| author | nipkow | 
| Mon, 22 Nov 2004 11:53:56 +0100 | |
| changeset 15305 | 0bd9eedaa301 | 
| parent 15206 | 09d78ec709c7 | 
| child 15524 | 2ef571f80a55 | 
| permissions | -rw-r--r-- | 
| 923 | 1 | (* Title: HOL/Set.thy | 
| 2 | ID: $Id$ | |
| 12257 | 3 | Author: Tobias Nipkow, Lawrence C Paulson and Markus Wenzel | 
| 923 | 4 | *) | 
| 5 | ||
| 11979 | 6 | header {* Set theory for higher-order logic *}
 | 
| 7 | ||
| 15131 | 8 | theory Set | 
| 15140 | 9 | imports HOL | 
| 15131 | 10 | begin | 
| 11979 | 11 | |
| 12 | text {* A set in HOL is simply a predicate. *}
 | |
| 923 | 13 | |
| 2261 | 14 | |
| 11979 | 15 | subsection {* Basic syntax *}
 | 
| 2261 | 16 | |
| 3947 | 17 | global | 
| 18 | ||
| 11979 | 19 | typedecl 'a set | 
| 12338 
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
 wenzelm parents: 
12257diff
changeset | 20 | arities set :: (type) type | 
| 3820 | 21 | |
| 923 | 22 | consts | 
| 11979 | 23 |   "{}"          :: "'a set"                             ("{}")
 | 
| 24 | UNIV :: "'a set" | |
| 25 | insert :: "'a => 'a set => 'a set" | |
| 26 |   Collect       :: "('a => bool) => 'a set"              -- "comprehension"
 | |
| 27 | Int :: "'a set => 'a set => 'a set" (infixl 70) | |
| 28 | Un :: "'a set => 'a set => 'a set" (infixl 65) | |
| 29 |   UNION         :: "'a set => ('a => 'b set) => 'b set"  -- "general union"
 | |
| 30 |   INTER         :: "'a set => ('a => 'b set) => 'b set"  -- "general intersection"
 | |
| 31 | Union :: "'a set set => 'a set" -- "union of a set" | |
| 32 | Inter :: "'a set set => 'a set" -- "intersection of a set" | |
| 33 | Pow :: "'a set => 'a set set" -- "powerset" | |
| 34 |   Ball          :: "'a set => ('a => bool) => bool"      -- "bounded universal quantifiers"
 | |
| 35 |   Bex           :: "'a set => ('a => bool) => bool"      -- "bounded existential quantifiers"
 | |
| 36 |   image         :: "('a => 'b) => 'a set => 'b set"      (infixr "`" 90)
 | |
| 37 | ||
| 38 | syntax | |
| 39 |   "op :"        :: "'a => 'a set => bool"                ("op :")
 | |
| 40 | consts | |
| 41 |   "op :"        :: "'a => 'a set => bool"                ("(_/ : _)" [50, 51] 50)  -- "membership"
 | |
| 42 | ||
| 43 | local | |
| 44 | ||
| 14692 | 45 | instance set :: (type) "{ord, minus}" ..
 | 
| 923 | 46 | |
| 47 | ||
| 11979 | 48 | subsection {* Additional concrete syntax *}
 | 
| 2261 | 49 | |
| 923 | 50 | syntax | 
| 11979 | 51 |   range         :: "('a => 'b) => 'b set"             -- "of function"
 | 
| 923 | 52 | |
| 11979 | 53 |   "op ~:"       :: "'a => 'a set => bool"                 ("op ~:")  -- "non-membership"
 | 
| 54 |   "op ~:"       :: "'a => 'a set => bool"                 ("(_/ ~: _)" [50, 51] 50)
 | |
| 7238 
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
 wenzelm parents: 
5931diff
changeset | 55 | |
| 11979 | 56 |   "@Finset"     :: "args => 'a set"                       ("{(_)}")
 | 
| 57 |   "@Coll"       :: "pttrn => bool => 'a set"              ("(1{_./ _})")
 | |
| 58 |   "@SetCompr"   :: "'a => idts => bool => 'a set"         ("(1{_ |/_./ _})")
 | |
| 923 | 59 | |
| 11979 | 60 |   "@INTER1"     :: "pttrns => 'b set => 'b set"           ("(3INT _./ _)" 10)
 | 
| 61 |   "@UNION1"     :: "pttrns => 'b set => 'b set"           ("(3UN _./ _)" 10)
 | |
| 62 |   "@INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3INT _:_./ _)" 10)
 | |
| 63 |   "@UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3UN _:_./ _)" 10)
 | |
| 923 | 64 | |
| 11979 | 65 |   "_Ball"       :: "pttrn => 'a set => bool => bool"      ("(3ALL _:_./ _)" [0, 0, 10] 10)
 | 
| 66 |   "_Bex"        :: "pttrn => 'a set => bool => bool"      ("(3EX _:_./ _)" [0, 0, 10] 10)
 | |
| 923 | 67 | |
| 7238 
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
 wenzelm parents: 
5931diff
changeset | 68 | syntax (HOL) | 
| 11979 | 69 |   "_Ball"       :: "pttrn => 'a set => bool => bool"      ("(3! _:_./ _)" [0, 0, 10] 10)
 | 
| 70 |   "_Bex"        :: "pttrn => 'a set => bool => bool"      ("(3? _:_./ _)" [0, 0, 10] 10)
 | |
| 923 | 71 | |
| 72 | translations | |
| 10832 | 73 | "range f" == "f`UNIV" | 
| 923 | 74 | "x ~: y" == "~ (x : y)" | 
| 75 |   "{x, xs}"     == "insert x {xs}"
 | |
| 76 |   "{x}"         == "insert x {}"
 | |
| 13764 | 77 |   "{x. P}"      == "Collect (%x. P)"
 | 
| 4159 
4aff9b7e5597
UNIV now a constant; UNION1, INTER1 now translations and no longer have
 paulson parents: 
4151diff
changeset | 78 | "UN x y. B" == "UN x. UN y. B" | 
| 
4aff9b7e5597
UNIV now a constant; UNION1, INTER1 now translations and no longer have
 paulson parents: 
4151diff
changeset | 79 | "UN x. B" == "UNION UNIV (%x. B)" | 
| 13858 | 80 | "UN x. B" == "UN x:UNIV. B" | 
| 7238 
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
 wenzelm parents: 
5931diff
changeset | 81 | "INT x y. B" == "INT x. INT y. B" | 
| 4159 
4aff9b7e5597
UNIV now a constant; UNION1, INTER1 now translations and no longer have
 paulson parents: 
4151diff
changeset | 82 | "INT x. B" == "INTER UNIV (%x. B)" | 
| 13858 | 83 | "INT x. B" == "INT x:UNIV. B" | 
| 13764 | 84 | "UN x:A. B" == "UNION A (%x. B)" | 
| 85 | "INT x:A. B" == "INTER A (%x. B)" | |
| 86 | "ALL x:A. P" == "Ball A (%x. P)" | |
| 87 | "EX x:A. P" == "Bex A (%x. P)" | |
| 923 | 88 | |
| 12633 | 89 | syntax (output) | 
| 11979 | 90 |   "_setle"      :: "'a set => 'a set => bool"             ("op <=")
 | 
| 91 |   "_setle"      :: "'a set => 'a set => bool"             ("(_/ <= _)" [50, 51] 50)
 | |
| 92 |   "_setless"    :: "'a set => 'a set => bool"             ("op <")
 | |
| 93 |   "_setless"    :: "'a set => 'a set => bool"             ("(_/ < _)" [50, 51] 50)
 | |
| 923 | 94 | |
| 12114 
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
 wenzelm parents: 
12023diff
changeset | 95 | syntax (xsymbols) | 
| 11979 | 96 |   "_setle"      :: "'a set => 'a set => bool"             ("op \<subseteq>")
 | 
| 97 |   "_setle"      :: "'a set => 'a set => bool"             ("(_/ \<subseteq> _)" [50, 51] 50)
 | |
| 98 |   "_setless"    :: "'a set => 'a set => bool"             ("op \<subset>")
 | |
| 99 |   "_setless"    :: "'a set => 'a set => bool"             ("(_/ \<subset> _)" [50, 51] 50)
 | |
| 100 | "op Int" :: "'a set => 'a set => 'a set" (infixl "\<inter>" 70) | |
| 101 | "op Un" :: "'a set => 'a set => 'a set" (infixl "\<union>" 65) | |
| 102 |   "op :"        :: "'a => 'a set => bool"                 ("op \<in>")
 | |
| 103 |   "op :"        :: "'a => 'a set => bool"                 ("(_/ \<in> _)" [50, 51] 50)
 | |
| 104 |   "op ~:"       :: "'a => 'a set => bool"                 ("op \<notin>")
 | |
| 105 |   "op ~:"       :: "'a => 'a set => bool"                 ("(_/ \<notin> _)" [50, 51] 50)
 | |
| 14381 
1189a8212a12
Modified UN and INT xsymbol syntax: made index subscript
 nipkow parents: 
14335diff
changeset | 106 |   Union         :: "'a set set => 'a set"                 ("\<Union>_" [90] 90)
 | 
| 
1189a8212a12
Modified UN and INT xsymbol syntax: made index subscript
 nipkow parents: 
14335diff
changeset | 107 |   Inter         :: "'a set set => 'a set"                 ("\<Inter>_" [90] 90)
 | 
| 
1189a8212a12
Modified UN and INT xsymbol syntax: made index subscript
 nipkow parents: 
14335diff
changeset | 108 |   "_Ball"       :: "pttrn => 'a set => bool => bool"      ("(3\<forall>_\<in>_./ _)" [0, 0, 10] 10)
 | 
| 
1189a8212a12
Modified UN and INT xsymbol syntax: made index subscript
 nipkow parents: 
14335diff
changeset | 109 |   "_Bex"        :: "pttrn => 'a set => bool => bool"      ("(3\<exists>_\<in>_./ _)" [0, 0, 10] 10)
 | 
| 
1189a8212a12
Modified UN and INT xsymbol syntax: made index subscript
 nipkow parents: 
14335diff
changeset | 110 | |
| 14565 | 111 | syntax (HTML output) | 
| 112 |   "_setle"      :: "'a set => 'a set => bool"             ("op \<subseteq>")
 | |
| 113 |   "_setle"      :: "'a set => 'a set => bool"             ("(_/ \<subseteq> _)" [50, 51] 50)
 | |
| 114 |   "_setless"    :: "'a set => 'a set => bool"             ("op \<subset>")
 | |
| 115 |   "_setless"    :: "'a set => 'a set => bool"             ("(_/ \<subset> _)" [50, 51] 50)
 | |
| 116 | "op Int" :: "'a set => 'a set => 'a set" (infixl "\<inter>" 70) | |
| 117 | "op Un" :: "'a set => 'a set => 'a set" (infixl "\<union>" 65) | |
| 118 |   "op :"        :: "'a => 'a set => bool"                 ("op \<in>")
 | |
| 119 |   "op :"        :: "'a => 'a set => bool"                 ("(_/ \<in> _)" [50, 51] 50)
 | |
| 120 |   "op ~:"       :: "'a => 'a set => bool"                 ("op \<notin>")
 | |
| 121 |   "op ~:"       :: "'a => 'a set => bool"                 ("(_/ \<notin> _)" [50, 51] 50)
 | |
| 122 |   "_Ball"       :: "pttrn => 'a set => bool => bool"      ("(3\<forall>_\<in>_./ _)" [0, 0, 10] 10)
 | |
| 123 |   "_Bex"        :: "pttrn => 'a set => bool => bool"      ("(3\<exists>_\<in>_./ _)" [0, 0, 10] 10)
 | |
| 124 | ||
| 15120 | 125 | syntax (xsymbols) | 
| 11979 | 126 |   "@UNION1"     :: "pttrns => 'b set => 'b set"           ("(3\<Union>_./ _)" 10)
 | 
| 127 |   "@INTER1"     :: "pttrns => 'b set => 'b set"           ("(3\<Inter>_./ _)" 10)
 | |
| 128 |   "@UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Union>_\<in>_./ _)" 10)
 | |
| 129 |   "@INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Inter>_\<in>_./ _)" 10)
 | |
| 15120 | 130 | (* | 
| 14381 
1189a8212a12
Modified UN and INT xsymbol syntax: made index subscript
 nipkow parents: 
14335diff
changeset | 131 | syntax (xsymbols) | 
| 14845 | 132 |   "@UNION1"     :: "pttrns => 'b set => 'b set"           ("(3\<Union>(00\<^bsub>_\<^esub>)/ _)" 10)
 | 
| 133 |   "@INTER1"     :: "pttrns => 'b set => 'b set"           ("(3\<Inter>(00\<^bsub>_\<^esub>)/ _)" 10)
 | |
| 134 |   "@UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Union>(00\<^bsub>_\<in>_\<^esub>)/ _)" 10)
 | |
| 135 |   "@INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Inter>(00\<^bsub>_\<in>_\<^esub>)/ _)" 10)
 | |
| 15120 | 136 | *) | 
| 137 | syntax (latex output) | |
| 138 |   "@UNION1"     :: "pttrns => 'b set => 'b set"           ("(3\<Union>(00\<^bsub>_\<^esub>)/ _)" 10)
 | |
| 139 |   "@INTER1"     :: "pttrns => 'b set => 'b set"           ("(3\<Inter>(00\<^bsub>_\<^esub>)/ _)" 10)
 | |
| 140 |   "@UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Union>(00\<^bsub>_\<in>_\<^esub>)/ _)" 10)
 | |
| 141 |   "@INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Inter>(00\<^bsub>_\<in>_\<^esub>)/ _)" 10)
 | |
| 142 | ||
| 143 | text{* Note the difference between ordinary xsymbol syntax of indexed
 | |
| 144 | unions and intersections (e.g.\ @{text"\<Union>a\<^isub>1\<in>A\<^isub>1. B"})
 | |
| 145 | and their \LaTeX\ rendition: @{term"\<Union>a\<^isub>1\<in>A\<^isub>1. B"}. The
 | |
| 146 | former does not make the index expression a subscript of the | |
| 147 | union/intersection symbol because this leads to problems with nested | |
| 148 | subscripts in Proof General. *} | |
| 2261 | 149 | |
| 14565 | 150 | |
| 2412 | 151 | translations | 
| 11979 | 152 | "op \<subseteq>" => "op <= :: _ set => _ set => bool" | 
| 153 | "op \<subset>" => "op < :: _ set => _ set => bool" | |
| 2261 | 154 | |
| 11979 | 155 | typed_print_translation {*
 | 
| 156 | let | |
| 157 |     fun le_tr' _ (Type ("fun", (Type ("set", _) :: _))) ts =
 | |
| 158 | list_comb (Syntax.const "_setle", ts) | |
| 159 | | le_tr' _ _ _ = raise Match; | |
| 160 | ||
| 161 |     fun less_tr' _ (Type ("fun", (Type ("set", _) :: _))) ts =
 | |
| 162 | list_comb (Syntax.const "_setless", ts) | |
| 163 | | less_tr' _ _ _ = raise Match; | |
| 164 |   in [("op <=", le_tr'), ("op <", less_tr')] end
 | |
| 165 | *} | |
| 2261 | 166 | |
| 14804 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 167 | |
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 168 | subsubsection "Bounded quantifiers" | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 169 | |
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 170 | syntax | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 171 |   "_setlessAll" :: "[idt, 'a, bool] => bool"  ("(3ALL _<_./ _)"  [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 172 |   "_setlessEx"  :: "[idt, 'a, bool] => bool"  ("(3EX _<_./ _)"  [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 173 |   "_setleAll"   :: "[idt, 'a, bool] => bool"  ("(3ALL _<=_./ _)" [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 174 |   "_setleEx"    :: "[idt, 'a, bool] => bool"  ("(3EX _<=_./ _)" [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 175 | |
