| author | paulson | 
| Mon, 22 May 2000 12:29:02 +0200 | |
| changeset 8913 | 0bc13d5e60b8 | 
| parent 8551 | 5c22595bc599 | 
| child 9180 | 3bda56c0d70d | 
| permissions | -rw-r--r-- | 
| 1461 | 1 | (* Title: ZF/upair | 
| 0 | 2 | ID: $Id$ | 
| 1461 | 3 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | 
| 0 | 4 | Copyright 1991 University of Cambridge | 
| 5 | ||
| 6 | UNORDERED pairs in Zermelo-Fraenkel Set Theory | |
| 7 | ||
| 8 | Observe the order of dependence: | |
| 9 | Upair is defined in terms of Replace | |
| 10 | Un is defined in terms of Upair and Union (similarly for Int) | |
| 11 | cons is defined in terms of Upair and Un | |
| 12 |     Ordered pairs and descriptions are defined using cons ("set notation")
 | |
| 13 | *) | |
| 14 | ||
| 15 | (*** Lemmas about power sets ***) | |
| 16 | ||
| 1461 | 17 | val Pow_bottom = empty_subsetI RS PowI; (* 0 : Pow(B) *) | 
| 18 | val Pow_top = subset_refl RS PowI; (* A : Pow(A) *) | |
| 0 | 19 | |
| 20 | ||
| 21 | (*** Unordered pairs - Upair ***) | |
| 22 | ||
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5242diff
changeset | 23 | qed_goalw "Upair_iff" thy [Upair_def] | 
| 0 | 24 | "c : Upair(a,b) <-> (c=a | c=b)" | 
| 5468 | 25 | (fn _ => [ (Blast_tac 1) ]); | 
| 2469 | 26 | |
| 27 | Addsimps [Upair_iff]; | |
| 0 | 28 | |
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5242diff
changeset | 29 | qed_goal "UpairI1" thy "a : Upair(a,b)" | 
| 2469 | 30 | (fn _ => [ Simp_tac 1 ]); | 
| 0 | 31 | |
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5242diff
changeset | 32 | qed_goal "UpairI2" thy "b : Upair(a,b)" | 
| 2469 | 33 | (fn _ => [ Simp_tac 1 ]); | 
| 0 | 34 | |
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5242diff
changeset | 35 | qed_goal "UpairE" thy | 
| 0 | 36 | "[| a : Upair(b,c); a=b ==> P; a=c ==> P |] ==> P" | 
| 37 | (fn major::prems=> | |
| 2469 | 38 | [ (rtac (major RS (Upair_iff RS iffD1 RS disjE)) 1), | 
| 0 | 39 | (REPEAT (eresolve_tac prems 1)) ]); | 
| 40 | ||
| 2469 | 41 | AddSIs [UpairI1,UpairI2]; | 
| 42 | AddSEs [UpairE]; | |
| 43 | ||
| 0 | 44 | (*** Rules for binary union -- Un -- defined via Upair ***) | 
| 45 | ||
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5242diff
changeset | 46 | qed_goalw "Un_iff" thy [Un_def] "c : A Un B <-> (c:A | c:B)" | 
| 2877 | 47 | (fn _ => [ Blast_tac 1 ]); | 
| 2469 | 48 | |
| 49 | Addsimps [Un_iff]; | |
| 0 | 50 | |
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5242diff
changeset | 51 | qed_goal "UnI1" thy "!!c. c : A ==> c : A Un B" | 
| 2469 | 52 | (fn _ => [ Asm_simp_tac 1 ]); | 
| 0 | 53 | |
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5242diff
changeset | 54 | qed_goal "UnI2" thy "!!c. c : B ==> c : A Un B" | 
| 2469 | 55 | (fn _ => [ Asm_simp_tac 1 ]); | 
| 56 | ||
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5242diff
changeset | 57 | qed_goal "UnE" thy | 
| 0 | 58 | "[| c : A Un B; c:A ==> P; c:B ==> P |] ==> P" | 
| 59 | (fn major::prems=> | |
| 2469 | 60 | [ (rtac (major RS (Un_iff RS iffD1 RS disjE)) 1), | 
| 61 | (REPEAT (eresolve_tac prems 1)) ]); | |
| 0 | 62 | |
| 572 | 63 | (*Stronger version of the rule above*) | 
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5242diff
changeset | 64 | qed_goal "UnE'" thy | 
| 572 | 65 | "[| c : A Un B; c:A ==> P; [| c:B; c~:A |] ==> P |] ==> P" | 
| 66 | (fn major::prems => | |
| 67 | [(rtac (major RS UnE) 1), | |
| 68 | (eresolve_tac prems 1), | |
| 69 | (rtac classical 1), | |
