| author | wenzelm |
| Wed, 24 Jul 2002 00:11:24 +0200 | |
| changeset 13413 | 0b60b9e18a26 |
| parent 12460 | 624a8cd51b4e |
| child 13585 | db4005b40cc6 |
| permissions | -rw-r--r-- |
| 1475 | 1 |
(* Title: HOL/Fun.thy |
| 923 | 2 |
ID: $Id$ |
| 1475 | 3 |
Author: Tobias Nipkow, Cambridge University Computer Laboratory |
| 923 | 4 |
Copyright 1994 University of Cambridge |
5 |
||
| 2912 | 6 |
Notions about functions. |
| 923 | 7 |
*) |
8 |
||
| 12258 | 9 |
Fun = Typedef + |
| 2912 | 10 |
|
|
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
12258
diff
changeset
|
11 |
instance set :: (type) order |
| 4059 | 12 |
(subset_refl,subset_trans,subset_antisym,psubset_eq) |
| 6171 | 13 |
consts |
14 |
fun_upd :: "('a => 'b) => 'a => 'b => ('a => 'b)"
|
|
15 |
||
| 9141 | 16 |
nonterminals |
17 |
updbinds updbind |
|
| 5305 | 18 |
syntax |
19 |
"_updbind" :: ['a, 'a] => updbind ("(2_ :=/ _)")
|
|
20 |
"" :: updbind => updbinds ("_")
|
|
21 |
"_updbinds" :: [updbind, updbinds] => updbinds ("_,/ _")
|
|
| 8258 | 22 |
"_Update" :: ['a, updbinds] => 'a ("_/'((_)')" [1000,0] 900)
|
| 5305 | 23 |
|
24 |
translations |
|
25 |
"_Update f (_updbinds b bs)" == "_Update (_Update f b) bs" |
|
26 |
"f(x:=y)" == "fun_upd f x y" |
|
| 2912 | 27 |
|
28 |
defs |
|
| 6171 | 29 |
fun_upd_def "f(a:=b) == % x. if x=a then b else f x" |
| 2912 | 30 |
|
| 9340 | 31 |
(* Hint: to define the sum of two functions (or maps), use sum_case. |
32 |
A nice infix syntax could be defined (in Datatype.thy or below) by |
|
33 |
consts |
|
34 |
fun_sum :: "('a => 'c) => ('b => 'c) => (('a+'b) => 'c)" (infixr "'(+')"80)
|
|
35 |
translations |
|
36 |
"fun_sum" == "sum_case" |
|
37 |
*) |
|
| 12258 | 38 |
|
| 6171 | 39 |
constdefs |
40 |
id :: 'a => 'a |
|
41 |
"id == %x. x" |
|
42 |
||
43 |
o :: ['b => 'c, 'a => 'b, 'a] => 'c (infixl 55) |
|
44 |
"f o g == %x. f(g(x))" |
|
| 11123 | 45 |
|
| 6171 | 46 |
inj_on :: ['a => 'b, 'a set] => bool |
47 |
"inj_on f A == ! x:A. ! y:A. f(x)=f(y) --> x=y" |
|
| 2912 | 48 |
|
|
12114
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
wenzelm
parents:
11609
diff
changeset
|
49 |
syntax (xsymbols) |
| 9352 | 50 |
"op o" :: "['b => 'c, 'a => 'b, 'a] => 'c" (infixl "\\<circ>" 55) |
51 |
||
| 6171 | 52 |
syntax |
53 |
inj :: ('a => 'b) => bool (*injective*)
|
|
54 |
||
55 |
translations |
|
56 |
"inj f" == "inj_on f UNIV" |
|
| 5852 | 57 |
|
| 7374 | 58 |
constdefs |
59 |
surj :: ('a => 'b) => bool (*surjective*)
|
|
60 |
"surj f == ! y. ? x. y=f(x)" |
|
| 12258 | 61 |
|
| 7374 | 62 |
bij :: ('a => 'b) => bool (*bijective*)
|
63 |
"bij f == inj f & surj f" |
|
| 12258 | 64 |
|
| 7374 | 65 |
|
| 5852 | 66 |
(*The Pi-operator, by Florian Kammueller*) |
| 12258 | 67 |
|
| 5852 | 68 |
constdefs |
69 |
Pi :: "['a set, 'a => 'b set] => ('a => 'b) set"
|
|
|
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
11123
diff
changeset
|
70 |
"Pi A B == {f. ! x. if x:A then f(x) : B(x) else f(x) = arbitrary}"
|
| 5852 | 71 |
|
72 |
restrict :: "['a => 'b, 'a set] => ('a => 'b)"
|
|
|
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
11123
diff
changeset
|
73 |
"restrict f A == (%x. if x : A then f x else arbitrary)" |
| 5852 | 74 |
|
75 |
syntax |
|
|
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
11123
diff
changeset
|
76 |
"@Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set" ("(3PI _:_./ _)" 10)
|
| 12258 | 77 |
funcset :: "['a set, 'b set] => ('a => 'b) set" (infixr 60)
|
|
12459
6978ab7cac64
bounded abstraction now uses syntax "%" / "\<lambda>" instead of "lam";
wenzelm
parents:
12338
diff
changeset
|
78 |
"@lam" :: "[pttrn, 'a set, 'a => 'b] => ('a => 'b)" ("(3%_:_./ _)" [0, 0, 3] 3)
|
|
6978ab7cac64
bounded abstraction now uses syntax "%" / "\<lambda>" instead of "lam";
wenzelm
parents:
12338
diff
changeset
|
79 |
syntax (xsymbols) |
| 12460 | 80 |
"@lam" :: "[pttrn, 'a set, 'a => 'b] => ('a => 'b)" ("(3\\<lambda>_\\<in>_./ _)" [0, 0, 3] 3)
|
| 5852 | 81 |
|
|
12459
6978ab7cac64
bounded abstraction now uses syntax "%" / "\<lambda>" instead of "lam";
wenzelm
parents:
12338
diff
changeset
|
82 |
(*Giving funcset an arrow syntax (-> or =>) clashes with many existing theories*) |
|
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
11123
diff
changeset
|
83 |
|
|
12114
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
wenzelm
parents:
11609
diff
changeset
|
84 |
syntax (xsymbols) |
|
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
11123
diff
changeset
|
85 |
"@Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set" ("(3\\<Pi> _\\<in>_./ _)" 10)
|
| 5852 | 86 |
|
87 |
translations |
|
88 |
"PI x:A. B" => "Pi A (%x. B)" |
|
89 |
"A funcset B" => "Pi A (_K B)" |
|
|
12459
6978ab7cac64
bounded abstraction now uses syntax "%" / "\<lambda>" instead of "lam";
wenzelm
parents:
12338
diff
changeset
|
90 |
"%x:A. f" == "restrict (%x. f) A" |
| 5852 | 91 |
|
92 |
constdefs |
|
| 9309 | 93 |
compose :: "['a set, 'b => 'c, 'a => 'b] => ('a => 'c)"
|
|
12459
6978ab7cac64
bounded abstraction now uses syntax "%" / "\<lambda>" instead of "lam";
wenzelm
parents:
12338
diff
changeset
|
94 |
"compose A g f == %x:A. g (f x)" |
| 5852 | 95 |
|
| 2912 | 96 |
end |
| 5852 | 97 |
|
98 |
ML |
|
99 |
val print_translation = [("Pi", dependent_tr' ("@Pi", "op funcset"))];
|