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 176 | syntax (xsymbols) | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 177 |   "_setlessAll" :: "[idt, 'a, bool] => bool"   ("(3\<forall>_\<subset>_./ _)"  [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 178 |   "_setlessEx"  :: "[idt, 'a, bool] => bool"   ("(3\<exists>_\<subset>_./ _)"  [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 179 |   "_setleAll"   :: "[idt, 'a, bool] => bool"   ("(3\<forall>_\<subseteq>_./ _)" [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 180 |   "_setleEx"    :: "[idt, 'a, bool] => bool"   ("(3\<exists>_\<subseteq>_./ _)" [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 181 | |
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 182 | syntax (HOL) | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 183 |   "_setlessAll" :: "[idt, 'a, bool] => bool"   ("(3! _<_./ _)"  [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 184 |   "_setlessEx"  :: "[idt, 'a, bool] => bool"   ("(3? _<_./ _)"  [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 185 |   "_setleAll"   :: "[idt, 'a, bool] => bool"   ("(3! _<=_./ _)" [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 186 |   "_setleEx"    :: "[idt, 'a, bool] => bool"   ("(3? _<=_./ _)" [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 187 | |
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 188 | syntax (HTML output) | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 189 |   "_setlessAll" :: "[idt, 'a, bool] => bool"   ("(3\<forall>_\<subset>_./ _)"  [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 190 |   "_setlessEx"  :: "[idt, 'a, bool] => bool"   ("(3\<exists>_\<subset>_./ _)"  [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 191 |   "_setleAll"   :: "[idt, 'a, bool] => bool"   ("(3\<forall>_\<subseteq>_./ _)" [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 192 |   "_setleEx"    :: "[idt, 'a, bool] => bool"   ("(3\<exists>_\<subseteq>_./ _)" [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 193 | |
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 194 | translations | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 195 | "\<forall>A\<subset>B. P" => "ALL A. A \<subset> B --> P" | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 196 | "\<exists>A\<subset>B. P" => "EX A. A \<subset> B & P" | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 197 | "\<forall>A\<subseteq>B. P" => "ALL A. A \<subseteq> B --> P" | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 198 | "\<exists>A\<subseteq>B. P" => "EX A. A \<subseteq> B & P" | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 199 | |
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 200 | print_translation {*
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 201 | let | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 202 | fun | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 203 |     all_tr' [Const ("_bound",_) $ Free (v,Type(T,_)), 
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 204 |              Const("op -->",_) $ (Const ("op <",_) $ (Const ("_bound",_) $ Free (v',_)) $ n ) $ P] = 
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 205 | (if v=v' andalso T="set" | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 206 | then Syntax.const "_setlessAll" $ Syntax.mark_bound v' $ n $ P | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 207 | else raise Match) | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 208 | |
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 209 |   | all_tr' [Const ("_bound",_) $ Free (v,Type(T,_)), 
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 210 |              Const("op -->",_) $ (Const ("op <=",_) $ (Const ("_bound",_) $ Free (v',_)) $ n ) $ P] = 
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 211 | (if v=v' andalso T="set" | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 212 | then Syntax.const "_setleAll" $ Syntax.mark_bound v' $ n $ P | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 213 | else raise Match); | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 214 | |
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 215 | fun | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 216 |     ex_tr' [Const ("_bound",_) $ Free (v,Type(T,_)), 
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 217 |             Const("op &",_) $ (Const ("op <",_) $ (Const ("_bound",_) $ Free (v',_)) $ n ) $ P] = 
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 218 | (if v=v' andalso T="set" | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 219 | then Syntax.const "_setlessEx" $ Syntax.mark_bound v' $ n $ P | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 220 | else raise Match) | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 221 | |
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 222 |   | ex_tr' [Const ("_bound",_) $ Free (v,Type(T,_)), 
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 223 |             Const("op &",_) $ (Const ("op <=",_) $ (Const ("_bound",_) $ Free (v',_)) $ n ) $ P] = 
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 224 | (if v=v' andalso T="set" | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 225 | then Syntax.const "_setleEx" $ Syntax.mark_bound v' $ n $ P | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 226 | else raise Match) | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 227 | in | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 228 | [("ALL ", all_tr'), ("EX ", ex_tr')]
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 229 | end | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 230 | *} | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 231 | |
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 232 | |
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 233 | |
| 11979 | 234 | text {*
 | 
| 235 |   \medskip Translate between @{text "{e | x1...xn. P}"} and @{text
 | |
| 236 |   "{u. EX x1..xn. u = e & P}"}; @{text "{y. EX x1..xn. y = e & P}"} is
 | |
| 237 |   only translated if @{text "[0..n] subset bvs(e)"}.
 | |
| 238 | *} | |
| 239 | ||
| 240 | parse_translation {*
 | |
| 241 | let | |
| 242 |     val ex_tr = snd (mk_binder_tr ("EX ", "Ex"));
 | |
| 3947 | 243 | |
| 11979 | 244 |     fun nvars (Const ("_idts", _) $ _ $ idts) = nvars idts + 1
 | 
| 245 | | nvars _ = 1; | |
| 246 | ||
| 247 | fun setcompr_tr [e, idts, b] = | |
| 248 | let | |
| 249 | val eq = Syntax.const "op =" $ Bound (nvars idts) $ e; | |
| 250 | val P = Syntax.const "op &" $ eq $ b; | |
| 251 | val exP = ex_tr [idts, P]; | |
| 252 |       in Syntax.const "Collect" $ Abs ("", dummyT, exP) end;
 | |
| 253 | ||
| 254 |   in [("@SetCompr", setcompr_tr)] end;
 | |
| 255 | *} | |
| 923 | 256 | |
| 13763 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 257 | (* To avoid eta-contraction of body: *) | 
| 11979 | 258 | print_translation {*
 | 
| 13763 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 259 | let | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 260 | fun btr' syn [A,Abs abs] = | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 261 | let val (x,t) = atomic_abs_tr' abs | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 262 | in Syntax.const syn $ x $ A $ t end | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 263 | in | 
| 13858 | 264 | [("Ball", btr' "_Ball"),("Bex", btr' "_Bex"),
 | 
| 265 |  ("UNION", btr' "@UNION"),("INTER", btr' "@INTER")]
 | |
| 13763 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 266 | end | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 267 | *} | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 268 | |
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 269 | print_translation {*
 | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 270 | let | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 271 |   val ex_tr' = snd (mk_binder_tr' ("Ex", "DUMMY"));
 | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 272 | |
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 273 | fun setcompr_tr' [Abs (abs as (_, _, P))] = | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 274 | let | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 275 |       fun check (Const ("Ex", _) $ Abs (_, _, P), n) = check (P, n + 1)
 | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 276 |         | check (Const ("op &", _) $ (Const ("op =", _) $ Bound m $ e) $ P, n) =
 | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 277 | n > 0 andalso m = n andalso not (loose_bvar1 (P, n)) andalso | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 278 | ((0 upto (n - 1)) subset add_loose_bnos (e, 0, [])) | 
| 13764 | 279 | | check _ = false | 
| 923 | 280 | |
| 11979 | 281 | fun tr' (_ $ abs) = | 
| 282 | let val _ $ idts $ (_ $ (_ $ _ $ e) $ Q) = ex_tr' [abs] | |
| 283 | in Syntax.const "@SetCompr" $ e $ idts $ Q end; | |
| 13763 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 284 | in if check (P, 0) then tr' P | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 285 | else let val (x,t) = atomic_abs_tr' abs | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 286 | in Syntax.const "@Coll" $ x $ t end | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 287 | end; | 
| 11979 | 288 |   in [("Collect", setcompr_tr')] end;
 | 
| 289 | *} | |
| 290 | ||
| 291 | ||
| 292 | subsection {* Rules and definitions *}
 | |
| 293 | ||
| 294 | text {* Isomorphisms between predicates and sets. *}
 | |
| 923 | 295 | |
| 11979 | 296 | axioms | 
| 297 |   mem_Collect_eq [iff]: "(a : {x. P(x)}) = P(a)"
 | |
| 298 |   Collect_mem_eq [simp]: "{x. x:A} = A"
 | |
| 299 | ||
| 300 | defs | |
| 301 | Ball_def: "Ball A P == ALL x. x:A --> P(x)" | |
| 302 | Bex_def: "Bex A P == EX x. x:A & P(x)" | |
| 303 | ||
| 304 | defs (overloaded) | |
| 305 | subset_def: "A <= B == ALL x:A. x:B" | |
| 306 | psubset_def: "A < B == (A::'a set) <= B & ~ A=B" | |
| 307 |   Compl_def:    "- A            == {x. ~x:A}"
 | |
| 12257 | 308 |   set_diff_def: "A - B          == {x. x:A & ~x:B}"
 | 
| 923 | 309 | |
| 310 | defs | |
| 11979 | 311 |   Un_def:       "A Un B         == {x. x:A | x:B}"
 | 
| 312 |   Int_def:      "A Int B        == {x. x:A & x:B}"
 | |
| 313 |   INTER_def:    "INTER A B      == {y. ALL x:A. y: B(x)}"
 | |
| 314 |   UNION_def:    "UNION A B      == {y. EX x:A. y: B(x)}"
 | |
| 315 | Inter_def: "Inter S == (INT x:S. x)" | |
| 316 | Union_def: "Union S == (UN x:S. x)" | |
| 317 |   Pow_def:      "Pow A          == {B. B <= A}"
 | |
| 318 |   empty_def:    "{}             == {x. False}"
 | |
| 319 |   UNIV_def:     "UNIV           == {x. True}"
 | |
| 320 |   insert_def:   "insert a B     == {x. x=a} Un B"
 | |
| 321 |   image_def:    "f`A            == {y. EX x:A. y = f(x)}"
 | |
| 322 | ||
| 323 | ||
| 324 | subsection {* Lemmas and proof tool setup *}
 | |
| 325 | ||
| 326 | subsubsection {* Relating predicates and sets *}
 | |
| 327 | ||
| 12257 | 328 | lemma CollectI: "P(a) ==> a : {x. P(x)}"
 | 
| 11979 | 329 | by simp | 
| 330 | ||
| 331 | lemma CollectD: "a : {x. P(x)} ==> P(a)"
 | |
| 332 | by simp | |
| 333 | ||
| 334 | lemma Collect_cong: "(!!x. P x = Q x) ==> {x. P(x)} = {x. Q(x)}"
 | |
| 335 | by simp | |
| 336 | ||
| 12257 | 337 | lemmas CollectE = CollectD [elim_format] | 
| 11979 | 338 | |
| 339 | ||
| 340 | subsubsection {* Bounded quantifiers *}
 | |
| 341 | ||
| 342 | lemma ballI [intro!]: "(!!x. x:A ==> P x) ==> ALL x:A. P x" | |
| 343 | by (simp add: Ball_def) | |
| 344 | ||
| 345 | lemmas strip = impI allI ballI | |
| 346 | ||
| 347 | lemma bspec [dest?]: "ALL x:A. P x ==> x:A ==> P x" | |
| 348 | by (simp add: Ball_def) | |
| 349 | ||
| 350 | lemma ballE [elim]: "ALL x:A. P x ==> (P x ==> Q) ==> (x ~: A ==> Q) ==> Q" | |
| 351 | by (unfold Ball_def) blast | |
| 14098 | 352 | ML {* bind_thm("rev_ballE",permute_prems 1 1 (thm "ballE")) *}
 | 
| 11979 | 353 | |
| 354 | text {*
 | |
| 355 |   \medskip This tactic takes assumptions @{prop "ALL x:A. P x"} and
 | |
| 356 |   @{prop "a:A"}; creates assumption @{prop "P a"}.