| 70 | (eresolve_tac prems 1), | |
| 71 | (swap_res_tac prems 1), | |
| 72 | (etac notnotD 1)]); | |
| 73 | ||
| 2469 | 74 | (*Classical introduction rule: no commitment to A vs B*) | 
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5242diff
changeset | 75 | qed_goal "UnCI" thy "(c ~: B ==> c : A) ==> c : A Un B" | 
| 2469 | 76 | (fn prems=> | 
| 4091 | 77 | [ Simp_tac 1, blast_tac (claset() addSIs prems) 1 ]); | 
| 0 | 78 | |
| 2469 | 79 | AddSIs [UnCI]; | 
| 80 | AddSEs [UnE]; | |
| 0 | 81 | |
| 82 | ||
| 83 | (*** Rules for small intersection -- Int -- defined via Upair ***) | |
| 84 | ||
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5242diff
changeset | 85 | qed_goalw "Int_iff" thy [Int_def] "c : A Int B <-> (c:A & c:B)" | 
| 2877 | 86 | (fn _ => [ Blast_tac 1 ]); | 
| 2469 | 87 | |
| 88 | Addsimps [Int_iff]; | |
| 89 | ||
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5242diff
changeset | 90 | qed_goal "IntI" thy "!!c. [| c : A; c : B |] ==> c : A Int B" | 
| 2469 | 91 | (fn _ => [ Asm_simp_tac 1 ]); | 
| 0 | 92 | |
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5242diff
changeset | 93 | qed_goal "IntD1" thy "!!c. c : A Int B ==> c : A" | 
| 2469 | 94 | (fn _ => [ Asm_full_simp_tac 1 ]); | 
| 0 | 95 | |
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5242diff
changeset | 96 | qed_goal "IntD2" thy "!!c. c : A Int B ==> c : B" | 
| 2469 | 97 | (fn _ => [ Asm_full_simp_tac 1 ]); | 
| 0 | 98 | |
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5242diff
changeset | 99 | qed_goal "IntE" thy | 
| 0 | 100 | "[| c : A Int B; [| c:A; c:B |] ==> P |] ==> P" | 
| 101 | (fn prems=> | |
| 102 | [ (resolve_tac prems 1), | |
| 103 | (REPEAT (resolve_tac (prems RL [IntD1,IntD2]) 1)) ]); | |
| 104 | ||
| 2469 | 105 | AddSIs [IntI]; | 
| 106 | AddSEs [IntE]; | |
| 0 | 107 | |
| 108 | (*** Rules for set difference -- defined via Upair ***) | |
| 109 | ||
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5242diff
changeset | 110 | qed_goalw "Diff_iff" thy [Diff_def] "c : A-B <-> (c:A & c~:B)" | 
| 2877 | 111 | (fn _ => [ Blast_tac 1 ]); | 
| 2469 | 112 | |
| 113 | Addsimps [Diff_iff]; | |
| 114 | ||
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5242diff
changeset | 115 | qed_goal "DiffI" thy "!!c. [| c : A; c ~: B |] ==> c : A - B" | 
| 2469 | 116 | (fn _ => [ Asm_simp_tac 1 ]); | 
| 0 | 117 | |
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5242diff
changeset | 118 | qed_goal "DiffD1" thy "!!c. c : A - B ==> c : A" | 
| 2469 | 119 | (fn _ => [ Asm_full_simp_tac 1 ]); | 
| 0 | 120 | |
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5242diff
changeset | 121 | qed_goal "DiffD2" thy "!!c. c : A - B ==> c ~: B" | 
| 2469 | 122 | (fn _ => [ Asm_full_simp_tac 1 ]); | 
| 0 | 123 | |
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5242diff
changeset | 124 | qed_goal "DiffE" thy | 
| 37 | 125 | "[| c : A - B; [| c:A; c~:B |] ==> P |] ==> P" | 
| 0 | 126 | (fn prems=> | 
| 127 | [ (resolve_tac prems 1), | |
| 485 | 128 | (REPEAT (ares_tac (prems RL [DiffD1, DiffD2]) 1)) ]); | 
| 0 | 129 | |
| 2469 | 130 | AddSIs [DiffI]; | 
| 131 | AddSEs [DiffE]; | |
| 0 | 132 | |
| 133 | (*** Rules for cons -- defined via Un and Upair ***) | |
| 134 | ||
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5242diff
changeset | 135 | qed_goalw "cons_iff" thy [cons_def] "a : cons(b,A) <-> (a=b | a:A)" | 
| 2877 | 136 | (fn _ => [ Blast_tac 1 ]); | 
| 2469 | 137 | |
| 138 | Addsimps [cons_iff]; | |
