| author | wenzelm | 
| Sat, 27 Sep 2008 18:18:05 +0200 | |
| changeset 28381 | 0b8237df37bd | 
| parent 27982 | 2aaa4a5569a6 | 
| child 29823 | 0ab754d13ccd | 
| permissions | -rw-r--r-- | 
| 17024 | 1  | 
(* Title: HOL/Extraction/Pigeonhole.thy  | 
2  | 
ID: $Id$  | 
|
3  | 
Author: Stefan Berghofer, TU Muenchen  | 
|
4  | 
*)  | 
|
5  | 
||
6  | 
header {* The pigeonhole principle *}
 | 
|
7  | 
||
| 22737 | 8  | 
theory Pigeonhole  | 
| 25418 | 9  | 
imports Util Efficient_Nat  | 
| 22737 | 10  | 
begin  | 
| 17024 | 11  | 
|
12  | 
text {*
 | 
|
13  | 
We formalize two proofs of the pigeonhole principle, which lead  | 
|
14  | 
to extracted programs of quite different complexity. The original  | 
|
15  | 
formalization of these proofs in {\sc Nuprl} is due to
 | 
|
16  | 
Aleksey Nogin \cite{Nogin-ENTCS-2000}.
 | 
|
17  | 
||
18  | 
This proof yields a polynomial program.  | 
|
19  | 
*}  | 
|
20  | 
||
21  | 
theorem pigeonhole:  | 
|
22  | 
"\<And>f. (\<And>i. i \<le> Suc n \<Longrightarrow> f i \<le> n) \<Longrightarrow> \<exists>i j. i \<le> Suc n \<and> j < i \<and> f i = f j"  | 
|
23  | 
proof (induct n)  | 
|
24  | 
case 0  | 
|
25  | 
hence "Suc 0 \<le> Suc 0 \<and> 0 < Suc 0 \<and> f (Suc 0) = f 0" by simp  | 
|
| 17604 | 26  | 
thus ?case by iprover  | 
| 17024 | 27  | 
next  | 
28  | 
case (Suc n)  | 
|
29  | 
  {
 | 
|
30  | 
fix k  | 
|
31  | 
have  | 
|
32  | 
"k \<le> Suc (Suc n) \<Longrightarrow>  | 
|
33  | 
(\<And>i j. Suc k \<le> i \<Longrightarrow> i \<le> Suc (Suc n) \<Longrightarrow> j < i \<Longrightarrow> f i \<noteq> f j) \<Longrightarrow>  | 
|
34  | 
(\<exists>i j. i \<le> k \<and> j < i \<and> f i = f j)"  | 
|
35  | 
proof (induct k)  | 
|
36  | 
case 0  | 
|
37  | 
let ?f = "\<lambda>i. if f i = Suc n then f (Suc (Suc n)) else f i"  | 
|
38  | 
have "\<not> (\<exists>i j. i \<le> Suc n \<and> j < i \<and> ?f i = ?f j)"  | 
|
39  | 
proof  | 
|
40  | 
assume "\<exists>i j. i \<le> Suc n \<and> j < i \<and> ?f i = ?f j"  | 
|
41  | 
then obtain i j where i: "i \<le> Suc n" and j: "j < i"  | 
|
| 17604 | 42  | 
and f: "?f i = ?f j" by iprover  | 
| 17024 | 43  | 
from j have i_nz: "Suc 0 \<le> i" by simp  | 
44  | 
from i have iSSn: "i \<le> Suc (Suc n)" by simp  | 
|
45  | 
have S0SSn: "Suc 0 \<le> Suc (Suc n)" by simp  | 
|
46  | 
show False  | 
|
47  | 
proof cases  | 
|
48  | 
assume fi: "f i = Suc n"  | 
|
49  | 
show False  | 
|
50  | 
proof cases  | 
|
51  | 
assume fj: "f j = Suc n"  | 
|
52  | 
from i_nz and iSSn and j have "f i \<noteq> f j" by (rule 0)  | 
|
53  | 
moreover from fi have "f i = f j"  | 
|
54  | 
by (simp add: fj [symmetric])  | 
|
55  | 
ultimately show ?thesis ..  | 
|
56  | 
next  | 
|
57  | 
from i and j have "j < Suc (Suc n)" by simp  | 
|
58  | 
with S0SSn and le_refl have "f (Suc (Suc n)) \<noteq> f j"  | 
|
59  | 
by (rule 0)  | 
|
60  | 
moreover assume "f j \<noteq> Suc n"  | 
|
61  | 
with fi and f have "f (Suc (Suc n)) = f j" by simp  | 
