| author | paulson | 
| Mon, 22 May 2000 12:29:02 +0200 | |
| changeset 8913 | 0bc13d5e60b8 | 
| parent 8201 | a81d18b0a9b1 | 
| child 9173 | 422968aeed49 | 
| permissions | -rw-r--r-- | 
| 1461 | 1 | (* Title: ZF/OrderArith.ML | 
| 437 | 2 | ID: $Id$ | 
| 1461 | 3 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | 
| 437 | 4 | Copyright 1994 University of Cambridge | 
| 5 | ||
| 6 | Towards ordinal arithmetic | |
| 7 | *) | |
| 8 | ||
| 9 | (**** Addition of relations -- disjoint sum ****) | |
| 10 | ||
| 11 | (** Rewrite rules. Can be used to obtain introduction rules **) | |
| 12 | ||
| 5067 | 13 | Goalw [radd_def] | 
| 437 | 14 | "<Inl(a), Inr(b)> : radd(A,r,B,s) <-> a:A & b:B"; | 
| 2925 | 15 | by (Blast_tac 1); | 
| 760 | 16 | qed "radd_Inl_Inr_iff"; | 
| 437 | 17 | |
| 5067 | 18 | Goalw [radd_def] | 
| 859 | 19 | "<Inl(a'), Inl(a)> : radd(A,r,B,s) <-> a':A & a:A & <a',a>:r"; | 
| 2925 | 20 | by (Blast_tac 1); | 
| 760 | 21 | qed "radd_Inl_iff"; | 
| 437 | 22 | |
| 5067 | 23 | Goalw [radd_def] | 
| 859 | 24 | "<Inr(b'), Inr(b)> : radd(A,r,B,s) <-> b':B & b:B & <b',b>:s"; | 
| 2925 | 25 | by (Blast_tac 1); | 
| 760 | 26 | qed "radd_Inr_iff"; | 
| 437 | 27 | |
| 5067 | 28 | Goalw [radd_def] | 
| 437 | 29 | "<Inr(b), Inl(a)> : radd(A,r,B,s) <-> False"; | 
| 2925 | 30 | by (Blast_tac 1); | 
| 760 | 31 | qed "radd_Inr_Inl_iff"; | 
| 437 | 32 | |
| 33 | (** Elimination Rule **) | |
| 34 | ||
| 5268 | 35 | val major::prems = Goalw [radd_def] | 
| 1461 | 36 | "[| <p',p> : radd(A,r,B,s); \ | 
| 37 | \ !!x y. [| p'=Inl(x); x:A; p=Inr(y); y:B |] ==> Q; \ | |
| 38 | \ !!x' x. [| p'=Inl(x'); p=Inl(x); <x',x>: r; x':A; x:A |] ==> Q; \ | |
| 39 | \ !!y' y. [| p'=Inr(y'); p=Inr(y); <y',y>: s; y':B; y:B |] ==> Q \ | |
| 437 | 40 | \ |] ==> Q"; | 
| 41 | by (cut_facts_tac [major] 1); | |
| 42 | (*Split into the three cases*) | |
| 2925 | 43 | by (REPEAT_FIRST (*can't use safe_tac: don't want hyp_subst_tac*) | 
| 437 | 44 | (eresolve_tac [CollectE, Pair_inject, conjE, exE, SigmaE, disjE])); | 
| 45 | (*Apply each premise to correct subgoal; can't just use fast_tac | |
| 46 | because hyp_subst_tac would delete equalities too quickly*) | |
| 47 | by (EVERY (map (fn prem => | |
| 2493 | 48 | EVERY1 [rtac prem, assume_tac, REPEAT o Fast_tac]) | 
| 1461 | 49 | prems)); | 
| 760 | 50 | qed "raddE"; | 
| 437 | 51 | |
| 52 | (** Type checking **) | |
| 53 | ||
| 5067 | 54 | Goalw [radd_def] "radd(A,r,B,s) <= (A+B) * (A+B)"; | 
| 437 | 55 | by (rtac Collect_subset 1); | 
| 760 | 56 | qed "radd_type"; | 
| 437 | 57 | |
| 2469 | 58 | bind_thm ("field_radd", radd_type RS field_rel_subset);
 | 
| 437 | 59 | |
| 60 | (** Linearity **) | |
| 61 | ||
| 2469 | 62 | Addsimps [radd_Inl_iff, radd_Inr_iff, | 
| 2493 | 63 | radd_Inl_Inr_iff, radd_Inr_Inl_iff]; | 
| 437 | 64 | |
| 5067 | 65 | Goalw [linear_def] | 
| 5147 
825877190618