| 0 | 139 | |
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5242diff
changeset | 140 | qed_goal "consI1" thy "a : cons(a,B)" | 
| 2469 | 141 | (fn _ => [ Simp_tac 1 ]); | 
| 142 | ||
| 143 | Addsimps [consI1]; | |
| 6153 | 144 | AddTCs [consI1]; (*risky as a typechecking rule, but solves otherwise | 
| 145 | unconstrained goals of the form x : ?A*) | |
| 0 | 146 | |
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5242diff
changeset | 147 | qed_goal "consI2" thy "!!B. a : B ==> a : cons(b,B)" | 
| 2469 | 148 | (fn _ => [ Asm_simp_tac 1 ]); | 
| 149 | ||
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5242diff
changeset | 150 | qed_goal "consE" thy | 
| 0 | 151 | "[| a : cons(b,A); a=b ==> P; a:A ==> P |] ==> P" | 
| 152 | (fn major::prems=> | |
| 2469 | 153 | [ (rtac (major RS (cons_iff RS iffD1 RS disjE)) 1), | 
| 0 | 154 | (REPEAT (eresolve_tac (prems @ [UpairE]) 1)) ]); | 
| 155 | ||
| 572 | 156 | (*Stronger version of the rule above*) | 
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5242diff
changeset | 157 | qed_goal "consE'" thy | 
| 572 | 158 | "[| a : cons(b,A); a=b ==> P; [| a:A; a~=b |] ==> P |] ==> P" | 
| 159 | (fn major::prems => | |
| 160 | [(rtac (major RS consE) 1), | |
| 161 | (eresolve_tac prems 1), | |
| 162 | (rtac classical 1), | |
| 163 | (eresolve_tac prems 1), | |
| 164 | (swap_res_tac prems 1), | |
| 165 | (etac notnotD 1)]); | |
| 166 | ||
| 2469 | 167 | (*Classical introduction rule*) | 
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5242diff
changeset | 168 | qed_goal "consCI" thy "(a~:B ==> a=b) ==> a: cons(b,B)" | 
| 2469 | 169 | (fn prems=> | 
| 4091 | 170 | [ Simp_tac 1, blast_tac (claset() addSIs prems) 1 ]); | 
| 0 | 171 | |
| 2469 | 172 | AddSIs [consCI]; | 
| 173 | AddSEs [consE]; | |
| 0 | 174 | |
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5242diff
changeset | 175 | qed_goal "cons_not_0" thy "cons(a,B) ~= 0" | 
| 4091 | 176 | (fn _ => [ (blast_tac (claset() addEs [equalityE]) 1) ]); | 
| 1609 | 177 | |
| 2469 | 178 | bind_thm ("cons_neq_0", cons_not_0 RS notE);
 | 
| 179 | ||
| 180 | Addsimps [cons_not_0, cons_not_0 RS not_sym]; | |
| 181 | ||
| 1609 | 182 | |
| 0 | 183 | (*** Singletons - using cons ***) | 
| 184 | ||
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5242diff
changeset | 185 | qed_goal "singleton_iff" thy "a : {b} <-> a=b"
 | 
| 2469 | 186 | (fn _ => [ Simp_tac 1 ]); | 
| 187 | ||
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5242diff
changeset | 188 | qed_goal "singletonI" thy "a : {a}"
 | 
| 0 | 189 | (fn _=> [ (rtac consI1 1) ]); | 
| 190 | ||
| 2469 | 191 | bind_thm ("singletonE", make_elim (singleton_iff RS iffD1));
 | 
| 0 | 192 | |
| 2469 | 193 | AddSIs [singletonI]; | 
| 194 | AddSEs [singletonE]; | |
| 0 | 195 | |
| 196 | (*** Rules for Descriptions ***) | |
| 197 | ||
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5242diff
changeset | 198 | qed_goalw "the_equality" thy [the_def] | 
| 0 | 199 | "[| P(a); !!x. P(x) ==> x=a |] ==> (THE x. P(x)) = a" | 
| 738 | 200 | (fn [pa,eq] => | 
| 4091 | 201 | [ (fast_tac (claset() addSIs [pa] addEs [eq RS subst]) 1) ]); | 
| 0 | 202 | |
| 5506 | 203 | AddIs [the_equality]; | 
| 204 | ||
| 0 | 205 | (* Only use this if you already know EX!x. P(x) *) | 
| 8127 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 paulson parents: 
6163diff
changeset | 206 | Goal "[| EX! x. P(x); P(a) |] ==> (THE x. P(x)) = a"; | 