|
62  | 
ultimately show False ..  | 
|
63  | 
qed  | 
|
64  | 
next  | 
|
65  | 
assume fi: "f i \<noteq> Suc n"  | 
|
66  | 
show False  | 
|
67  | 
proof cases  | 
|
68  | 
from i have "i < Suc (Suc n)" by simp  | 
|
69  | 
with S0SSn and le_refl have "f (Suc (Suc n)) \<noteq> f i"  | 
|
70  | 
by (rule 0)  | 
|
71  | 
moreover assume "f j = Suc n"  | 
|
72  | 
with fi and f have "f (Suc (Suc n)) = f i" by simp  | 
|
73  | 
ultimately show False ..  | 
|
74  | 
next  | 
|
75  | 
from i_nz and iSSn and j  | 
|
76  | 
have "f i \<noteq> f j" by (rule 0)  | 
|
77  | 
moreover assume "f j \<noteq> Suc n"  | 
|
78  | 
with fi and f have "f i = f j" by simp  | 
|
79  | 
ultimately show False ..  | 
|
80  | 
qed  | 
|
81  | 
qed  | 
|
82  | 
qed  | 
|
83  | 
moreover have "\<And>i. i \<le> Suc n \<Longrightarrow> ?f i \<le> n"  | 
|
84  | 
proof -  | 
|
85  | 
fix i assume "i \<le> Suc n"  | 
|
86  | 
hence i: "i < Suc (Suc n)" by simp  | 
|
87  | 
have "f (Suc (Suc n)) \<noteq> f i"  | 
|
88  | 
by (rule 0) (simp_all add: i)  | 
|
89  | 
moreover have "f (Suc (Suc n)) \<le> Suc n"  | 
|
90  | 
by (rule Suc) simp  | 
|
91  | 
moreover from i have "i \<le> Suc (Suc n)" by simp  | 
|
92  | 
hence "f i \<le> Suc n" by (rule Suc)  | 
|
93  | 
ultimately show "?thesis i"  | 
|
94  | 
by simp  | 
|
95  | 
qed  | 
|
96  | 
hence "\<exists>i j. i \<le> Suc n \<and> j < i \<and> ?f i = ?f j"  | 
|
97  | 
by (rule Suc)  | 
|
98  | 
ultimately show ?case ..  | 
|
99  | 
next  | 
|
100  | 
case (Suc k)  | 
|
| 25418 | 101  | 
from search [OF nat_eq_dec] show ?case  | 
| 17024 | 102  | 
proof  | 
103  | 
assume "\<exists>j<Suc k. f (Suc k) = f j"  | 
|
| 17604 | 104  | 
thus ?case by (iprover intro: le_refl)  | 
| 17024 | 105  | 
next  | 
106  | 
assume nex: "\<not> (\<exists>j<Suc k. f (Suc k) = f j)"  | 
|
107  | 
have "\<exists>i j. i \<le> k \<and> j < i \<and> f i = f j"  | 
|
108  | 
proof (rule Suc)  | 
|
109  | 
from Suc show "k \<le> Suc (Suc n)" by simp  | 
|
110  | 
fix i j assume k: "Suc k \<le> i" and i: "i \<le> Suc (Suc n)"  | 
|
111  | 
and j: "j < i"  | 
|
112  | 
show "f i \<noteq> f j"  | 
|
113  | 
proof cases  | 
|
114  | 
assume eq: "i = Suc k"  | 
|
115  | 
show ?thesis  | 
|
116  | 
proof  | 
|
117  | 
assume "f i = f j"  | 
|
118  | 
hence "f (Suc k) = f j" by (simp add: eq)  | 
|
| 17604 | 119  | 
with nex and j and eq show False by iprover  | 
| 17024 | 120  | 
qed  | 
121  | 
next  | 
|
122  | 
assume "i \<noteq> Suc k"  | 
|
123  | 
with k have "Suc (Suc k) \<le> i" by simp  | 
|
124  | 
thus ?thesis using i and j by (rule Suc)  | 
|
125  | 
qed  | 
|
126  | 
qed  | 
|
| 17604 | 127  | 
thus ?thesis by (iprover intro: le_SucI)  | 
| 17024 | 128  | 
qed  | 
129  | 
qed  | 
|
130  | 
}  | 
|
131  | 
note r = this  | 
|
132  | 
show ?case by (rule r) simp_all  | 
|
133  | 
qed  | 
|
134  | 
||
135  | 
text {*
 | 
|
136  | 
The following proof, although quite elegant from a mathematical point of view,  | 