 | |
| 357 | *} | |
| 358 | ||
| 359 | ML {*
 | |
| 360 | local val ballE = thm "ballE" | |
| 361 | in fun ball_tac i = etac ballE i THEN contr_tac (i + 1) end; | |
| 362 | *} | |
| 363 | ||
| 364 | text {*
 | |
| 365 | Gives better instantiation for bound: | |
| 366 | *} | |
| 367 | ||
| 368 | ML_setup {*
 | |
| 369 |   claset_ref() := claset() addbefore ("bspec", datac (thm "bspec") 1);
 | |
| 370 | *} | |
| 371 | ||
| 372 | lemma bexI [intro]: "P x ==> x:A ==> EX x:A. P x" | |
| 373 |   -- {* Normally the best argument order: @{prop "P x"} constrains the
 | |
| 374 |     choice of @{prop "x:A"}. *}
 | |
| 375 | by (unfold Bex_def) blast | |
| 376 | ||
| 13113 | 377 | lemma rev_bexI [intro?]: "x:A ==> P x ==> EX x:A. P x" | 
| 11979 | 378 |   -- {* The best argument order when there is only one @{prop "x:A"}. *}
 | 
| 379 | by (unfold Bex_def) blast | |
| 380 | ||
| 381 | lemma bexCI: "(ALL x:A. ~P x ==> P a) ==> a:A ==> EX x:A. P x" | |
| 382 | by (unfold Bex_def) blast | |
| 383 | ||
| 384 | lemma bexE [elim!]: "EX x:A. P x ==> (!!x. x:A ==> P x ==> Q) ==> Q" | |
| 385 | by (unfold Bex_def) blast | |
| 386 | ||
| 387 | lemma ball_triv [simp]: "(ALL x:A. P) = ((EX x. x:A) --> P)" | |
| 388 |   -- {* Trival rewrite rule. *}
 | |
| 389 | by (simp add: Ball_def) | |
| 390 | ||
| 391 | lemma bex_triv [simp]: "(EX x:A. P) = ((EX x. x:A) & P)" | |
| 392 |   -- {* Dual form for existentials. *}
 | |
| 393 | by (simp add: Bex_def) | |
| 394 | ||
| 395 | lemma bex_triv_one_point1 [simp]: "(EX x:A. x = a) = (a:A)" | |
| 396 | by blast | |
| 397 | ||
| 398 | lemma bex_triv_one_point2 [simp]: "(EX x:A. a = x) = (a:A)" | |
| 399 | by blast | |
| 400 | ||
| 401 | lemma bex_one_point1 [simp]: "(EX x:A. x = a & P x) = (a:A & P a)" | |
| 402 | by blast | |
| 403 | ||
| 404 | lemma bex_one_point2 [simp]: "(EX x:A. a = x & P x) = (a:A & P a)" | |
| 405 | by blast | |
| 406 | ||
| 407 | lemma ball_one_point1 [simp]: "(ALL x:A. x = a --> P x) = (a:A --> P a)" | |
| 408 | by blast | |
| 409 | ||
| 410 | lemma ball_one_point2 [simp]: "(ALL x:A. a = x --> P x) = (a:A --> P a)" | |
| 411 | by blast | |
| 412 | ||
| 413 | ML_setup {*
 | |
| 13462 | 414 | local | 
| 11979 | 415 | val Ball_def = thm "Ball_def"; | 
| 416 | val Bex_def = thm "Bex_def"; | |
| 417 | ||
| 418 | val prove_bex_tac = | |
| 419 | rewrite_goals_tac [Bex_def] THEN Quantifier1.prove_one_point_ex_tac; | |
| 420 | val rearrange_bex = Quantifier1.rearrange_bex prove_bex_tac; | |
| 421 | ||
| 422 | val prove_ball_tac = | |
| 423 | rewrite_goals_tac [Ball_def] THEN Quantifier1.prove_one_point_all_tac; | |
| 424 | val rearrange_ball = Quantifier1.rearrange_ball prove_ball_tac; | |
| 425 | in | |
| 13462 | 426 | val defBEX_regroup = Simplifier.simproc (Theory.sign_of (the_context ())) | 
| 427 | "defined BEX" ["EX x:A. P x & Q x"] rearrange_bex; | |
| 428 | val defBALL_regroup = Simplifier.simproc (Theory.sign_of (the_context ())) | |
| 429 | "defined BALL" ["ALL x:A. P x --> Q x"] rearrange_ball; | |
| 11979 | 430 | end; | 
| 13462 | 431 | |
| 432 | Addsimprocs [defBALL_regroup, defBEX_regroup]; | |
| 11979 | 433 | *} | 
| 434 | ||
| 435 | ||
| 436 | subsubsection {* Congruence rules *}
 | |
| 437 | ||
| 438 | lemma ball_cong [cong]: | |
| 439 | "A = B ==> (!!x. x:B ==> P x = Q x) ==> | |
| 440 | (ALL x:A. P x) = (ALL x:B. Q x)" | |
| 441 | by (simp add: Ball_def) | |
| 442 | ||
| 443 | lemma bex_cong [cong]: | |
| 444 | "A = B ==> (!!x. x:B ==> P x = Q x) ==> | |
| 445 | (EX x:A. P x) = (EX x:B. Q x)" | |
| 446 | by (simp add: Bex_def cong: conj_cong) | |
| 1273 | 447 | |
| 7238 
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
 wenzelm parents: 
5931diff
changeset | 448 | |
| 11979 | 449 | subsubsection {* Subsets *}
 | 
| 450 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 451 | lemma subsetI [intro!]: "(!!x. x:A ==> x:B) ==> A \<subseteq> B" | 
| 11979 | 452 | by (simp add: subset_def) | 
| 453 | ||
| 454 | text {*
 | |
| 455 |   \medskip Map the type @{text "'a set => anything"} to just @{typ
 | |
| 456 |   'a}; for overloading constants whose first argument has type @{typ
 | |
| 457 | "'a set"}. | |
| 458 | *} | |
| 459 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 460 | lemma subsetD [elim]: "A \<subseteq> B ==> c \<in> A ==> c \<in> B" | 
| 11979 | 461 |   -- {* Rule in Modus Ponens style. *}
 | 
| 462 | by (unfold subset_def) blast | |
| 463 | ||
| 464 | declare subsetD [intro?] -- FIXME | |
| 465 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 466 | lemma rev_subsetD: "c \<in> A ==> A \<subseteq> B ==> c \<in> B" | 
| 11979 | 467 |   -- {* The same, with reversed premises for use with @{text erule} --
 | 
| 468 |       cf @{text rev_mp}. *}
 | |
| 469 | by (rule subsetD) | |
| 470 | ||
| 471 | declare rev_subsetD [intro?] -- FIXME | |
| 472 | ||
| 473 | text {*
 | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 474 |   \medskip Converts @{prop "A \<subseteq> B"} to @{prop "x \<in> A ==> x \<in> B"}.
 | 
| 11979 | 475 | *} | 
| 476 | ||
| 477 | ML {*
 | |
| 478 | local val rev_subsetD = thm "rev_subsetD" | |
| 479 | in fun impOfSubs th = th RSN (2, rev_subsetD) end; | |
| 480 | *} | |
| 481 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 482 | lemma subsetCE [elim]: "A \<subseteq> B ==> (c \<notin> A ==> P) ==> (c \<in> B ==> P) ==> P" | 
| 11979 | 483 |   -- {* Classical elimination rule. *}
 | 
| 484 | by (unfold subset_def) blast | |
| 485 | ||
| 486 | text {*
 | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 487 |   \medskip Takes assumptions @{prop "A \<subseteq> B"}; @{prop "c \<in> A"} and
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 488 |   creates the assumption @{prop "c \<in> B"}.
 | 
| 11979 | 489 | *} | 
| 490 | ||
| 491 | ML {*
 | |
| 492 | local val subsetCE = thm "subsetCE" | |
| 493 | in fun set_mp_tac i = etac subsetCE i THEN mp_tac i end; | |
| 494 | *} | |
| 495 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 496 | lemma contra_subsetD: "A \<subseteq> B ==> c \<notin> B ==> c \<notin> A" | 
| 11979 | 497 | by blast | 
| 498 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 499 | lemma subset_refl: "A \<subseteq> A" | 
| 11979 | 500 | by fast | 
| 501 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 502 | lemma subset_trans: "A \<subseteq> B ==> B \<subseteq> C ==> A \<subseteq> C" | 
| 11979 | 503 | by blast | 
| 923 | 504 | |
| 2261 | 505 | |
| 11979 | 506 | subsubsection {* Equality *}
 | 
| 507 | ||
| 13865 | 508 | lemma set_ext: assumes prem: "(!!x. (x:A) = (x:B))" shows "A = B" | 
| 509 | apply (rule prem [THEN ext, THEN arg_cong, THEN box_equals]) | |
| 510 | apply (rule Collect_mem_eq) | |
| 511 | apply (rule Collect_mem_eq) | |
| 512 | done | |
| 513 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 514 | lemma subset_antisym [intro!]: "A \<subseteq> B ==> B \<subseteq> A ==> A = B" | 
| 11979 | 515 |   -- {* Anti-symmetry of the subset relation. *}
 | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 516 | by (rules intro: set_ext subsetD) | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 517 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 518 | lemmas equalityI [intro!] = subset_antisym | 
| 11979 | 519 | |
| 520 | text {*
 | |
| 521 | \medskip Equality rules from ZF set theory -- are they appropriate | |
| 522 | here? | |
| 523 | *} | |
| 524 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 525 | lemma equalityD1: "A = B ==> A \<subseteq> B" | 
| 11979 | 526 | by (simp add: subset_refl) | 
| 527 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 528 | lemma equalityD2: "A = B ==> B \<subseteq> A" | 
| 11979 | 529 | by (simp add: subset_refl) | 
| 530 | ||
| 531 | text {*
 | |
| 532 |   \medskip Be careful when adding this to the claset as @{text
 | |
| 533 |   subset_empty} is in the simpset: @{prop "A = {}"} goes to @{prop "{}
 | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 534 |   \<subseteq> A"} and @{prop "A \<subseteq> {}"} and then back to @{prop "A = {}"}!
 | 
| 11979 | 535 | *} | 
| 536 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 537 | lemma equalityE: "A = B ==> (A \<subseteq> B ==> B \<subseteq> A ==> P) ==> P" | 
| 11979 | 538 | by (simp add: subset_refl) | 
| 923 | 539 | |
| 11979 | 540 | lemma equalityCE [elim]: | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 541 | "A = B ==> (c \<in> A ==> c \<in> B ==> P) ==> (c \<notin> A ==> c \<notin> B ==> P) ==> P" | 
| 11979 | 542 | by blast | 
| 543 | ||
| 544 | text {*
 | |
| 545 | \medskip Lemma for creating induction formulae -- for "pattern | |
| 546 |   matching" on @{text p}.  To make the induction hypotheses usable,
 | |
| 547 |   apply @{text spec} or @{text bspec} to put universal quantifiers over the free
 | |
| 548 |   variables in @{text p}.