More tidying and removal of "\!\!... from Goal commands
 paulson parents: 
5137diff
changeset | 66 | "[| linear(A,r); linear(B,s) |] ==> linear(A+B,radd(A,r,B,s))"; | 
| 8201 | 67 | by (Force_tac 1); | 
| 760 | 68 | qed "linear_radd"; | 
| 437 | 69 | |
| 70 | ||
| 71 | (** Well-foundedness **) | |
| 72 | ||
| 5268 | 73 | Goal "[| wf[A](r); wf[B](s) |] ==> wf[A+B](radd(A,r,B,s))"; | 
| 437 | 74 | by (rtac wf_onI2 1); | 
| 75 | by (subgoal_tac "ALL x:A. Inl(x): Ba" 1); | |
| 76 | (*Proving the lemma, which is needed twice!*) | |
| 1957 | 77 | by (thin_tac "y : A + B" 2); | 
| 437 | 78 | by (rtac ballI 2); | 
| 79 | by (eres_inst_tac [("r","r"),("a","x")] wf_on_induct 2 THEN assume_tac 2);
 | |
| 4091 | 80 | by (best_tac (claset() addSEs [raddE, bspec RS mp]) 2); | 
| 437 | 81 | (*Returning to main part of proof*) | 
| 5488 | 82 | by Safe_tac; | 
| 3016 | 83 | by (Blast_tac 1); | 
| 437 | 84 | by (eres_inst_tac [("r","s"),("a","ya")] wf_on_induct 1 THEN assume_tac 1);
 | 
| 4091 | 85 | by (best_tac (claset() addSEs [raddE, bspec RS mp]) 1); | 
| 760 | 86 | qed "wf_on_radd"; | 
| 437 | 87 | |
| 5268 | 88 | Goal "[| wf(r); wf(s) |] ==> wf(radd(field(r),r,field(s),s))"; | 
| 4091 | 89 | by (asm_full_simp_tac (simpset() addsimps [wf_iff_wf_on_field]) 1); | 
| 437 | 90 | by (rtac (field_radd RSN (2, wf_on_subset_A)) 1); | 
| 91 | by (REPEAT (ares_tac [wf_on_radd] 1)); | |
| 760 | 92 | qed "wf_radd"; | 
| 437 | 93 | |
| 5268 | 94 | Goal "[| well_ord(A,r); well_ord(B,s) |] ==> \ | 
| 437 | 95 | \ well_ord(A+B, radd(A,r,B,s))"; | 
| 96 | by (rtac well_ordI 1); | |
| 4091 | 97 | by (asm_full_simp_tac (simpset() addsimps [well_ord_def, wf_on_radd]) 1); | 
| 437 | 98 | by (asm_full_simp_tac | 
| 4091 | 99 | (simpset() addsimps [well_ord_def, tot_ord_def, linear_radd]) 1); | 
| 760 | 100 | qed "well_ord_radd"; | 
| 437 | 101 | |
| 859 | 102 | (** An ord_iso congruence law **) | 
| 103 | ||
| 5268 | 104 | Goal "[| f: bij(A,C); g: bij(B,D) |] ==> \ | 
| 859 | 105 | \ (lam z:A+B. case(%x. Inl(f`x), %y. Inr(g`y), z)) : bij(A+B, C+D)"; | 
| 106 | by (res_inst_tac | |
| 107 |         [("d", "case(%x. Inl(converse(f)`x), %y. Inr(converse(g)`y))")] 
 | |
| 108 | lam_bijective 1); | |
| 8201 | 109 | by Safe_tac; | 
| 2469 | 110 | by (ALLGOALS (asm_simp_tac bij_inverse_ss)); | 
| 859 | 111 | qed "sum_bij"; | 
| 112 | ||
| 5067 | 113 | Goalw [ord_iso_def] | 
| 5147 
825877190618
More tidying and removal of "\!\!... from Goal commands
 paulson parents: 
5137diff
changeset | 114 | "[| f: ord_iso(A,r,A',r'); g: ord_iso(B,s,B',s') |] ==> \ | 
| 1461 | 115 | \ (lam z:A+B. case(%x. Inl(f`x), %y. Inr(g`y), z)) \ | 
| 859 | 116 | \ : ord_iso(A+B, radd(A,r,B,s), A'+B', radd(A',r',B',s'))"; | 
| 4091 | 117 | by (safe_tac (claset() addSIs [sum_bij])); | 
| 859 | 118 | (*Do the beta-reductions now*) | 
| 2469 | 119 | by (ALLGOALS (Asm_full_simp_tac)); | 