|
137  | 
leads to an exponential program:  | 
|
138  | 
*}  | 
|
139  | 
||
140  | 
theorem pigeonhole_slow:  | 
|
141  | 
"\<And>f. (\<And>i. i \<le> Suc n \<Longrightarrow> f i \<le> n) \<Longrightarrow> \<exists>i j. i \<le> Suc n \<and> j < i \<and> f i = f j"  | 
|
142  | 
proof (induct n)  | 
|
143  | 
case 0  | 
|
144  | 
have "Suc 0 \<le> Suc 0" ..  | 
|
145  | 
moreover have "0 < Suc 0" ..  | 
|
146  | 
moreover from 0 have "f (Suc 0) = f 0" by simp  | 
|
| 17604 | 147  | 
ultimately show ?case by iprover  | 
| 17024 | 148  | 
next  | 
149  | 
case (Suc n)  | 
|
| 25418 | 150  | 
from search [OF nat_eq_dec] show ?case  | 
| 17024 | 151  | 
proof  | 
152  | 
assume "\<exists>j < Suc (Suc n). f (Suc (Suc n)) = f j"  | 
|
| 17604 | 153  | 
thus ?case by (iprover intro: le_refl)  | 
| 17024 | 154  | 
next  | 
155  | 
assume "\<not> (\<exists>j < Suc (Suc n). f (Suc (Suc n)) = f j)"  | 
|
| 17604 | 156  | 
hence nex: "\<forall>j < Suc (Suc n). f (Suc (Suc n)) \<noteq> f j" by iprover  | 
| 17024 | 157  | 
let ?f = "\<lambda>i. if f i = Suc n then f (Suc (Suc n)) else f i"  | 
158  | 
have "\<And>i. i \<le> Suc n \<Longrightarrow> ?f i \<le> n"  | 
|
159  | 
proof -  | 
|
160  | 
fix i assume i: "i \<le> Suc n"  | 
|
161  | 
show "?thesis i"  | 
|
162  | 
proof (cases "f i = Suc n")  | 
|
163  | 
case True  | 
|
164  | 
from i and nex have "f (Suc (Suc n)) \<noteq> f i" by simp  | 
|
165  | 
with True have "f (Suc (Suc n)) \<noteq> Suc n" by simp  | 
|
166  | 
moreover from Suc have "f (Suc (Suc n)) \<le> Suc n" by simp  | 
|
167  | 
ultimately have "f (Suc (Suc n)) \<le> n" by simp  | 
|
168  | 
with True show ?thesis by simp  | 
|
169  | 
next  | 
|
170  | 
case False  | 
|
171  | 
from Suc and i have "f i \<le> Suc n" by simp  | 
|
172  | 
with False show ?thesis by simp  | 
|
173  | 
qed  | 
|
174  | 
qed  | 
|
175  | 
hence "\<exists>i j. i \<le> Suc n \<and> j < i \<and> ?f i = ?f j" by (rule Suc)  | 
|
176  | 
then obtain i j where i: "i \<le> Suc n" and ji: "j < i" and f: "?f i = ?f j"  | 
|
| 17604 | 177  | 
by iprover  | 
| 17024 | 178  | 
have "f i = f j"  | 
179  | 
proof (cases "f i = Suc n")  | 
|
180  | 
case True  | 
|
181  | 
show ?thesis  | 
|
182  | 
proof (cases "f j = Suc n")  | 
|
183  | 
assume "f j = Suc n"  | 
|
184  | 
with True show ?thesis by simp  | 
|
185  | 
next  | 
|
186  | 
assume "f j \<noteq> Suc n"  | 
|
187  | 
moreover from i ji nex have "f (Suc (Suc n)) \<noteq> f j" by simp  | 
|
188  | 
ultimately show ?thesis using True f by simp  | 
|
189  | 
qed  | 
|
190  | 
next  | 
|
191  | 
case False  | 
|
192  | 
show ?thesis  | 
|
193  | 
proof (cases "f j = Suc n")  | 
|
194  | 
assume "f j = Suc n"  | 
|
195  | 
moreover from i nex have "f (Suc (Suc n)) \<noteq> f i" by simp  | 
|
196  | 
ultimately show ?thesis using False f by simp  | 
|
197  | 
next  | 
|
198  | 
assume "f j \<noteq> Suc n"  | 
|
199  | 
with False f show ?thesis by simp  | 
|
200  | 