 | |
| 549 | *} | |
| 550 | ||
| 551 | lemma setup_induction: "p:A ==> (!!z. z:A ==> p = z --> R) ==> R" | |
| 552 | by simp | |
| 923 | 553 | |
| 11979 | 554 | lemma eqset_imp_iff: "A = B ==> (x : A) = (x : B)" | 
| 555 | by simp | |
| 556 | ||
| 13865 | 557 | lemma eqelem_imp_iff: "x = y ==> (x : A) = (y : A)" | 
| 558 | by simp | |
| 559 | ||
| 11979 | 560 | |
| 561 | subsubsection {* The universal set -- UNIV *}
 | |
| 562 | ||
| 563 | lemma UNIV_I [simp]: "x : UNIV" | |
| 564 | by (simp add: UNIV_def) | |
| 565 | ||
| 566 | declare UNIV_I [intro]  -- {* unsafe makes it less likely to cause problems *}
 | |
| 567 | ||
| 568 | lemma UNIV_witness [intro?]: "EX x. x : UNIV" | |
| 569 | by simp | |
| 570 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 571 | lemma subset_UNIV: "A \<subseteq> UNIV" | 
| 11979 | 572 | by (rule subsetI) (rule UNIV_I) | 
| 2388 | 573 | |
| 11979 | 574 | text {*
 | 
| 575 |   \medskip Eta-contracting these two rules (to remove @{text P})
 | |
| 576 | causes them to be ignored because of their interaction with | |
| 577 | congruence rules. | |
| 578 | *} | |
| 579 | ||
| 580 | lemma ball_UNIV [simp]: "Ball UNIV P = All P" | |
| 581 | by (simp add: Ball_def) | |
| 582 | ||
| 583 | lemma bex_UNIV [simp]: "Bex UNIV P = Ex P" | |
| 584 | by (simp add: Bex_def) | |
| 585 | ||
| 586 | ||
| 587 | subsubsection {* The empty set *}
 | |
| 588 | ||
| 589 | lemma empty_iff [simp]: "(c : {}) = False"
 | |
| 590 | by (simp add: empty_def) | |
| 591 | ||
| 592 | lemma emptyE [elim!]: "a : {} ==> P"
 | |
| 593 | by simp | |
| 594 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 595 | lemma empty_subsetI [iff]: "{} \<subseteq> A"
 | 
| 11979 | 596 |     -- {* One effect is to delete the ASSUMPTION @{prop "{} <= A"} *}
 | 
| 597 | by blast | |
| 598 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 599 | lemma equals0I: "(!!y. y \<in> A ==> False) ==> A = {}"
 | 
| 11979 | 600 | by blast | 
| 2388 | 601 | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 602 | lemma equals0D: "A = {} ==> a \<notin> A"
 | 
| 11979 | 603 |     -- {* Use for reasoning about disjointness: @{prop "A Int B = {}"} *}
 | 
| 604 | by blast | |
| 605 | ||
| 606 | lemma ball_empty [simp]: "Ball {} P = True"
 | |
| 607 | by (simp add: Ball_def) | |
| 608 | ||
| 609 | lemma bex_empty [simp]: "Bex {} P = False"
 | |
| 610 | by (simp add: Bex_def) | |
| 611 | ||
| 612 | lemma UNIV_not_empty [iff]: "UNIV ~= {}"
 | |
| 613 | by (blast elim: equalityE) | |
| 614 | ||
| 615 | ||
| 12023 | 616 | subsubsection {* The Powerset operator -- Pow *}
 | 
| 11979 | 617 | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 618 | lemma Pow_iff [iff]: "(A \<in> Pow B) = (A \<subseteq> B)" | 
| 11979 | 619 | by (simp add: Pow_def) | 
| 620 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 621 | lemma PowI: "A \<subseteq> B ==> A \<in> Pow B" | 
| 11979 | 622 | by (simp add: Pow_def) | 
| 623 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 624 | lemma PowD: "A \<in> Pow B ==> A \<subseteq> B" | 
| 11979 | 625 | by (simp add: Pow_def) | 
| 626 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 627 | lemma Pow_bottom: "{} \<in> Pow B"
 | 
| 11979 | 628 | by simp | 
| 629 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 630 | lemma Pow_top: "A \<in> Pow A" | 
| 11979 | 631 | by (simp add: subset_refl) | 
| 2684 | 632 | |
| 2388 | 633 | |
| 11979 | 634 | subsubsection {* Set complement *}
 | 
| 635 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 636 | lemma Compl_iff [simp]: "(c \<in> -A) = (c \<notin> A)" | 
| 11979 | 637 | by (unfold Compl_def) blast | 
| 638 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 639 | lemma ComplI [intro!]: "(c \<in> A ==> False) ==> c \<in> -A" | 
| 11979 | 640 | by (unfold Compl_def) blast | 
| 641 | ||
| 642 | text {*
 | |
| 643 | \medskip This form, with negated conclusion, works well with the | |
| 644 | Classical prover. Negated assumptions behave like formulae on the | |
| 645 | right side of the notional turnstile ... *} | |
| 646 | ||
| 647 | lemma ComplD: "c : -A ==> c~:A" | |
| 648 | by (unfold Compl_def) blast | |
| 649 | ||
| 650 | lemmas ComplE [elim!] = ComplD [elim_format] | |
| 651 | ||
| 652 | ||
| 653 | subsubsection {* Binary union -- Un *}
 | |
| 923 | 654 | |
| 11979 | 655 | lemma Un_iff [simp]: "(c : A Un B) = (c:A | c:B)" | 
| 656 | by (unfold Un_def) blast | |
| 657 | ||
| 658 | lemma UnI1 [elim?]: "c:A ==> c : A Un B" | |
| 659 | by simp | |
| 660 | ||
| 661 | lemma UnI2 [elim?]: "c:B ==> c : A Un B" | |
| 662 | by simp | |
| 923 | 663 | |
| 11979 | 664 | text {*
 | 
| 665 |   \medskip Classical introduction rule: no commitment to @{prop A} vs
 | |
| 666 |   @{prop B}.
 | |
| 667 | *} | |
| 668 | ||
| 669 | lemma UnCI [intro!]: "(c~:B ==> c:A) ==> c : A Un B" | |
| 670 | by auto | |
| 671 | ||
| 672 | lemma UnE [elim!]: "c : A Un B ==> (c:A ==> P) ==> (c:B ==> P) ==> P" | |
| 673 | by (unfold Un_def) blast | |
| 674 | ||
| 675 | ||
| 12023 | 676 | subsubsection {* Binary intersection -- Int *}
 | 
| 923 | 677 | |
| 11979 | 678 | lemma Int_iff [simp]: "(c : A Int B) = (c:A & c:B)" | 
| 679 | by (unfold Int_def) blast | |
| 680 | ||
| 681 | lemma IntI [intro!]: "c:A ==> c:B ==> c : A Int B" | |
| 682 | by simp | |
| 683 | ||
| 684 | lemma IntD1: "c : A Int B ==> c:A" | |
| 685 | by simp | |
| 686 | ||
| 687 | lemma IntD2: "c : A Int B ==> c:B" | |
| 688 | by simp | |
| 689 | ||
| 690 | lemma IntE [elim!]: "c : A Int B ==> (c:A ==> c:B ==> P) ==> P" | |
| 691 | by simp | |
| 692 | ||
| 693 | ||
| 12023 | 694 | subsubsection {* Set difference *}
 | 
| 11979 | 695 | |
| 696 | lemma Diff_iff [simp]: "(c : A - B) = (c:A & c~:B)" | |
| 697 | by (unfold set_diff_def) blast | |
| 923 | 698 | |
| 11979 | 699 | lemma DiffI [intro!]: "c : A ==> c ~: B ==> c : A - B" | 
| 700 | by simp | |
| 701 | ||
| 702 | lemma DiffD1: "c : A - B ==> c : A" | |
| 703 | by simp | |
| 704 | ||
| 705 | lemma DiffD2: "c : A - B ==> c : B ==> P" | |
| 706 | by simp | |
| 707 | ||
| 708 | lemma DiffE [elim!]: "c : A - B ==> (c:A ==> c~:B ==> P) ==> P" | |
| 709 | by simp | |
| 710 | ||
| 711 | ||
| 712 | subsubsection {* Augmenting a set -- insert *}
 | |
| 713 | ||
| 714 | lemma insert_iff [simp]: "(a : insert b A) = (a = b | a:A)" | |
| 715 | by (unfold insert_def) blast | |
| 716 | ||
| 717 | lemma insertI1: "a : insert a B" | |
| 718 | by simp | |
| 719 | ||
| 720 | lemma insertI2: "a : B ==> a : insert b B" | |
| 721 | by simp | |
| 923 | 722 | |
| 11979 | 723 | lemma insertE [elim!]: "a : insert b A ==> (a = b ==> P) ==> (a:A ==> P) ==> P" | 
| 724 | by (unfold insert_def) blast | |
| 725 | ||
| 726 | lemma insertCI [intro!]: "(a~:B ==> a = b) ==> a: insert b B" | |
| 727 |   -- {* Classical introduction rule. *}
 | |
| 728 | by auto | |
| 729 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 730 | lemma subset_insert_iff: "(A \<subseteq> insert x B) = (if x:A then A - {x} \<subseteq> B else A \<subseteq> B)"
 | 
| 11979 | 731 | by auto | 
| 732 | ||
| 733 | ||
| 734 | subsubsection {* Singletons, using insert *}
 | |
| 735 | ||
| 736 | lemma singletonI [intro!]: "a : {a}"
 | |
| 737 |     -- {* Redundant? But unlike @{text insertCI}, it proves the subgoal immediately! *}
 | |
| 738 | by (rule insertI1) | |
| 739 | ||
| 740 | lemma singletonD: "b : {a} ==> b = a"
 | |
| 741 | by blast | |
| 742 | ||
| 743 | lemmas singletonE [elim!] = singletonD [elim_format] | |
| 744 | ||
| 745 | lemma singleton_iff: "(b : {a}) = (b = a)"
 | |
| 746 | by blast | |
| 747 | ||
| 748 | lemma singleton_inject [dest!]: "{a} = {b} ==> a = b"
 | |
| 749 | by blast | |
| 750 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 751 | lemma singleton_insert_inj_eq [iff]: "({b} = insert a A) = (a = b & A \<subseteq> {b})"
 | 
| 11979 | 752 | by blast | 
| 753 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 754 | lemma singleton_insert_inj_eq' [iff]: "(insert a A = {b}) = (a = b & A \<subseteq> {b})"
 | 
| 11979 | 755 | by blast | 
| 756 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 757 | lemma subset_singletonD: "A \<subseteq> {x} ==> A = {} | A = {x}"
 | 
| 11979 | 758 | by fast | 
| 759 | ||
| 760 | lemma singleton_conv [simp]: "{x. x = a} = {a}"
 | |
| 761 | by blast | |
| 762 | ||
| 763 | lemma singleton_conv2 [simp]: "{x. a = x} = {a}"
 | |
| 764 | by blast | |
| 923 | 765 | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 766 | lemma diff_single_insert: "A - {x} \<subseteq> B ==> x \<in> A ==> A \<subseteq> insert x B"
 | 
| 11979 | 767 | by blast | 
| 768 | ||
| 769 | ||
| 770 | subsubsection {* Unions of families *}
 | |
| 771 | ||
| 772 | text {*
 | |
| 773 |   @{term [source] "UN x:A. B x"} is @{term "Union (B`A)"}.