| 4152 | 120 | by Safe_tac; | 
| 859 | 121 | (*8 subgoals!*) | 
| 122 | by (ALLGOALS | |
| 123 | (asm_full_simp_tac | |
| 4091 | 124 | (simpset() addcongs [conj_cong] addsimps [bij_is_fun RS apply_type]))); | 
| 859 | 125 | qed "sum_ord_iso_cong"; | 
| 126 | ||
| 127 | (*Could we prove an ord_iso result? Perhaps | |
| 128 | ord_iso(A+B, radd(A,r,B,s), A Un B, r Un s) *) | |
| 5268 | 129 | Goal "A Int B = 0 ==> \ | 
| 3840 | 130 | \ (lam z:A+B. case(%x. x, %y. y, z)) : bij(A+B, A Un B)"; | 
| 6068 | 131 | by (res_inst_tac [("d", "%z. if z:A then Inl(z) else Inr(z)")] 
 | 
| 859 | 132 | lam_bijective 1); | 
| 8201 | 133 | by Auto_tac; | 
| 859 | 134 | qed "sum_disjoint_bij"; | 
| 135 | ||
| 136 | (** Associativity **) | |
| 137 | ||
| 5268 | 138 | Goal "(lam z:(A+B)+C. case(case(Inl, %y. Inr(Inl(y))), %y. Inr(Inr(y)), z)) \ | 
| 859 | 139 | \ : bij((A+B)+C, A+(B+C))"; | 
| 3840 | 140 | by (res_inst_tac [("d", "case(%x. Inl(Inl(x)), case(%x. Inl(Inr(x)), Inr))")] 
 | 
| 859 | 141 | lam_bijective 1); | 
| 8201 | 142 | by Auto_tac; | 
| 859 | 143 | qed "sum_assoc_bij"; | 
| 144 | ||
| 5268 | 145 | Goal "(lam z:(A+B)+C. case(case(Inl, %y. Inr(Inl(y))), %y. Inr(Inr(y)), z)) \ | 
| 1461 | 146 | \ : ord_iso((A+B)+C, radd(A+B, radd(A,r,B,s), C, t), \ | 
| 859 | 147 | \ A+(B+C), radd(A, r, B+C, radd(B,s,C,t)))"; | 
| 148 | by (resolve_tac [sum_assoc_bij RS ord_isoI] 1); | |
| 8201 | 149 | by Auto_tac; | 
| 859 | 150 | qed "sum_assoc_ord_iso"; | 
| 151 | ||
| 437 | 152 | |
| 153 | (**** Multiplication of relations -- lexicographic product ****) | |
| 154 | ||
| 155 | (** Rewrite rule. Can be used to obtain introduction rules **) | |
| 156 | ||
| 5067 | 157 | Goalw [rmult_def] | 
| 5147 
825877190618
More tidying and removal of "\!\!... from Goal commands
 paulson parents: 
5137diff
changeset | 158 | "<<a',b'>, <a,b>> : rmult(A,r,B,s) <-> \ | 
| 1461 | 159 | \ (<a',a>: r & a':A & a:A & b': B & b: B) | \ | 
| 437 | 160 | \ (<b',b>: s & a'=a & a:A & b': B & b: B)"; | 
| 2925 | 161 | by (Blast_tac 1); | 
| 760 | 162 | qed "rmult_iff"; | 
| 437 | 163 | |
| 2469 | 164 | Addsimps [rmult_iff]; | 
| 165 | ||
| 5268 | 166 | val major::prems = Goal | 
| 1461 | 167 | "[| <<a',b'>, <a,b>> : rmult(A,r,B,s); \ | 
| 168 | \ [| <a',a>: r; a':A; a:A; b':B; b:B |] ==> Q; \ | |
| 169 | \ [| <b',b>: s; a:A; a'=a; b':B; b:B |] ==> Q \ | |
| 437 | 170 | \ |] ==> Q"; | 
| 171 | by (rtac (major RS (rmult_iff RS iffD1) RS disjE) 1); | |
| 172 | by (DEPTH_SOLVE (eresolve_tac ([asm_rl, conjE] @ prems) 1)); | |
| 760 | 173 | qed "rmultE"; | 
| 437 | 174 | |
| 175 | (** Type checking **) | |
| 176 | ||
| 5067 | 177 | Goalw [rmult_def] "rmult(A,r,B,s) <= (A*B) * (A*B)"; | 
| 437 | 178 | by (rtac Collect_subset 1); | 
| 760 | 179 | qed "rmult_type"; | 
| 437 | 180 | |
| 782 
200a16083201
added bind_thm for theorems defined by "standard ..."
