of Zorn's lemma.<P>
  | 
| 
 | 
    22  | 
  | 
| 
 | 
    23  | 
Two different formaulations of the theorem are presented, one for general real vectorspaces
  | 
| 
 | 
    24  | 
and its application to normed vectorspaces. <P>
  | 
| 
 | 
    25  | 
  | 
| 
 | 
    26  | 
The theorem says, that every continous linearform, defined on arbitrary subspaces
  | 
| 
 | 
    27  | 
(not only one-dimensional subspaces), can be extended to a continous linearform on
  | 
| 
 | 
    28  | 
the whole vectorspace.
  | 
| 
 | 
    29  | 
  | 
| 
 | 
    30  | 
  | 
| 
 | 
    31  | 
<HR>
  | 
| 
 | 
    32  | 
  | 
| 
 | 
    33  | 
<ADDRESS>
  | 
| 
 | 
    34  | 
<A NAME="bauerg@in.tum.de" HREF="mailto:bauerg@in.tum.de">bauerg@in.tum.de</A>
  | 
| 
 | 
    35  | 
</ADDRESS>
  | 
| 
 | 
    36  | 
  | 
| 
15582
 | 
    37  | 
</BODY>
  | 
| 
 | 
    38  | 
</HTML>
  |