| 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 paulson parents: 
6163diff
changeset | 207 | by (Blast_tac 1); | 
| 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 paulson parents: 
6163diff
changeset | 208 | qed "the_equality2"; | 
| 0 | 209 | |
| 8127 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 paulson parents: 
6163diff
changeset | 210 | Goal "EX! x. P(x) ==> P(THE x. P(x))"; | 
| 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 paulson parents: 
6163diff
changeset | 211 | by (etac ex1E 1); | 
| 8183 | 212 | by (stac the_equality 1); | 
| 8127 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 paulson parents: 
6163diff
changeset | 213 | by (REPEAT (Blast_tac 1)); | 
| 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 paulson parents: 
6163diff
changeset | 214 | qed "theI"; | 
| 0 | 215 | |
| 435 | 216 | (*the_cong is no longer necessary: if (ALL y.P(y)<->Q(y)) then | 
| 217 | (THE x.P(x)) rewrites to (THE x. Q(x)) *) | |
| 218 | ||
| 219 | (*If it's "undefined", it's zero!*) | |
| 8127 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 paulson parents: 
6163diff
changeset | 220 | Goalw [the_def] "!!P. ~ (EX! x. P(x)) ==> (THE x. P(x))=0"; | 
| 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 paulson parents: 
6163diff
changeset | 221 | by (blast_tac (claset() addSEs [ReplaceE]) 1); | 
| 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 paulson parents: 
6163diff
changeset | 222 | qed "the_0"; | 
| 0 | 223 | |
| 5506 | 224 | (*Easier to apply than theI: conclusion has only one occurrence of P*) | 
| 225 | val prems = | |
| 226 | Goal "[| ~ Q(0) ==> EX! x. P(x); !!x. P(x) ==> Q(x) |] ==> Q(THE x. P(x))"; | |
| 227 | by (rtac classical 1); | |
| 228 | by (resolve_tac prems 1); | |
| 229 | by (rtac theI 1); | |
| 230 | by (rtac classical 1); | |
| 231 | by (resolve_tac prems 1); | |
| 6163 | 232 | by (etac (the_0 RS subst) 1); | 
| 233 | by (assume_tac 1); | |
| 5506 | 234 | qed "theI2"; | 
| 235 | ||
| 0 | 236 | (*** if -- a conditional expression for formulae ***) | 
| 237 | ||
| 6068 | 238 | Goalw [if_def] "(if True then a else b) = a"; | 
| 5506 | 239 | by (Blast_tac 1); | 
| 760 | 240 | qed "if_true"; | 
| 0 | 241 | |
| 6068 | 242 | Goalw [if_def] "(if False then a else b) = b"; | 
| 5506 | 243 | by (Blast_tac 1); | 
| 760 | 244 | qed "if_false"; | 
| 0 | 245 | |
| 6 
8ce8c4d13d4d
Installation of new simplifier for ZF.  Deleted all congruence rules not
 lcp parents: 
0diff
changeset | 246 | (*Never use with case splitting, or if P is known to be true or false*) | 
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5242diff
changeset | 247 | val prems = Goalw [if_def] | 
| 6068 | 248 | "[| P<->Q; Q ==> a=c; ~Q ==> b=d |] \ | 
| 249 | \ ==> (if P then a else b) = (if Q then c else d)"; | |
| 4091 | 250 | by (simp_tac (simpset() addsimps prems addcongs [conj_cong]) 1); | 
| 760 | 251 | qed "if_cong"; | 
| 0 | 252 | |
| 253 | (*Not needed for rewriting, since P would rewrite to True anyway*) | |
| 6068 | 254 | Goalw [if_def] "P ==> (if P then a else b) = a"; | 
| 5506 | 255 | by (Blast_tac 1); | 
| 760 | 256 | qed "if_P"; | 
| 0 | 257 | |
| 258 | (*Not needed for rewriting, since P would rewrite to False anyway*) | |
| 6068 | 259 | Goalw [if_def] "~P ==> (if P then a else b) = b"; | 
| 5506 | 260 | by (Blast_tac 1); | 
| 760 | 261 | qed "if_not_P"; | 
| 0 | 262 | |
| 2469 | 263 | Addsimps [if_true, if_false]; | 
| 0 | 264 | |
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5242diff