 clasohm parents: 
770diff
changeset | 181 | bind_thm ("field_rmult", (rmult_type RS field_rel_subset));
 | 
| 437 | 182 | |
| 183 | (** Linearity **) | |
| 184 | ||
| 185 | val [lina,linb] = goal OrderArith.thy | |
| 186 | "[| linear(A,r); linear(B,s) |] ==> linear(A*B,rmult(A,r,B,s))"; | |
| 187 | by (rewtac linear_def); (*Note! the premises are NOT rewritten*) | |
| 188 | by (REPEAT_FIRST (ares_tac [ballI] ORELSE' etac SigmaE)); | |
| 2469 | 189 | by (Asm_simp_tac 1); | 
| 437 | 190 | by (res_inst_tac [("x","xa"), ("y","xb")] (lina RS linearE) 1);
 | 
| 191 | by (res_inst_tac [("x","ya"), ("y","yb")] (linb RS linearE) 4);
 | |
| 2925 | 192 | by (REPEAT_SOME (Blast_tac)); | 
| 760 | 193 | qed "linear_rmult"; | 
| 437 | 194 | |
| 195 | ||
| 196 | (** Well-foundedness **) | |
| 197 | ||
| 5268 | 198 | Goal "[| wf[A](r); wf[B](s) |] ==> wf[A*B](rmult(A,r,B,s))"; | 
| 437 | 199 | by (rtac wf_onI2 1); | 
| 200 | by (etac SigmaE 1); | |
| 201 | by (etac ssubst 1); | |
| 202 | by (subgoal_tac "ALL b:B. <x,b>: Ba" 1); | |
| 2925 | 203 | by (Blast_tac 1); | 
| 437 | 204 | by (eres_inst_tac [("a","x")] wf_on_induct 1 THEN assume_tac 1);
 | 
| 205 | by (rtac ballI 1); | |
| 206 | by (eres_inst_tac [("a","b")] wf_on_induct 1 THEN assume_tac 1);
 | |
| 4091 | 207 | by (best_tac (claset() addSEs [rmultE, bspec RS mp]) 1); | 
| 760 | 208 | qed "wf_on_rmult"; | 
| 437 | 209 | |
| 210 | ||
| 5268 | 211 | Goal "[| wf(r); wf(s) |] ==> wf(rmult(field(r),r,field(s),s))"; | 
| 4091 | 212 | by (asm_full_simp_tac (simpset() addsimps [wf_iff_wf_on_field]) 1); | 
| 437 | 213 | by (rtac (field_rmult RSN (2, wf_on_subset_A)) 1); | 
| 214 | by (REPEAT (ares_tac [wf_on_rmult] 1)); | |
| 760 | 215 | qed "wf_rmult"; | 
| 437 | 216 | |
| 5268 | 217 | Goal "[| well_ord(A,r); well_ord(B,s) |] ==> \ | 
| 437 | 218 | \ well_ord(A*B, rmult(A,r,B,s))"; | 
| 219 | by (rtac well_ordI 1); | |
| 4091 | 220 | by (asm_full_simp_tac (simpset() addsimps [well_ord_def, wf_on_rmult]) 1); | 
| 437 | 221 | by (asm_full_simp_tac | 
| 4091 | 222 | (simpset() addsimps [well_ord_def, tot_ord_def, linear_rmult]) 1); | 
| 760 | 223 | qed "well_ord_rmult"; | 
| 437 | 224 | |
| 225 | ||
| 859 | 226 | (** An ord_iso congruence law **) | 
| 227 | ||
| 5268 | 228 | Goal "[| f: bij(A,C); g: bij(B,D) |] ==> \ | 
| 1095 
6d0aad5f50a5
Changed some definitions and proofs to use pattern-matching.