 | |
| 774 | *} | |
| 775 | ||
| 776 | lemma UN_iff [simp]: "(b: (UN x:A. B x)) = (EX x:A. b: B x)" | |
| 777 | by (unfold UNION_def) blast | |
| 778 | ||
| 779 | lemma UN_I [intro]: "a:A ==> b: B a ==> b: (UN x:A. B x)" | |
| 780 |   -- {* The order of the premises presupposes that @{term A} is rigid;
 | |
| 781 |     @{term b} may be flexible. *}
 | |
| 782 | by auto | |
| 783 | ||
| 784 | lemma UN_E [elim!]: "b : (UN x:A. B x) ==> (!!x. x:A ==> b: B x ==> R) ==> R" | |
| 785 | by (unfold UNION_def) blast | |
| 923 | 786 | |
| 11979 | 787 | lemma UN_cong [cong]: | 
| 788 | "A = B ==> (!!x. x:B ==> C x = D x) ==> (UN x:A. C x) = (UN x:B. D x)" | |
| 789 | by (simp add: UNION_def) | |
| 790 | ||
| 791 | ||
| 792 | subsubsection {* Intersections of families *}
 | |
| 793 | ||
| 794 | text {* @{term [source] "INT x:A. B x"} is @{term "Inter (B`A)"}. *}
 | |
| 795 | ||
| 796 | lemma INT_iff [simp]: "(b: (INT x:A. B x)) = (ALL x:A. b: B x)" | |
| 797 | by (unfold INTER_def) blast | |
| 923 | 798 | |
| 11979 | 799 | lemma INT_I [intro!]: "(!!x. x:A ==> b: B x) ==> b : (INT x:A. B x)" | 
| 800 | by (unfold INTER_def) blast | |
| 801 | ||
| 802 | lemma INT_D [elim]: "b : (INT x:A. B x) ==> a:A ==> b: B a" | |
| 803 | by auto | |
| 804 | ||
| 805 | lemma INT_E [elim]: "b : (INT x:A. B x) ==> (b: B a ==> R) ==> (a~:A ==> R) ==> R" | |
| 806 |   -- {* "Classical" elimination -- by the Excluded Middle on @{prop "a:A"}. *}
 | |
| 807 | by (unfold INTER_def) blast | |
| 808 | ||
| 809 | lemma INT_cong [cong]: | |
| 810 | "A = B ==> (!!x. x:B ==> C x = D x) ==> (INT x:A. C x) = (INT x:B. D x)" | |
| 811 | by (simp add: INTER_def) | |
| 7238 
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
 wenzelm parents: 
5931diff
changeset | 812 | |
| 923 | 813 | |
| 11979 | 814 | subsubsection {* Union *}
 | 
| 815 | ||
| 816 | lemma Union_iff [simp]: "(A : Union C) = (EX X:C. A:X)" | |
| 817 | by (unfold Union_def) blast | |
| 818 | ||
| 819 | lemma UnionI [intro]: "X:C ==> A:X ==> A : Union C" | |
| 820 |   -- {* The order of the premises presupposes that @{term C} is rigid;
 | |
| 821 |     @{term A} may be flexible. *}
 | |
| 822 | by auto | |
| 823 | ||
| 824 | lemma UnionE [elim!]: "A : Union C ==> (!!X. A:X ==> X:C ==> R) ==> R" | |
| 825 | by (unfold Union_def) blast | |
| 826 | ||
| 827 | ||
| 828 | subsubsection {* Inter *}
 | |
| 829 | ||
| 830 | lemma Inter_iff [simp]: "(A : Inter C) = (ALL X:C. A:X)" | |
| 831 | by (unfold Inter_def) blast | |
| 832 | ||
| 833 | lemma InterI [intro!]: "(!!X. X:C ==> A:X) ==> A : Inter C" | |
| 834 | by (simp add: Inter_def) | |
| 835 | ||
| 836 | text {*
 | |
| 837 |   \medskip A ``destruct'' rule -- every @{term X} in @{term C}
 | |
| 838 |   contains @{term A} as an element, but @{prop "A:X"} can hold when
 | |
| 839 |   @{prop "X:C"} does not!  This rule is analogous to @{text spec}.
 | |
| 840 | *} | |
| 841 | ||
| 842 | lemma InterD [elim]: "A : Inter C ==> X:C ==> A:X" | |
| 843 | by auto | |
| 844 | ||
| 845 | lemma InterE [elim]: "A : Inter C ==> (X~:C ==> R) ==> (A:X ==> R) ==> R" | |
| 846 |   -- {* ``Classical'' elimination rule -- does not require proving
 | |
| 847 |     @{prop "X:C"}. *}
 | |
| 848 | by (unfold Inter_def) blast | |
| 849 | ||
| 850 | text {*
 | |
| 851 |   \medskip Image of a set under a function.  Frequently @{term b} does
 | |
| 852 |   not have the syntactic form of @{term "f x"}.
 | |
| 853 | *} | |
| 854 | ||
| 855 | lemma image_eqI [simp, intro]: "b = f x ==> x:A ==> b : f`A" | |
| 856 | by (unfold image_def) blast | |
| 857 | ||
| 858 | lemma imageI: "x : A ==> f x : f ` A" | |
| 859 | by (rule image_eqI) (rule refl) | |
| 860 | ||
| 861 | lemma rev_image_eqI: "x:A ==> b = f x ==> b : f`A" | |
| 862 |   -- {* This version's more effective when we already have the
 | |
| 863 |     required @{term x}. *}
 | |
| 864 | by (unfold image_def) blast | |
| 865 | ||
| 866 | lemma imageE [elim!]: | |
| 867 | "b : (%x. f x)`A ==> (!!x. b = f x ==> x:A ==> P) ==> P" | |
| 868 |   -- {* The eta-expansion gives variable-name preservation. *}
 | |
| 869 | by (unfold image_def) blast | |
| 870 | ||
| 871 | lemma image_Un: "f`(A Un B) = f`A Un f`B" | |
| 872 | by blast | |
| 873 | ||
| 874 | lemma image_iff: "(z : f`A) = (EX x:A. z = f x)" | |
| 875 | by blast | |
| 876 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 877 | lemma image_subset_iff: "(f`A \<subseteq> B) = (\<forall>x\<in>A. f x \<in> B)" | 
| 11979 | 878 |   -- {* This rewrite rule would confuse users if made default. *}
 | 
| 879 | by blast | |
| 880 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 881 | lemma subset_image_iff: "(B \<subseteq> f`A) = (EX AA. AA \<subseteq> A & B = f`AA)" | 
| 11979 | 882 | apply safe | 
| 883 | prefer 2 apply fast | |
| 14208 | 884 |   apply (rule_tac x = "{a. a : A & f a : B}" in exI, fast)
 | 
| 11979 | 885 | done | 
| 886 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 887 | lemma image_subsetI: "(!!x. x \<in> A ==> f x \<in> B) ==> f`A \<subseteq> B" | 
| 11979 | 888 |   -- {* Replaces the three steps @{text subsetI}, @{text imageE},
 | 
| 889 |     @{text hypsubst}, but breaks too many existing proofs. *}
 | |
| 890 | by blast | |
| 891 | ||
| 892 | text {*
 | |
| 893 | \medskip Range of a function -- just a translation for image! | |
| 894 | *} | |
| 895 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 896 | lemma range_eqI: "b = f x ==> b \<in> range f" | 
| 11979 | 897 | by simp | 
| 898 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 899 | lemma rangeI: "f x \<in> range f" | 
| 11979 | 900 | by simp | 
| 901 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 902 | lemma rangeE [elim?]: "b \<in> range (\<lambda>x. f x) ==> (!!x. b = f x ==> P) ==> P" | 
| 11979 | 903 | by blast | 
| 904 | ||
| 905 | ||
| 906 | subsubsection {* Set reasoning tools *}
 | |
| 907 | ||
| 908 | text {*
 | |
| 909 |   Rewrite rules for boolean case-splitting: faster than @{text
 | |
| 910 | "split_if [split]"}. | |
| 911 | *} | |
| 912 | ||
| 913 | lemma split_if_eq1: "((if Q then x else y) = b) = ((Q --> x = b) & (~ Q --> y = b))" | |
| 914 | by (rule split_if) | |
| 915 | ||
| 916 | lemma split_if_eq2: "(a = (if Q then x else y)) = ((Q --> a = x) & (~ Q --> a = y))" | |
| 917 | by (rule split_if) | |
| 918 | ||
| 919 | text {*
 | |
| 920 |   Split ifs on either side of the membership relation.  Not for @{text
 | |
| 921 | "[simp]"} -- can cause goals to blow up! | |
| 922 | *} | |
| 923 | ||
| 924 | lemma split_if_mem1: "((if Q then x else y) : b) = ((Q --> x : b) & (~ Q --> y : b))" | |
| 925 | by (rule split_if) | |
| 926 | ||
| 927 | lemma split_if_mem2: "(a : (if Q then x else y)) = ((Q --> a : x) & (~ Q --> a : y))" | |
| 928 | by (rule split_if) | |
| 929 | ||
| 930 | lemmas split_ifs = if_bool_eq_conj split_if_eq1 split_if_eq2 split_if_mem1 split_if_mem2 | |
| 931 | ||
| 932 | lemmas mem_simps = | |
| 933 | insert_iff empty_iff Un_iff Int_iff Compl_iff Diff_iff | |
| 934 | mem_Collect_eq UN_iff Union_iff INT_iff Inter_iff | |
| 935 |   -- {* Each of these has ALREADY been added @{text "[simp]"} above. *}
 | |
| 936 | ||
| 937 | (*Would like to add these, but the existing code only searches for the | |
| 938 | outer-level constant, which in this case is just "op :"; we instead need | |
| 939 | to use term-nets to associate patterns with rules. Also, if a rule fails to | |
| 940 | apply, then the formula should be kept. | |
| 941 |   [("uminus", Compl_iff RS iffD1), ("op -", [Diff_iff RS iffD1]),
 | |
| 942 |    ("op Int", [IntD1,IntD2]),
 | |
| 943 |    ("Collect", [CollectD]), ("Inter", [InterD]), ("INTER", [INT_D])]
 | |
| 944 | *) | |
| 945 | ||
| 946 | ML_setup {*
 | |
| 947 |   val mksimps_pairs = [("Ball", [thm "bspec"])] @ mksimps_pairs;
 | |
| 948 | simpset_ref() := simpset() setmksimps (mksimps mksimps_pairs); | |
| 949 | *} | |
| 950 | ||
| 951 | declare subset_UNIV [simp] subset_refl [simp] | |
| 952 | ||
| 953 | ||
| 954 | subsubsection {* The ``proper subset'' relation *}
 | |
| 955 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 956 | lemma psubsetI [intro!]: "A \<subseteq> B ==> A \<noteq> B ==> A \<subset> B" | 
| 11979 | 957 | by (unfold psubset_def) blast | 
| 958 | ||
| 13624 | 959 | lemma psubsetE [elim!]: | 
| 960 | "[|A \<subset> B; [|A \<subseteq> B; ~ (B\<subseteq>A)|] ==> R|] ==> R" | |
| 961 | by (unfold psubset_def) blast | |
| 962 | ||
| 11979 | 963 | lemma psubset_insert_iff: | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 964 |   "(A \<subset> insert x B) = (if x \<in> B then A \<subset> B else if x \<in> A then A - {x} \<subset> B else A \<subseteq> B)"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 965 | by (auto simp add: psubset_def subset_insert_iff) | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 966 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 967 | lemma psubset_eq: "(A \<subset> B) = (A \<subseteq> B & A \<noteq> B)" | 
| 11979 | 968 | by (simp only: psubset_def) | 
| 969 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 970 | lemma psubset_imp_subset: "A \<subset> B ==> A \<subseteq> B" | 
| 11979 | 971 | by (simp add: psubset_eq) | 
| 972 | ||
| 14335 | 973 | lemma psubset_trans: "[| A \<subset> B; B \<subset> C |] ==> A \<subset> C" | 
| 974 | apply (unfold psubset_def) | |
| 975 | apply (auto dest: subset_antisym) | |
| 976 | done | |
| 977 | ||
| 978 | lemma psubsetD: "[| A \<subset> B; c \<in> A |] ==> c \<in> B" | |
| 979 | apply (unfold psubset_def) | |
| 980 | apply (auto dest: subsetD) | |
| 981 | done | |
| 982 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 983 | lemma psubset_subset_trans: "A \<subset> B ==> B \<subseteq> C ==> A \<subset> C" | 
| 11979 | 984 | by (auto simp add: psubset_eq) | 
| 985 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 986 | lemma subset_psubset_trans: "A \<subseteq> B ==> B \<subset> C ==> A \<subset> C" | 
| 11979 | 987 | by (auto simp add: psubset_eq) | 
| 988 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 989 | lemma psubset_imp_ex_mem: "A \<subset> B ==> \<exists>b. b \<in> (B - A)" | 
| 11979 | 990 | by (unfold psubset_def) blast | 
| 991 | ||
| 992 | lemma atomize_ball: | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 993 | "(!!x. x \<in> A ==> P x) == Trueprop (\<forall>x\<in>A. P x)" | 
| 11979 | 994 | by (simp only: Ball_def atomize_all atomize_imp) | 
| 995 | ||
| 996 | declare atomize_ball [symmetric, rulify] | |
| 997 | ||
| 998 | ||
| 999 | subsection {* Further set-theory lemmas *}
 | |
| 1000 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1001 | subsubsection {* Derived rules involving subsets. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1002 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1003 | text {* @{text insert}. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1004 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1005 | lemma subset_insertI: "B \<subseteq> insert a B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1006 | apply (rule subsetI) | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1007 | apply (erule insertI2) | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1008 | done | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1009 | |
| 14302 | 1010 | lemma subset_insertI2: "A \<subseteq> B \<Longrightarrow> A \<subseteq> insert b B" | 
| 1011 | by blast | |
| 1012 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1013 | lemma subset_insert: "x \<notin> A ==> (A \<subseteq> insert x B) = (A \<subseteq> B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1014 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1015 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1016 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1017 | text {* \medskip Big Union -- least upper bound of a set. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1018 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1019 | lemma Union_upper: "B \<in> A ==> B \<subseteq> Union A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1020 | by (rules intro: subsetI UnionI) | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1021 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1022 | lemma Union_least: "(!!X. X \<in> A ==> X \<subseteq> C) ==> Union A \<subseteq> C" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1023 | by (rules intro: subsetI elim: UnionE dest: subsetD) | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1024 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1025 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1026 | text {* \medskip General union. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1027 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1028 | lemma UN_upper: "a \<in> A ==> B a \<subseteq> (\<Union>x\<in>A. B x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1029 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1030 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1031 | lemma UN_least: "(!!x. x \<in> A ==> B x \<subseteq> C) ==> (\<Union>x\<in>A. B x) \<subseteq> C" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1032 | by (rules intro: subsetI elim: UN_E dest: subsetD) | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1033 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1034 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1035 | text {* \medskip Big Intersection -- greatest lower bound of a set. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1036 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1037 | lemma Inter_lower: "B \<in> A ==> Inter A \<subseteq> B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1038 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1039 | |
| 14551 | 1040 | lemma Inter_subset: | 
| 1041 |   "[| !!X. X \<in> A ==> X \<subseteq> B; A ~= {} |] ==> \<Inter>A \<subseteq> B"
 | |
| 1042 | by blast | |
| 1043 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1044 | lemma Inter_greatest: "(!!X. X \<in> A ==> C \<subseteq> X) ==> C \<subseteq> Inter A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1045 | by (rules intro: InterI subsetI dest: subsetD) | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1046 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1047 | lemma INT_lower: "a \<in> A ==> (\<Inter>x\<in>A. B x) \<subseteq> B a" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1048 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1049 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1050 | lemma INT_greatest: "(!!x. x \<in> A ==> C \<subseteq> B x) ==> C \<subseteq> (\<Inter>x\<in>A. B x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1051 | by (rules intro: INT_I subsetI dest: subsetD) | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1052 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1053 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1054 | text {* \medskip Finite Union -- the least upper bound of two sets. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1055 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1056 | lemma Un_upper1: "A \<subseteq> A \<union> B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1057 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1058 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1059 | lemma Un_upper2: "B \<subseteq> A \<union> B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1060 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1061 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1062 | lemma Un_least: "A \<subseteq> C ==> B \<subseteq> C ==> A \<union> B \<subseteq> C" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1063 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1064 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1065 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1066 | text {* \medskip Finite Intersection -- the greatest lower bound of two sets. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1067 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1068 | lemma Int_lower1: "A \<inter> B \<subseteq> A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1069 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1070 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1071 | lemma Int_lower2: "A \<inter> B \<subseteq> B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1072 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1073 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1074 | lemma Int_greatest: "C \<subseteq> A ==> C \<subseteq> B ==> C \<subseteq> A \<inter> B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1075 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1076 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1077 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1078 | text {* \medskip Set difference. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1079 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1080 | lemma Diff_subset: "A - B \<subseteq> A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1081 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1082 | |
| 14302 | 1083 | lemma Diff_subset_conv: "(A - B \<subseteq> C) = (A \<subseteq> B \<union> C)" | 
| 1084 | by blast | |
| 1085 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1086 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1087 | text {* \medskip Monotonicity. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1088 | |
| 15206 
09d78ec709c7
Modified locales: improved implementation of "includes".