changeset | 265 | qed_goal "split_if" thy | 
| 6068 | 266 | "P(if Q then x else y) <-> ((Q --> P(x)) & (~Q --> P(y)))" | 
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5242diff
changeset | 267 | (fn _=> [ (case_tac "Q" 1), | 
| 2469 | 268 | (Asm_simp_tac 1), | 
| 269 | (Asm_simp_tac 1) ]); | |
| 0 | 270 | |
| 3914 | 271 | (** Rewrite rules for boolean case-splitting: faster than | 
| 5116 
8eb343ab5748
Renamed expand_if to split_if and setloop split_tac to addsplits,
 paulson parents: 
4091diff
changeset | 272 | addsplits[split_if] | 
| 3914 | 273 | **) | 
| 274 | ||
| 8551 | 275 | bind_thm ("split_if_eq1", inst "P" "%x. x = ?b" split_if);
 | 
| 276 | bind_thm ("split_if_eq2", inst "P" "%x. ?a = x" split_if);
 | |
| 3914 | 277 | |
| 8551 | 278 | bind_thm ("split_if_mem1", inst "P" "%x. x : ?b" split_if);
 | 
| 279 | bind_thm ("split_if_mem2", inst "P" "%x. ?a : x" split_if);
 | |
| 3914 | 280 | |
| 5116 
8eb343ab5748
Renamed expand_if to split_if and setloop split_tac to addsplits,
 paulson parents: 
4091diff
changeset | 281 | val split_ifs = [split_if_eq1, split_if_eq2, | 
| 
8eb343ab5748
Renamed expand_if to split_if and setloop split_tac to addsplits,
 paulson parents: 
4091diff
changeset | 282 | split_if_mem1, split_if_mem2]; | 
| 3914 | 283 | |
| 5116 
8eb343ab5748
Renamed expand_if to split_if and setloop split_tac to addsplits,
 paulson parents: 
4091diff
changeset | 284 | (*Logically equivalent to split_if_mem2*) | 
| 6068 | 285 | qed_goal "if_iff" thy "a: (if P then x else y) <-> P & a:x | ~P & a:y" | 
| 5116 
8eb343ab5748
Renamed expand_if to split_if and setloop split_tac to addsplits,
 paulson parents: 
4091diff
changeset | 286 | (fn _=> [ (simp_tac (simpset() addsplits [split_if]) 1) ]); | 
| 1017 
6a402dc505cf
Proved if_iff and used it to simplify proof of if_type.
 lcp parents: 
985diff
changeset | 287 | |
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5242diff
changeset | 288 | qed_goal "if_type" thy | 
| 6068 | 289 | "[| P ==> a: A; ~P ==> b: A |] ==> (if P then a else b): A" | 
| 1017 
6a402dc505cf
Proved if_iff and used it to simplify proof of if_type.
 lcp parents: 
985diff
changeset | 290 | (fn prems=> [ (simp_tac | 
| 5116 
8eb343ab5748
Renamed expand_if to split_if and setloop split_tac to addsplits,
 paulson parents: 
4091diff
changeset | 291 | (simpset() addsimps prems addsplits [split_if]) 1) ]); | 
| 6153 | 292 | AddTCs [if_type]; | 
| 0 | 293 | |
| 294 | (*** Foundation lemmas ***) | |
| 295 | ||
| 437 | 296 | (*was called mem_anti_sym*) | 
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5242diff
changeset | 297 | qed_goal "mem_asym" thy "[| a:b; ~P ==> b:a |] ==> P" | 
| 2877 | 298 | (fn prems=> | 
| 299 | [ (rtac classical 1), | |
| 300 |     (res_inst_tac [("A1","{a,b}")] (foundation RS disjE) 1),
 | |
| 4091 | 301 | REPEAT (blast_tac (claset() addIs prems addSEs [equalityE]) 1) ]); | 
| 0 | 302 | |
| 437 | 303 | (*was called mem_anti_refl*) | 
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5242diff
changeset | 304 | qed_goal "mem_irrefl" thy "a:a ==> P" | 
| 2469 | 305 | (fn [major]=> [ (rtac ([major,major] MRS mem_asym) 1) ]); | 
| 0 | 306 | |
| 2469 | 307 | (*mem_irrefl should NOT be added to default databases: | 
| 308 | it would be tried on most goals, making proofs slower!*) | |
| 309 | ||
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5242diff
changeset | 310 | qed_goal "mem_not_refl" thy "a ~: a" | 