 lcp parents: 
859diff
changeset | 229 | \ (lam <x,y>:A*B. <f`x, g`y>) : bij(A*B, C*D)"; | 
| 
6d0aad5f50a5
Changed some definitions and proofs to use pattern-matching.
 lcp parents: 
859diff
changeset | 230 | by (res_inst_tac [("d", "%<x,y>. <converse(f)`x, converse(g)`y>")] 
 | 
| 859 | 231 | lam_bijective 1); | 
| 4152 | 232 | by Safe_tac; | 
| 859 | 233 | by (ALLGOALS (asm_simp_tac bij_inverse_ss)); | 
| 234 | qed "prod_bij"; | |
| 235 | ||
| 5067 | 236 | Goalw [ord_iso_def] | 
| 5147 
825877190618
More tidying and removal of "\!\!... from Goal commands
 paulson parents: 
5137diff
changeset | 237 | "[| f: ord_iso(A,r,A',r'); g: ord_iso(B,s,B',s') |] ==> \ | 
| 1461 | 238 | \ (lam <x,y>:A*B. <f`x, g`y>) \ | 
| 859 | 239 | \ : ord_iso(A*B, rmult(A,r,B,s), A'*B', rmult(A',r',B',s'))"; | 
| 4091 | 240 | by (safe_tac (claset() addSIs [prod_bij])); | 
| 859 | 241 | by (ALLGOALS | 
| 4091 | 242 | (asm_full_simp_tac (simpset() addsimps [bij_is_fun RS apply_type]))); | 
| 2925 | 243 | by (Blast_tac 1); | 
| 4091 | 244 | by (blast_tac (claset() addIs [bij_is_inj RS inj_apply_equality]) 1); | 
| 859 | 245 | qed "prod_ord_iso_cong"; | 
| 246 | ||
| 5067 | 247 | Goal "(lam z:A. <x,z>) : bij(A, {x}*A)";
 | 
| 859 | 248 | by (res_inst_tac [("d", "snd")] lam_bijective 1);
 | 
| 8201 | 249 | by Auto_tac; | 
| 859 | 250 | qed "singleton_prod_bij"; | 
| 251 | ||
| 252 | (*Used??*) | |
| 5268 | 253 | Goal "well_ord({x},xr) ==>  \
 | 
| 859 | 254 | \         (lam z:A. <x,z>) : ord_iso(A, r, {x}*A, rmult({x}, xr, A, r))";
 | 
| 255 | by (resolve_tac [singleton_prod_bij RS ord_isoI] 1); | |
| 2469 | 256 | by (Asm_simp_tac 1); | 
| 4091 | 257 | by (blast_tac (claset() addEs [well_ord_is_wf RS wf_on_not_refl RS notE]) 1); | 
| 859 | 258 | qed "singleton_prod_ord_iso"; | 
| 259 | ||
| 260 | (*Here we build a complicated function term, then simplify it using | |
| 261 | case_cong, id_conv, comp_lam, case_case.*) | |
| 5268 | 262 | Goal "a~:C ==> \ | 
| 3840 | 263 | \ (lam x:C*B + D. case(%x. x, %y.<a,y>, x)) \ | 
| 859 | 264 | \      : bij(C*B + D, C*B Un {a}*D)";
 | 
| 1461 | 265 | by (rtac subst_elem 1); | 
| 859 | 266 | by (resolve_tac [id_bij RS sum_bij RS comp_bij] 1); | 
| 1461 | 267 | by (rtac singleton_prod_bij 1); | 
| 268 | by (rtac sum_disjoint_bij 1); | |
| 2925 | 269 | by (Blast_tac 1); | 
| 8201 | 270 | by (asm_simp_tac (simpset() addcongs [case_cong]) 1); | 
| 859 | 271 | by (resolve_tac [comp_lam RS trans RS sym] 1); | 
| 4091 | 272 | by (fast_tac (claset() addSEs [case_type]) 1); | 
| 273 | by (asm_simp_tac (simpset() addsimps [case_case]) 1); | |
| 859 | 274 | qed "prod_sum_singleton_bij"; | 
| 275 | ||
| 5268 | 276 | Goal "[| a:A; well_ord(A,r) |] ==> \ | 
| 3840 | 277 | \ (lam x:pred(A,a,r)*B + pred(B,b,s). case(%x. x, %y.<a,y>, x)) \ | 
| 1461 | 278 | \ : ord_iso(pred(A,a,r)*B + pred(B,b,s), \ | 