 ballarin parents: 
15140diff
changeset | 1089 | lemma mono_Un: "mono f ==> f A \<union> f B \<subseteq> f (A \<union> B)" | 
| 
09d78ec709c7
Modified locales: improved implementation of "includes".
 ballarin parents: 
15140diff
changeset | 1090 | by (blast dest: monoD) | 
| 
09d78ec709c7
Modified locales: improved implementation of "includes".
 ballarin parents: 
15140diff
changeset | 1091 | |
| 
09d78ec709c7
Modified locales: improved implementation of "includes".
 ballarin parents: 
15140diff
changeset | 1092 | lemma mono_Int: "mono f ==> f (A \<inter> B) \<subseteq> f A \<inter> f B" | 
| 
09d78ec709c7
Modified locales: improved implementation of "includes".
 ballarin parents: 
15140diff
changeset | 1093 | by (blast dest: monoD) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1094 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1095 | subsubsection {* Equalities involving union, intersection, inclusion, etc. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1096 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1097 | text {* @{text "{}"}. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1098 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1099 | lemma Collect_const [simp]: "{s. P} = (if P then UNIV else {})"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1100 |   -- {* supersedes @{text "Collect_False_empty"} *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1101 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1102 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1103 | lemma subset_empty [simp]: "(A \<subseteq> {}) = (A = {})"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1104 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1105 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1106 | lemma not_psubset_empty [iff]: "\<not> (A < {})"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1107 | by (unfold psubset_def) blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1108 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1109 | lemma Collect_empty_eq [simp]: "(Collect P = {}) = (\<forall>x. \<not> P x)"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1110 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1111 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1112 | lemma Collect_neg_eq: "{x. \<not> P x} = - {x. P x}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1113 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1114 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1115 | lemma Collect_disj_eq: "{x. P x | Q x} = {x. P x} \<union> {x. Q x}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1116 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1117 | |
| 14812 | 1118 | lemma Collect_imp_eq: "{x. P x --> Q x} = -{x. P x} \<union> {x. Q x}"
 | 
| 1119 | by blast | |
| 1120 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1121 | lemma Collect_conj_eq: "{x. P x & Q x} = {x. P x} \<inter> {x. Q x}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1122 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1123 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1124 | lemma Collect_all_eq: "{x. \<forall>y. P x y} = (\<Inter>y. {x. P x y})"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1125 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1126 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1127 | lemma Collect_ball_eq: "{x. \<forall>y\<in>A. P x y} = (\<Inter>y\<in>A. {x. P x y})"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1128 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1129 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1130 | lemma Collect_ex_eq: "{x. \<exists>y. P x y} = (\<Union>y. {x. P x y})"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1131 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1132 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1133 | lemma Collect_bex_eq: "{x. \<exists>y\<in>A. P x y} = (\<Union>y\<in>A. {x. P x y})"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1134 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1135 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1136 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1137 | text {* \medskip @{text insert}. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1138 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1139 | lemma insert_is_Un: "insert a A = {a} Un A"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1140 |   -- {* NOT SUITABLE FOR REWRITING since @{text "{a} == insert a {}"} *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1141 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1142 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1143 | lemma insert_not_empty [simp]: "insert a A \<noteq> {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1144 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1145 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1146 | lemmas empty_not_insert [simp] = insert_not_empty [symmetric, standard] | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1147 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1148 | lemma insert_absorb: "a \<in> A ==> insert a A = A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1149 |   -- {* @{text "[simp]"} causes recursive calls when there are nested inserts *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1150 |   -- {* with \emph{quadratic} running time *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1151 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1152 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1153 | lemma insert_absorb2 [simp]: "insert x (insert x A) = insert x A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1154 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1155 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1156 | lemma insert_commute: "insert x (insert y A) = insert y (insert x A)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1157 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1158 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1159 | lemma insert_subset [simp]: "(insert x A \<subseteq> B) = (x \<in> B & A \<subseteq> B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1160 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1161 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1162 | lemma mk_disjoint_insert: "a \<in> A ==> \<exists>B. A = insert a B & a \<notin> B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1163 |   -- {* use new @{text B} rather than @{text "A - {a}"} to avoid infinite unfolding *}
 | 
| 14208 | 1164 |   apply (rule_tac x = "A - {a}" in exI, blast)
 | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1165 | done | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1166 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1167 | lemma insert_Collect: "insert a (Collect P) = {u. u \<noteq> a --> P u}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1168 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1169 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1170 | lemma UN_insert_distrib: "u \<in> A ==> (\<Union>x\<in>A. insert a (B x)) = insert a (\<Union>x\<in>A. B x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1171 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1172 | |
| 14302 | 1173 | lemma insert_inter_insert[simp]: "insert a A \<inter> insert a B = insert a (A \<inter> B)" | 
| 14742 | 1174 | by blast | 
| 14302 | 1175 | |
| 13103 
66659a4b16f6
Added insert_disjoint and disjoint_insert [simp], and simplified proofs
 nipkow parents: 
12937diff
changeset | 1176 | lemma insert_disjoint[simp]: | 
| 
66659a4b16f6
Added insert_disjoint and disjoint_insert [simp], and simplified proofs
 nipkow parents: 
12937diff
changeset | 1177 |  "(insert a A \<inter> B = {}) = (a \<notin> B \<and> A \<inter> B = {})"
 | 
| 14742 | 1178 |  "({} = insert a A \<inter> B) = (a \<notin> B \<and> {} = A \<inter> B)"
 | 
| 1179 | by auto | |
| 13103 
66659a4b16f6
Added insert_disjoint and disjoint_insert [simp], and simplified proofs
 nipkow parents: 
12937diff
changeset | 1180 | |
| 
66659a4b16f6
Added insert_disjoint and disjoint_insert [simp], and simplified proofs
 nipkow parents: 
12937diff
changeset | 1181 | lemma disjoint_insert[simp]: | 
| 
66659a4b16f6
Added insert_disjoint and disjoint_insert [simp], and simplified proofs
 nipkow parents: 
12937diff
changeset | 1182 |  "(B \<inter> insert a A = {}) = (a \<notin> B \<and> B \<inter> A = {})"
 | 
| 14742 | 1183 |  "({} = A \<inter> insert b B) = (b \<notin> A \<and> {} = A \<inter> B)"
 | 
| 1184 | by auto | |
| 1185 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1186 | text {* \medskip @{text image}. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1187 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1188 | lemma image_empty [simp]: "f`{} = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1189 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1190 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1191 | lemma image_insert [simp]: "f ` insert a B = insert (f a) (f`B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1192 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1193 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1194 | lemma image_constant: "x \<in> A ==> (\<lambda>x. c) ` A = {c}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1195 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1196 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1197 | lemma image_image: "f ` (g ` A) = (\<lambda>x. f (g x)) ` A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1198 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1199 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1200 | lemma insert_image [simp]: "x \<in> A ==> insert (f x) (f`A) = f`A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1201 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1202 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1203 | lemma image_is_empty [iff]: "(f`A = {}) = (A = {})"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1204 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1205 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1206 | lemma image_Collect: "f ` {x. P x} = {f x | x. P x}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1207 |   -- {* NOT suitable as a default simprule: the RHS isn't simpler than the LHS, *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1208 |   -- {* with its implicit quantifier and conjunction.  Also image enjoys better *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1209 |   -- {* equational properties than does the RHS. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1210 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1211 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1212 | lemma if_image_distrib [simp]: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1213 | "(\<lambda>x. if P x then f x else g x) ` S | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1214 |     = (f ` (S \<inter> {x. P x})) \<union> (g ` (S \<inter> {x. \<not> P x}))"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1215 | by (auto simp add: image_def) | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1216 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1217 | lemma image_cong: "M = N ==> (!!x. x \<in> N ==> f x = g x) ==> f`M = g`N" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1218 | by (simp add: image_def) | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1219 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1220 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1221 | text {* \medskip @{text range}. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1222 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1223 | lemma full_SetCompr_eq: "{u. \<exists>x. u = f x} = range f"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1224 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1225 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1226 | lemma range_composition [simp]: "range (\<lambda>x. f (g x)) = f`range g" | 
| 14208 | 1227 | by (subst image_image, simp) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1228 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1229 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1230 | text {* \medskip @{text Int} *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1231 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1232 | lemma Int_absorb [simp]: "A \<inter> A = A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1233 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1234 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1235 | lemma Int_left_absorb: "A \<inter> (A \<inter> B) = A \<inter> B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1236 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1237 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1238 | lemma Int_commute: "A \<inter> B = B \<inter> A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1239 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1240 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1241 | lemma Int_left_commute: "A \<inter> (B \<inter> C) = B \<inter> (A \<inter> C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1242 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1243 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1244 | lemma Int_assoc: "(A \<inter> B) \<inter> C = A \<inter> (B \<inter> C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1245 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1246 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1247 | lemmas Int_ac = Int_assoc Int_left_absorb Int_commute Int_left_commute | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1248 |   -- {* Intersection is an AC-operator *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1249 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1250 | lemma Int_absorb1: "B \<subseteq> A ==> A \<inter> B = B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1251 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1252 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1253 | lemma Int_absorb2: "A \<subseteq> B ==> A \<inter> B = A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1254 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1255 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1256 | lemma Int_empty_left [simp]: "{} \<inter> B = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1257 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1258 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1259 | lemma Int_empty_right [simp]: "A \<inter> {} = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1260 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1261 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1262 | lemma disjoint_eq_subset_Compl: "(A \<inter> B = {}) = (A \<subseteq> -B)"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1263 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1264 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1265 | lemma disjoint_iff_not_equal: "(A \<inter> B = {}) = (\<forall>x\<in>A. \<forall>y\<in>B. x \<noteq> y)"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1266 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1267 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1268 | lemma Int_UNIV_left [simp]: "UNIV \<inter> B = B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1269 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1270 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1271 | lemma Int_UNIV_right [simp]: "A \<inter> UNIV = A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1272 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1273 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1274 | lemma Int_eq_Inter: "A \<inter> B = \<Inter>{A, B}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1275 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1276 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1277 | lemma Int_Un_distrib: "A \<inter> (B \<union> C) = (A \<inter> B) \<union> (A \<inter> C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1278 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1279 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1280 | lemma Int_Un_distrib2: "(B \<union> C) \<inter> A = (B \<inter> A) \<union> (C \<inter> A)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1281 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1282 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1283 | lemma Int_UNIV [simp]: "(A \<inter> B = UNIV) = (A = UNIV & B = UNIV)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1284 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1285 | |
| 15102 | 1286 | lemma Int_subset_iff [simp]: "(C \<subseteq> A \<inter> B) = (C \<subseteq> A & C \<subseteq> B)" | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1287 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1288 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1289 | lemma Int_Collect: "(x \<in> A \<inter> {x. P x}) = (x \<in> A & P x)"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1290 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1291 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1292 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1293 | text {* \medskip @{text Un}. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1294 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1295 | lemma Un_absorb [simp]: "A \<union> A = A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1296 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1297 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1298 | lemma Un_left_absorb: "A \<union> (A \<union> B) = A \<union> B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1299 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1300 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1301 | lemma Un_commute: "A \<union> B = B \<union> A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1302 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1303 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1304 | lemma Un_left_commute: "A \<union> (B \<union> C) = B \<union> (A \<union> C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1305 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1306 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1307 | lemma Un_assoc: "(A \<union> B) \<union> C = A \<union> (B \<union> C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1308 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1309 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1310 | lemmas Un_ac = Un_assoc Un_left_absorb Un_commute Un_left_commute | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1311 |   -- {* Union is an AC-operator *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1312 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1313 | lemma Un_absorb1: "A \<subseteq> B ==> A \<union> B = B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1314 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1315 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1316 | lemma Un_absorb2: "B \<subseteq> A ==> A \<union> B = A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1317 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1318 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1319 | lemma Un_empty_left [simp]: "{} \<union> B = B"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1320 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1321 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1322 | lemma Un_empty_right [simp]: "A \<union> {} = A"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1323 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1324 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1325 | lemma Un_UNIV_left [simp]: "UNIV \<union> B = UNIV" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1326 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1327 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1328 | lemma Un_UNIV_right [simp]: "A \<union> UNIV = UNIV" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1329 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1330 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1331 | lemma Un_eq_Union: "A \<union> B = \<Union>{A, B}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1332 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1333 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1334 | lemma Un_insert_left [simp]: "(insert a B) \<union> C = insert a (B \<union> C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1335 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1336 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1337 | lemma Un_insert_right [simp]: "A \<union> (insert a B) = insert a (A \<union> B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1338 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1339 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1340 | lemma Int_insert_left: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1341 | "(insert a B) Int C = (if a \<in> C then insert a (B \<inter> C) else B \<inter> C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1342 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1343 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1344 | lemma Int_insert_right: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1345 | "A \<inter> (insert a B) = (if a \<in> A then insert a (A \<inter> B) else A \<inter> B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1346 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1347 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1348 | lemma Un_Int_distrib: "A \<union> (B \<inter> C) = (A \<union> B) \<inter> (A \<union> C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1349 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1350 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1351 | lemma Un_Int_distrib2: "(B \<inter> C) \<union> A = (B \<union> A) \<inter> (C \<union> A)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1352 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1353 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1354 | lemma Un_Int_crazy: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1355 | "(A \<inter> B) \<union> (B \<inter> C) \<union> (C \<inter> A) = (A \<union> B) \<inter> (B \<union> C) \<inter> (C \<union> A)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1356 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1357 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1358 | lemma subset_Un_eq: "(A \<subseteq> B) = (A \<union> B = B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1359 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1360 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1361 | lemma Un_empty [iff]: "(A \<union> B = {}) = (A = {} & B = {})"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1362 | by blast | 