| 437 | 311 | (K [ (rtac notI 1), (etac mem_irrefl 1) ]); | 
| 0 | 312 | |
| 435 | 313 | (*Good for proving inequalities by rewriting*) | 
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5242diff
changeset | 314 | qed_goal "mem_imp_not_eq" thy "!!a A. a:A ==> a ~= A" | 
| 4091 | 315 | (fn _=> [ blast_tac (claset() addSEs [mem_irrefl]) 1 ]); | 
| 435 | 316 | |
| 0 | 317 | (*** Rules for succ ***) | 
| 318 | ||
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5242diff
changeset | 319 | qed_goalw "succ_iff" thy [succ_def] "i : succ(j) <-> i=j | i:j" | 
| 2877 | 320 | (fn _ => [ Blast_tac 1 ]); | 
| 2469 | 321 | |
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5242diff
changeset | 322 | qed_goalw "succI1" thy [succ_def] "i : succ(i)" | 
| 0 | 323 | (fn _=> [ (rtac consI1 1) ]); | 
| 324 | ||
| 2469 | 325 | Addsimps [succI1]; | 
| 326 | ||
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5242diff
changeset | 327 | qed_goalw "succI2" thy [succ_def] | 
| 0 | 328 | "i : j ==> i : succ(j)" | 
| 329 | (fn [prem]=> [ (rtac (prem RS consI2) 1) ]); | |
| 330 | ||
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5242diff
changeset | 331 | qed_goalw "succE" thy [succ_def] | 
| 0 | 332 | "[| i : succ(j); i=j ==> P; i:j ==> P |] ==> P" | 
| 333 | (fn major::prems=> | |
| 334 | [ (rtac (major RS consE) 1), | |
| 335 | (REPEAT (eresolve_tac prems 1)) ]); | |
| 336 | ||
| 14 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 lcp parents: 
6diff
changeset | 337 | (*Classical introduction rule*) | 
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5242diff
changeset | 338 | qed_goal "succCI" thy "(i~:j ==> i=j) ==> i: succ(j)" | 
| 14 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 lcp parents: 
6diff
changeset | 339 | (fn [prem]=> | 
| 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 lcp parents: 
6diff
changeset | 340 | [ (rtac (disjCI RS (succ_iff RS iffD2)) 1), | 
| 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 lcp parents: 
6diff
changeset | 341 | (etac prem 1) ]); | 
| 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 lcp parents: 
6diff
changeset | 342 | |
| 2469 | 343 | AddSIs [succCI]; | 
| 344 | AddSEs [succE]; | |
| 345 | ||
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5242diff
changeset | 346 | qed_goal "succ_not_0" thy "succ(n) ~= 0" | 
| 4091 | 347 | (fn _=> [ (blast_tac (claset() addSEs [equalityE]) 1) ]); | 
| 0 | 348 | |
| 2469 | 349 | bind_thm ("succ_neq_0", succ_not_0 RS notE);
 | 
| 350 | ||
| 351 | Addsimps [succ_not_0, succ_not_0 RS not_sym]; | |
| 352 | AddSEs [succ_neq_0, sym RS succ_neq_0]; | |
| 353 | ||
| 0 | 354 | |
| 355 | (* succ(c) <= B ==> c : B *) | |
| 356 | val succ_subsetD = succI1 RSN (2,subsetD); | |
| 357 | ||
| 1609 | 358 | (* succ(b) ~= b *) | 
| 359 | bind_thm ("succ_neq_self", succI1 RS mem_imp_not_eq RS not_sym);
 | |
| 360 | ||
| 361 | ||
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5242diff
changeset | 362 | qed_goal "succ_inject_iff" thy "succ(m) = succ(n) <-> m=n" | 
| 4091 | 363 | (fn _=> [ (blast_tac (claset() addEs [mem_asym] addSEs [equalityE]) 1) ]); | 
| 0 | 364 | |
| 2469 | 365 | bind_thm ("succ_inject", succ_inject_iff RS iffD1);
 | 
| 0 | 366 | |
| 2469 | 367 | Addsimps [succ_inject_iff]; | 
| 368 | AddSDs [succ_inject]; | |
| 0 | 369 | |
| 2877 | 370 | (*Not needed now that cons is available. Deletion reduces the search space.*) | 
| 371 | Delrules [UpairI1,UpairI2,UpairE]; | |
| 2469 | 372 | |
| 373 | use"simpdata.ML"; |