| 279 | \ radd(A*B, rmult(A,r,B,s), B, s), \ | |
| 859 | 280 | \             pred(A,a,r)*B Un {a}*pred(B,b,s), rmult(A,r,B,s))";
 | 
| 281 | by (resolve_tac [prod_sum_singleton_bij RS ord_isoI] 1); | |
| 282 | by (asm_simp_tac | |
| 4091 | 283 | (simpset() addsimps [pred_iff, well_ord_is_wf RS wf_on_not_refl]) 1); | 
| 2469 | 284 | by (Asm_simp_tac 1); | 
| 859 | 285 | by (REPEAT_FIRST (eresolve_tac [SigmaE, sumE, predE])); | 
| 3016 | 286 | by (ALLGOALS Asm_simp_tac); | 
| 4091 | 287 | by (ALLGOALS (blast_tac (claset() addEs [well_ord_is_wf RS wf_on_asym]))); | 
| 859 | 288 | qed "prod_sum_singleton_ord_iso"; | 
| 289 | ||
| 290 | (** Distributive law **) | |
| 291 | ||
| 5268 | 292 | Goal "(lam <x,z>:(A+B)*C. case(%y. Inl(<y,z>), %y. Inr(<y,z>), x)) \ | 
| 859 | 293 | \ : bij((A+B)*C, (A*C)+(B*C))"; | 
| 294 | by (res_inst_tac | |
| 1095 
6d0aad5f50a5
Changed some definitions and proofs to use pattern-matching.
 lcp parents: 
859diff
changeset | 295 |     [("d", "case(%<x,y>.<Inl(x),y>, %<x,y>.<Inr(x),y>)")] lam_bijective 1);
 | 
| 8201 | 296 | by Auto_tac; | 
| 859 | 297 | qed "sum_prod_distrib_bij"; | 
| 298 | ||
| 5268 | 299 | Goal "(lam <x,z>:(A+B)*C. case(%y. Inl(<y,z>), %y. Inr(<y,z>), x)) \ | 
| 859 | 300 | \ : ord_iso((A+B)*C, rmult(A+B, radd(A,r,B,s), C, t), \ | 
| 301 | \ (A*C)+(B*C), radd(A*C, rmult(A,r,C,t), B*C, rmult(B,s,C,t)))"; | |
| 302 | by (resolve_tac [sum_prod_distrib_bij RS ord_isoI] 1); | |
| 8201 | 303 | by Auto_tac; | 
| 859 | 304 | qed "sum_prod_distrib_ord_iso"; | 
| 305 | ||
| 306 | (** Associativity **) | |
| 307 | ||
| 5268 | 308 | Goal "(lam <<x,y>, z>:(A*B)*C. <x,<y,z>>) : bij((A*B)*C, A*(B*C))"; | 
| 1095 
6d0aad5f50a5
Changed some definitions and proofs to use pattern-matching.
 lcp parents: 
859diff
changeset | 309 | by (res_inst_tac [("d", "%<x, <y,z>>. <<x,y>, z>")] lam_bijective 1);
 | 
| 8201 | 310 | by Auto_tac; | 
| 859 | 311 | qed "prod_assoc_bij"; | 
| 312 | ||
| 5268 | 313 | Goal "(lam <<x,y>, z>:(A*B)*C. <x,<y,z>>) \ | 
| 1461 | 314 | \ : ord_iso((A*B)*C, rmult(A*B, rmult(A,r,B,s), C, t), \ | 
| 859 | 315 | \ A*(B*C), rmult(A, r, B*C, rmult(B,s,C,t)))"; | 
| 316 | by (resolve_tac [prod_assoc_bij RS ord_isoI] 1); | |
| 8201 | 317 | by Auto_tac; | 
| 859 | 318 | qed "prod_assoc_ord_iso"; | 
| 319 | ||
| 437 | 320 | (**** Inverse image of a relation ****) | 
| 321 | ||
| 322 | (** Rewrite rule **) | |
| 323 | ||
| 8201 | 324 | Goalw [rvimage_def] "<a,b> : rvimage(A,f,r) <-> <f`a,f`b>: r & a:A & b:A"; | 
| 2925 | 325 | by (Blast_tac 1); | 
| 760 | 326 | qed "rvimage_iff"; | 
| 437 | 327 | |
| 328 | (** Type checking **) | |
| 329 | ||
| 5067 | 330 | Goalw [rvimage_def] "rvimage(A,f,r) <= A*A"; | 
| 437 | 331 | by (rtac Collect_subset 1); | 
| 760 | 332 | qed "rvimage_type"; | 
| 437 | 333 | |
| 782 
200a16083201
added bind_thm for theorems defined by "standard ..."