| 15102 | 1363 | |
| 1364 | lemma Un_subset_iff [simp]: "(A \<union> B \<subseteq> C) = (A \<subseteq> C & B \<subseteq> C)" | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1365 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1366 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1367 | lemma Un_Diff_Int: "(A - B) \<union> (A \<inter> B) = A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1368 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1369 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1370 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1371 | text {* \medskip Set complement *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1372 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1373 | lemma Compl_disjoint [simp]: "A \<inter> -A = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1374 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1375 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1376 | lemma Compl_disjoint2 [simp]: "-A \<inter> A = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1377 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1378 | |
| 13818 | 1379 | lemma Compl_partition: "A \<union> -A = UNIV" | 
| 1380 | by blast | |
| 1381 | ||
| 1382 | lemma Compl_partition2: "-A \<union> A = UNIV" | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1383 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1384 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1385 | lemma double_complement [simp]: "- (-A) = (A::'a set)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1386 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1387 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1388 | lemma Compl_Un [simp]: "-(A \<union> B) = (-A) \<inter> (-B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1389 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1390 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1391 | lemma Compl_Int [simp]: "-(A \<inter> B) = (-A) \<union> (-B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1392 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1393 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1394 | lemma Compl_UN [simp]: "-(\<Union>x\<in>A. B x) = (\<Inter>x\<in>A. -B x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1395 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1396 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1397 | lemma Compl_INT [simp]: "-(\<Inter>x\<in>A. B x) = (\<Union>x\<in>A. -B x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1398 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1399 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1400 | lemma subset_Compl_self_eq: "(A \<subseteq> -A) = (A = {})"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1401 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1402 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1403 | lemma Un_Int_assoc_eq: "((A \<inter> B) \<union> C = A \<inter> (B \<union> C)) = (C \<subseteq> A)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1404 |   -- {* Halmos, Naive Set Theory, page 16. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1405 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1406 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1407 | lemma Compl_UNIV_eq [simp]: "-UNIV = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1408 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1409 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1410 | lemma Compl_empty_eq [simp]: "-{} = UNIV"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1411 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1412 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1413 | lemma Compl_subset_Compl_iff [iff]: "(-A \<subseteq> -B) = (B \<subseteq> A)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1414 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1415 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1416 | lemma Compl_eq_Compl_iff [iff]: "(-A = -B) = (A = (B::'a set))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1417 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1418 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1419 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1420 | text {* \medskip @{text Union}. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1421 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1422 | lemma Union_empty [simp]: "Union({}) = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1423 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1424 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1425 | lemma Union_UNIV [simp]: "Union UNIV = UNIV" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1426 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1427 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1428 | lemma Union_insert [simp]: "Union (insert a B) = a \<union> \<Union>B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1429 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1430 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1431 | lemma Union_Un_distrib [simp]: "\<Union>(A Un B) = \<Union>A \<union> \<Union>B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1432 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1433 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1434 | lemma Union_Int_subset: "\<Union>(A \<inter> B) \<subseteq> \<Union>A \<inter> \<Union>B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1435 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1436 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1437 | lemma Union_empty_conv [iff]: "(\<Union>A = {}) = (\<forall>x\<in>A. x = {})"
 | 
| 13653 | 1438 | by blast | 
| 1439 | ||
| 1440 | lemma empty_Union_conv [iff]: "({} = \<Union>A) = (\<forall>x\<in>A. x = {})"
 | |
| 1441 | by blast | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1442 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1443 | lemma Union_disjoint: "(\<Union>C \<inter> A = {}) = (\<forall>B\<in>C. B \<inter> A = {})"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1444 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1445 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1446 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1447 | text {* \medskip @{text Inter}. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1448 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1449 | lemma Inter_empty [simp]: "\<Inter>{} = UNIV"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1450 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1451 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1452 | lemma Inter_UNIV [simp]: "\<Inter>UNIV = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1453 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1454 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1455 | lemma Inter_insert [simp]: "\<Inter>(insert a B) = a \<inter> \<Inter>B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1456 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1457 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1458 | lemma Inter_Un_subset: "\<Inter>A \<union> \<Inter>B \<subseteq> \<Inter>(A \<inter> B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1459 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1460 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1461 | lemma Inter_Un_distrib: "\<Inter>(A \<union> B) = \<Inter>A \<inter> \<Inter>B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1462 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1463 | |
| 13653 | 1464 | lemma Inter_UNIV_conv [iff]: | 
| 1465 | "(\<Inter>A = UNIV) = (\<forall>x\<in>A. x = UNIV)" | |
| 1466 | "(UNIV = \<Inter>A) = (\<forall>x\<in>A. x = UNIV)" | |
| 14208 | 1467 | by blast+ | 
| 13653 | 1468 | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1469 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1470 | text {*
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1471 |   \medskip @{text UN} and @{text INT}.
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1472 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1473 | Basic identities: *} | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1474 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1475 | lemma UN_empty [simp]: "(\<Union>x\<in>{}. B x) = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1476 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1477 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1478 | lemma UN_empty2 [simp]: "(\<Union>x\<in>A. {}) = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1479 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1480 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1481 | lemma UN_singleton [simp]: "(\<Union>x\<in>A. {x}) = A"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1482 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1483 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1484 | lemma UN_absorb: "k \<in> I ==> A k \<union> (\<Union>i\<in>I. A i) = (\<Union>i\<in>I. A i)" | 
| 15102 | 1485 | by auto | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1486 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1487 | lemma INT_empty [simp]: "(\<Inter>x\<in>{}. B x) = UNIV"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1488 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1489 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1490 | lemma INT_absorb: "k \<in> I ==> A k \<inter> (\<Inter>i\<in>I. A i) = (\<Inter>i\<in>I. A i)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1491 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1492 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1493 | lemma UN_insert [simp]: "(\<Union>x\<in>insert a A. B x) = B a \<union> UNION A B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1494 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1495 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1496 | lemma UN_Un: "(\<Union>i \<in> A \<union> B. M i) = (\<Union>i\<in>A. M i) \<union> (\<Union>i\<in>B. M i)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1497 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1498 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1499 | lemma UN_UN_flatten: "(\<Union>x \<in> (\<Union>y\<in>A. B y). C x) = (\<Union>y\<in>A. \<Union>x\<in>B y. C x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1500 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1501 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1502 | lemma UN_subset_iff: "((\<Union>i\<in>I. A i) \<subseteq> B) = (\<forall>i\<in>I. A i \<subseteq> B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1503 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1504 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1505 | lemma INT_subset_iff: "(B \<subseteq> (\<Inter>i\<in>I. A i)) = (\<forall>i\<in>I. B \<subseteq> A i)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1506 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1507 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1508 | lemma INT_insert [simp]: "(\<Inter>x \<in> insert a A. B x) = B a \<inter> INTER A B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1509 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1510 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1511 | lemma INT_Un: "(\<Inter>i \<in> A \<union> B. M i) = (\<Inter>i \<in> A. M i) \<inter> (\<Inter>i\<in>B. M i)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1512 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1513 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1514 | lemma INT_insert_distrib: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1515 | "u \<in> A ==> (\<Inter>x\<in>A. insert a (B x)) = insert a (\<Inter>x\<in>A. B x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1516 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1517 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1518 | lemma Union_image_eq [simp]: "\<Union>(B`A) = (\<Union>x\<in>A. B x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1519 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1520 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1521 | lemma image_Union: "f ` \<Union>S = (\<Union>x\<in>S. f ` x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1522 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1523 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1524 | lemma Inter_image_eq [simp]: "\<Inter>(B`A) = (\<Inter>x\<in>A. B x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1525 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1526 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1527 | lemma UN_constant [simp]: "(\<Union>y\<in>A. c) = (if A = {} then {} else c)"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1528 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1529 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1530 | lemma INT_constant [simp]: "(\<Inter>y\<in>A. c) = (if A = {} then UNIV else c)"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1531 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1532 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1533 | lemma UN_eq: "(\<Union>x\<in>A. B x) = \<Union>({Y. \<exists>x\<in>A. Y = B x})"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1534 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1535 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1536 | lemma INT_eq: "(\<Inter>x\<in>A. B x) = \<Inter>({Y. \<exists>x\<in>A. Y = B x})"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1537 |   -- {* Look: it has an \emph{existential} quantifier *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1538 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1539 | |
| 13653 | 1540 | lemma UNION_empty_conv[iff]: | 
| 1541 |   "({} = (UN x:A. B x)) = (\<forall>x\<in>A. B x = {})"
 | |
| 1542 |   "((UN x:A. B x) = {}) = (\<forall>x\<in>A. B x = {})"
 | |
| 1543 | by blast+ | |
| 1544 | ||
| 1545 | lemma INTER_UNIV_conv[iff]: | |
| 1546 | "(UNIV = (INT x:A. B x)) = (\<forall>x\<in>A. B x = UNIV)" | |
| 1547 | "((INT x:A. B x) = UNIV) = (\<forall>x\<in>A. B x = UNIV)" | |
| 1548 | by blast+ | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1549 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1550 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1551 | text {* \medskip Distributive laws: *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1552 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1553 | lemma Int_Union: "A \<inter> \<Union>B = (\<Union>C\<in>B. A \<inter> C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1554 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1555 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1556 | lemma Int_Union2: "\<Union>B \<inter> A = (\<Union>C\<in>B. C \<inter> A)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1557 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1558 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1559 | lemma Un_Union_image: "(\<Union>x\<in>C. A x \<union> B x) = \<Union>(A`C) \<union> \<Union>(B`C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1560 |   -- {* Devlin, Fundamentals of Contemporary Set Theory, page 12, exercise 5: *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1561 |   -- {* Union of a family of unions *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1562 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1563 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1564 | lemma UN_Un_distrib: "(\<Union>i\<in>I. A i \<union> B i) = (\<Union>i\<in>I. A i) \<union> (\<Union>i\<in>I. B i)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1565 |   -- {* Equivalent version *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1566 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1567 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1568 | lemma Un_Inter: "A \<union> \<Inter>B = (\<Inter>C\<in>B. A \<union> C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1569 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1570 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1571 | lemma Int_Inter_image: "(\<Inter>x\<in>C. A x \<inter> B x) = \<Inter>(A`C) \<inter> \<Inter>(B`C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1572 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1573 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1574 | lemma INT_Int_distrib: "(\<Inter>i\<in>I. A i \<inter> B i) = (\<Inter>i\<in>I. A i) \<inter> (\<Inter>i\<in>I. B i)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1575 |   -- {* Equivalent version *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1576 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1577 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1578 | lemma Int_UN_distrib: "B \<inter> (\<Union>i\<in>I. A i) = (\<Union>i\<in>I. B \<inter> A i)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1579 |   -- {* Halmos, Naive Set Theory, page 35. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1580 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1581 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1582 | lemma Un_INT_distrib: "B \<union> (\<Inter>i\<in>I. A i) = (\<Inter>i\<in>I. B \<union> A i)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1583 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1584 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1585 | lemma Int_UN_distrib2: "(\<Union>i\<in>I. A i) \<inter> (\<Union>j\<in>J. B j) = (\<Union>i\<in>I. \<Union>j\<in>J. A i \<inter> B j)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1586 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1587 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1588 | lemma Un_INT_distrib2: "(\<Inter>i\<in>I. A i) \<union> (\<Inter>j\<in>J. B j) = (\<Inter>i\<in>I. \<Inter>j\<in>J. A i \<union> B j)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1589 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1590 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1591 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1592 | text {* \medskip Bounded quantifiers.