qed  | 
|
201  | 
qed  | 
|
202  | 
moreover from i have "i \<le> Suc (Suc n)" by simp  | 
|
| 17604 | 203  | 
ultimately show ?thesis using ji by iprover  | 
| 17024 | 204  | 
qed  | 
205  | 
qed  | 
|
206  | 
||
207  | 
extract pigeonhole pigeonhole_slow  | 
|
208  | 
||
209  | 
text {*
 | 
|
210  | 
The programs extracted from the above proofs look as follows:  | 
|
211  | 
@{thm [display] pigeonhole_def}
 | 
|
212  | 
@{thm [display] pigeonhole_slow_def}
 | 
|
213  | 
The program for searching for an element in an array is  | 
|
214  | 
@{thm [display,eta_contract=false] search_def}
 | 
|
215  | 
The correctness statement for @{term "pigeonhole"} is
 | 
|
216  | 
@{thm [display] pigeonhole_correctness [no_vars]}
 | 
|
217  | 
||
218  | 
In order to analyze the speed of the above programs,  | 
|
219  | 
we generate ML code from them.  | 
|
220  | 
*}  | 
|
221  | 
||
| 27982 | 222  | 
instantiation nat :: default  | 
223  | 
begin  | 
|
224  | 
||
225  | 
definition "default = (0::nat)"  | 
|
226  | 
||
227  | 
instance ..  | 
|
228  | 
||
229  | 
end  | 
|
230  | 
||
231  | 
instantiation * :: (default, default) default  | 
|
232  | 
begin  | 
|
233  | 
||
234  | 
definition "default = (default, default)"  | 
|
235  | 
||
236  | 
instance ..  | 
|
237  | 
||
238  | 
end  | 
|
239  | 
||
240  | 
consts_code  | 
|
241  | 
  "default :: nat" ("{* 0::nat *}")
 | 
|
242  | 
  "default :: nat \<times> nat" ("{* (0::nat, 0::nat) *}")
 | 
|
243  | 
||
| 20837 | 244  | 
definition  | 
| 23810 | 245  | 
"test n u = pigeonhole n (\<lambda>m. m - 1)"  | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21127 
diff
changeset
 | 
246  | 
definition  | 
| 23810 | 247  | 
"test' n u = pigeonhole_slow n (\<lambda>m. m - 1)"  | 
| 22507 | 248  | 
definition  | 
249  | 
"test'' u = pigeonhole 8 (op ! [0, 1, 2, 3, 4, 5, 6, 3, 7, 8])"  | 
|
| 20837 | 250  | 
|
| 27436 | 251  | 
code_module PH  | 
| 22507 | 252  | 
contains  | 
253  | 
test = test  | 
|
254  | 
test' = test'  | 
|
255  | 
test'' = test''  | 
|
256  | 
||
| 27436 | 257  | 
ML "timeit (PH.test 10)"  | 
258  | 
ML "timeit (@{code test} 10)" 
 | 
|
| 22507 | 259  | 
|
| 27436 | 260  | 
ML "timeit (PH.test' 10)"  | 
261  | 
ML "timeit (@{code test'} 10)"
 | 
|
| 22507 | 262  | 
|
| 27436 | 263  | 
ML "timeit (PH.test 20)"  | 
264  | 
ML "timeit (@{code test} 20)"
 | 
|
| 22507 | 265  | 
|
| 27436 | 266  | 
ML "timeit (PH.test' 20)"  | 
267  | 
ML "timeit (@{code test'} 20)"
 | 
|
| 22507 | 268  | 
|
| 27436 | 269  | 
ML "timeit (PH.test 25)"  | 
270  | 
ML "timeit (@{code test} 25)"
 | 
|
| 22507 | 271  | 
|
| 27436 | 272  | 
ML "timeit (PH.test' 25)"  | 
273  | 
ML "timeit (@{code test'} 25)"
 | 
|
| 22507 | 274  | 
|
| 27436 | 275  | 
ML "timeit (PH.test 500)"  | 
276  | 
ML "timeit (@{code test} 500)"
 | 
|
| 22507 | 277  | 
|
| 27436 | 278  | 
ML "timeit PH.test''"  | 
279  | 
ML "timeit @{code test''}"
 | 
|
| 20837 | 280  | 
|
| 17024 | 281  | 
end  |