 clasohm parents: 
770diff
changeset | 334 | bind_thm ("field_rvimage", (rvimage_type RS field_rel_subset));
 | 
| 437 | 335 | |
| 8201 | 336 | Goalw [rvimage_def] "rvimage(A,f, converse(r)) = converse(rvimage(A,f,r))"; | 
| 2925 | 337 | by (Blast_tac 1); | 
| 835 
313ac9b513f1
Added Krzysztof's theorems irrefl_rvimage, trans_on_rvimage,
 lcp parents: 
815diff
changeset | 338 | qed "rvimage_converse"; | 
| 
313ac9b513f1
Added Krzysztof's theorems irrefl_rvimage, trans_on_rvimage,
 lcp parents: 
815diff
changeset | 339 | |
| 
313ac9b513f1
Added Krzysztof's theorems irrefl_rvimage, trans_on_rvimage,
 lcp parents: 
815diff
changeset | 340 | |
| 
313ac9b513f1
Added Krzysztof's theorems irrefl_rvimage, trans_on_rvimage,
 lcp parents: 
815diff
changeset | 341 | (** Partial Ordering Properties **) | 
| 
313ac9b513f1
Added Krzysztof's theorems irrefl_rvimage, trans_on_rvimage,
 lcp parents: 
815diff
changeset | 342 | |
| 5067 | 343 | Goalw [irrefl_def, rvimage_def] | 
| 5147 
825877190618
More tidying and removal of "\!\!... from Goal commands
 paulson parents: 
5137diff
changeset | 344 | "[| f: inj(A,B); irrefl(B,r) |] ==> irrefl(A, rvimage(A,f,r))"; | 
| 4091 | 345 | by (blast_tac (claset() addIs [inj_is_fun RS apply_type]) 1); | 
| 835 
313ac9b513f1
Added Krzysztof's theorems irrefl_rvimage, trans_on_rvimage,
 lcp parents: 
815diff
changeset | 346 | qed "irrefl_rvimage"; | 
| 
313ac9b513f1
Added Krzysztof's theorems irrefl_rvimage, trans_on_rvimage,
 lcp parents: 
815diff
changeset | 347 | |
| 5067 | 348 | Goalw [trans_on_def, rvimage_def] | 
| 5147 
825877190618
More tidying and removal of "\!\!... from Goal commands
 paulson parents: 
5137diff
changeset | 349 | "[| f: inj(A,B); trans[B](r) |] ==> trans[A](rvimage(A,f,r))"; | 
| 4091 | 350 | by (blast_tac (claset() addIs [inj_is_fun RS apply_type]) 1); | 
| 835 
313ac9b513f1
Added Krzysztof's theorems irrefl_rvimage, trans_on_rvimage,
 lcp parents: 
815diff
changeset | 351 | qed "trans_on_rvimage"; | 
| 
313ac9b513f1
Added Krzysztof's theorems irrefl_rvimage, trans_on_rvimage,
 lcp parents: 
815diff
changeset | 352 | |
| 5067 | 353 | Goalw [part_ord_def] | 
| 5147 
825877190618
More tidying and removal of "\!\!... from Goal commands
 paulson parents: 
5137diff
changeset | 354 | "[| f: inj(A,B); part_ord(B,r) |] ==> part_ord(A, rvimage(A,f,r))"; | 
| 4091 | 355 | by (blast_tac (claset() addSIs [irrefl_rvimage, trans_on_rvimage]) 1); | 
| 835 
313ac9b513f1
Added Krzysztof's theorems irrefl_rvimage, trans_on_rvimage,
 lcp parents: 
815diff
changeset | 356 | qed "part_ord_rvimage"; | 
| 437 | 357 | |
| 358 | (** Linearity **) | |
| 359 | ||
| 360 | val [finj,lin] = goalw OrderArith.thy [inj_def] | |
| 361 | "[| f: inj(A,B); linear(B,r) |] ==> linear(A,rvimage(A,f,r))"; | |
| 362 | by (rewtac linear_def); (*Note! the premises are NOT rewritten*) | |
| 363 | by (REPEAT_FIRST (ares_tac [ballI])); | |
| 4091 | 364 | by (asm_simp_tac (simpset() addsimps [rvimage_iff]) 1); | 
| 437 | 365 | by (cut_facts_tac [finj] 1); | 
| 366 | by (res_inst_tac [("x","f`x"), ("y","f`y")] (lin RS linearE) 1);
 | |
| 4091 | 367 | by (REPEAT_SOME (blast_tac (claset() addIs [apply_funtype]))); | 
| 760 | 368 | qed "linear_rvimage"; | 
| 437 | 369 | |
| 5067 | 370 | Goalw [tot_ord_def] | 
| 5147 
825877190618
More tidying and removal of "\!\!... from Goal commands
 paulson parents: 
5137diff
changeset | 371 | "[| f: inj(A,B); tot_ord(B,r) |] ==> tot_ord(A, rvimage(A,f,r))"; | 
| 4091 | 372 | by (blast_tac (claset() addSIs [part_ord_rvimage, linear_rvimage]) 1); | 
| 835 
313ac9b513f1
Added Krzysztof's theorems irrefl_rvimage, trans_on_rvimage,
 lcp parents: 
815diff
changeset | 373 | qed "tot_ord_rvimage"; | 
| 
313ac9b513f1
Added Krzysztof's theorems irrefl_rvimage, trans_on_rvimage,
 lcp parents: 
815diff
changeset | 374 | |
| 437 | 375 | |
| 376 | (** Well-foundedness **) | |
| 377 | ||
| 5268 | 378 | Goal "[| f: A->B; wf[B](r) |] ==> wf[A](rvimage(A,f,r))"; | 
| 437 | 379 | by (rtac wf_onI2 1); | 
| 380 | by (subgoal_tac "ALL z:A. f`z=f`y --> z: Ba" 1); | |
| 2925 | 381 | by (Blast_tac 1); | 
| 437 | 382 | by (eres_inst_tac [("a","f`y")] wf_on_induct 1);
 | 
| 4091 | 383 | by (blast_tac (claset() addSIs [apply_funtype]) 1); | 
| 384 | by (blast_tac (claset() addSIs [apply_funtype] | |
| 8201 | 385 | addSDs [rvimage_iff RS iffD1]) 1); | 
| 760 | 386 | qed "wf_on_rvimage"; | 
| 437 | 387 | |
| 835 
313ac9b513f1
Added Krzysztof's theorems irrefl_rvimage, trans_on_rvimage,
 lcp parents: 
815diff
changeset | 388 | (*Note that we need only wf[A](...) and linear(A,...) to get the result!*) | 
| 5268 | 389 | Goal "[| f: inj(A,B); well_ord(B,r) |] ==> well_ord(A, rvimage(A,f,r))"; | 
| 437 | 390 | by (rtac well_ordI 1); | 
| 391 | by (rewrite_goals_tac [well_ord_def, tot_ord_def]); | |
| 4091 | 392 | by (blast_tac (claset() addSIs [wf_on_rvimage, inj_is_fun]) 1); | 
| 393 | by (blast_tac (claset() addSIs [linear_rvimage]) 1); | |
| 760 | 394 | qed "well_ord_rvimage"; | 
| 815 | 395 | |
| 5067 | 396 | Goalw [ord_iso_def] | 
| 5147 
825877190618
More tidying and removal of "\!\!... from Goal commands
 paulson parents: 
5137diff
changeset | 397 | "f: bij(A,B) ==> f: ord_iso(A, rvimage(A,f,s), B, s)"; | 
| 4091 | 398 | by (asm_full_simp_tac (simpset() addsimps [rvimage_iff]) 1); | 
| 815 | 399 | qed "ord_iso_rvimage"; | 
| 835 
313ac9b513f1
Added Krzysztof's theorems irrefl_rvimage, trans_on_rvimage,
 lcp parents: 
815diff
changeset | 400 | |
| 5067 | 401 | Goalw [ord_iso_def, rvimage_def] | 
| 5147 
825877190618
More tidying and removal of "\!\!... from Goal commands
 paulson parents: 
5137diff
changeset | 402 | "f: ord_iso(A,r, B,s) ==> rvimage(A,f,s) = r Int A*A"; | 
| 3016 | 403 | by (Blast_tac 1); | 
| 835 
313ac9b513f1
Added Krzysztof's theorems irrefl_rvimage, trans_on_rvimage,
 lcp parents: 
815diff
changeset | 404 | qed "ord_iso_rvimage_eq"; |