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1593 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1594 | The following are not added to the default simpset because | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1595 |   (a) they duplicate the body and (b) there are no similar rules for @{text Int}. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1596 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1597 | lemma ball_Un: "(\<forall>x \<in> A \<union> B. P x) = ((\<forall>x\<in>A. P x) & (\<forall>x\<in>B. P x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1598 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1599 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1600 | lemma bex_Un: "(\<exists>x \<in> A \<union> B. P x) = ((\<exists>x\<in>A. P x) | (\<exists>x\<in>B. P x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1601 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1602 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1603 | lemma ball_UN: "(\<forall>z \<in> UNION A B. P z) = (\<forall>x\<in>A. \<forall>z \<in> B x. P z)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1604 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1605 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1606 | lemma bex_UN: "(\<exists>z \<in> UNION A B. P z) = (\<exists>x\<in>A. \<exists>z\<in>B x. P z)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1607 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1608 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1609 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1610 | text {* \medskip Set difference. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1611 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1612 | lemma Diff_eq: "A - B = A \<inter> (-B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1613 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1614 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1615 | lemma Diff_eq_empty_iff [simp]: "(A - B = {}) = (A \<subseteq> B)"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1616 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1617 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1618 | lemma Diff_cancel [simp]: "A - A = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1619 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1620 | |
| 14302 | 1621 | lemma Diff_idemp [simp]: "(A - B) - B = A - (B::'a set)" | 
| 1622 | by blast | |
| 1623 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1624 | lemma Diff_triv: "A \<inter> B = {} ==> A - B = A"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1625 | by (blast elim: equalityE) | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1626 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1627 | lemma empty_Diff [simp]: "{} - A = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1628 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1629 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1630 | lemma Diff_empty [simp]: "A - {} = A"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1631 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1632 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1633 | lemma Diff_UNIV [simp]: "A - UNIV = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1634 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1635 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1636 | lemma Diff_insert0 [simp]: "x \<notin> A ==> A - insert x B = A - B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1637 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1638 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1639 | lemma Diff_insert: "A - insert a B = A - B - {a}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1640 |   -- {* NOT SUITABLE FOR REWRITING since @{text "{a} == insert a 0"} *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1641 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1642 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1643 | lemma Diff_insert2: "A - insert a B = A - {a} - B"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1644 |   -- {* NOT SUITABLE FOR REWRITING since @{text "{a} == insert a 0"} *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1645 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1646 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1647 | lemma insert_Diff_if: "insert x A - B = (if x \<in> B then A - B else insert x (A - B))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1648 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1649 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1650 | lemma insert_Diff1 [simp]: "x \<in> B ==> insert x A - B = A - B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1651 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1652 | |
| 14302 | 1653 | lemma insert_Diff_single[simp]: "insert a (A - {a}) = insert a A"
 | 
| 1654 | by blast | |
| 1655 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1656 | lemma insert_Diff: "a \<in> A ==> insert a (A - {a}) = A"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1657 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1658 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1659 | lemma Diff_insert_absorb: "x \<notin> A ==> (insert x A) - {x} = A"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1660 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1661 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1662 | lemma Diff_disjoint [simp]: "A \<inter> (B - A) = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1663 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1664 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1665 | lemma Diff_partition: "A \<subseteq> B ==> A \<union> (B - A) = B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1666 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1667 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1668 | lemma double_diff: "A \<subseteq> B ==> B \<subseteq> C ==> B - (C - A) = A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1669 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1670 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1671 | lemma Un_Diff_cancel [simp]: "A \<union> (B - A) = A \<union> B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1672 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1673 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1674 | lemma Un_Diff_cancel2 [simp]: "(B - A) \<union> A = B \<union> A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1675 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1676 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1677 | lemma Diff_Un: "A - (B \<union> C) = (A - B) \<inter> (A - C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1678 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1679 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1680 | lemma Diff_Int: "A - (B \<inter> C) = (A - B) \<union> (A - C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1681 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1682 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1683 | lemma Un_Diff: "(A \<union> B) - C = (A - C) \<union> (B - C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1684 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1685 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1686 | lemma Int_Diff: "(A \<inter> B) - C = A \<inter> (B - C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1687 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1688 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1689 | lemma Diff_Int_distrib: "C \<inter> (A - B) = (C \<inter> A) - (C \<inter> B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1690 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1691 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1692 | lemma Diff_Int_distrib2: "(A - B) \<inter> C = (A \<inter> C) - (B \<inter> C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1693 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1694 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1695 | lemma Diff_Compl [simp]: "A - (- B) = A \<inter> B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1696 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1697 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1698 | lemma Compl_Diff_eq [simp]: "- (A - B) = -A \<union> B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1699 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1700 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1701 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1702 | text {* \medskip Quantification over type @{typ bool}. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1703 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1704 | lemma all_bool_eq: "(\<forall>b::bool. P b) = (P True & P False)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1705 | apply auto | 
| 14208 | 1706 |   apply (tactic {* case_tac "b" 1 *}, auto)
 | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1707 | done | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1708 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1709 | lemma bool_induct: "P True \<Longrightarrow> P False \<Longrightarrow> P x" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1710 | by (rule conjI [THEN all_bool_eq [THEN iffD2], THEN spec]) | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1711 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1712 | lemma ex_bool_eq: "(\<exists>b::bool. P b) = (P True | P False)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1713 | apply auto | 
| 14208 | 1714 |   apply (tactic {* case_tac "b" 1 *}, auto)
 | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1715 | done | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1716 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1717 | lemma Un_eq_UN: "A \<union> B = (\<Union>b. if b then A else B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1718 | by (auto simp add: split_if_mem2) | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1719 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1720 | lemma UN_bool_eq: "(\<Union>b::bool. A b) = (A True \<union> A False)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1721 | apply auto | 
| 14208 | 1722 |   apply (tactic {* case_tac "b" 1 *}, auto)
 | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1723 | done | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1724 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1725 | lemma INT_bool_eq: "(\<Inter>b::bool. A b) = (A True \<inter> A False)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1726 | apply auto | 
| 14208 | 1727 |   apply (tactic {* case_tac "b" 1 *}, auto)
 | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1728 | done | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1729 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1730 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1731 | text {* \medskip @{text Pow} *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1732 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1733 | lemma Pow_empty [simp]: "Pow {} = {{}}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1734 | by (auto simp add: Pow_def) | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1735 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1736 | lemma Pow_insert: "Pow (insert a A) = Pow A \<union> (insert a ` Pow A)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1737 |   by (blast intro: image_eqI [where ?x = "u - {a}", standard])
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1738 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1739 | lemma Pow_Compl: "Pow (- A) = {-B | B. A \<in> Pow B}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1740 | by (blast intro: exI [where ?x = "- u", standard]) | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1741 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1742 | lemma Pow_UNIV [simp]: "Pow UNIV = UNIV" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1743 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1744 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1745 | lemma Un_Pow_subset: "Pow A \<union> Pow B \<subseteq> Pow (A \<union> B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1746 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1747 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1748 | lemma UN_Pow_subset: "(\<Union>x\<in>A. Pow (B x)) \<subseteq> Pow (\<Union>x\<in>A. B x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1749 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1750 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1751 | lemma subset_Pow_Union: "A \<subseteq> Pow (\<Union>A)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1752 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1753 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1754 | lemma Union_Pow_eq [simp]: "\<Union>(Pow A) = A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1755 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1756 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1757 | lemma Pow_Int_eq [simp]: "Pow (A \<inter> B) = Pow A \<inter> Pow B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1758 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1759 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1760 | lemma Pow_INT_eq: "Pow (\<Inter>x\<in>A. B x) = (\<Inter>x\<in>A. Pow (B x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1761 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1762 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1763 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1764 | text {* \medskip Miscellany. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1765 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1766 | lemma set_eq_subset: "(A = B) = (A \<subseteq> B & B \<subseteq> A)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1767 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1768 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1769 | lemma subset_iff: "(A \<subseteq> B) = (\<forall>t. t \<in> A --> t \<in> B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1770 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1771 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1772 | lemma subset_iff_psubset_eq: "(A \<subseteq> B) = ((A \<subset> B) | (A = B))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1773 | by (unfold psubset_def) blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1774 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1775 | lemma all_not_in_conv [iff]: "(\<forall>x. x \<notin> A) = (A = {})"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1776 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1777 | |
| 13831 | 1778 | lemma ex_in_conv: "(\<exists>x. x \<in> A) = (A \<noteq> {})"
 | 
| 1779 | by blast | |
| 1780 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1781 | lemma distinct_lemma: "f x \<noteq> f y ==> x \<noteq> y" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1782 | by rules | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1783 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1784 | |
| 13860 | 1785 | text {* \medskip Miniscoping: pushing in quantifiers and big Unions
 | 
| 1786 | and Intersections. *} | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1787 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1788 | lemma UN_simps [simp]: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1789 |   "!!a B C. (UN x:C. insert a (B x)) = (if C={} then {} else insert a (UN x:C. B x))"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1790 |   "!!A B C. (UN x:C. A x Un B)   = ((if C={} then {} else (UN x:C. A x) Un B))"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1791 |   "!!A B C. (UN x:C. A Un B x)   = ((if C={} then {} else A Un (UN x:C. B x)))"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1792 | "!!A B C. (UN x:C. A x Int B) = ((UN x:C. A x) Int B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1793 | "!!A B C. (UN x:C. A Int B x) = (A Int (UN x:C. B x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1794 | "!!A B C. (UN x:C. A x - B) = ((UN x:C. A x) - B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1795 | "!!A B C. (UN x:C. A - B x) = (A - (INT x:C. B x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1796 | "!!A B. (UN x: Union A. B x) = (UN y:A. UN x:y. B x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1797 | "!!A B C. (UN z: UNION A B. C z) = (UN x:A. UN z: B(x). C z)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1798 | "!!A B f. (UN x:f`A. B x) = (UN a:A. B (f a))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1799 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1800 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1801 | lemma INT_simps [simp]: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1802 |   "!!A B C. (INT x:C. A x Int B) = (if C={} then UNIV else (INT x:C. A x) Int B)"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1803 |   "!!A B C. (INT x:C. A Int B x) = (if C={} then UNIV else A Int (INT x:C. B x))"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1804 |   "!!A B C. (INT x:C. A x - B)   = (if C={} then UNIV else (INT x:C. A x) - B)"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1805 |   "!!A B C. (INT x:C. A - B x)   = (if C={} then UNIV else A - (UN x:C. B x))"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1806 | "!!a B C. (INT x:C. insert a (B x)) = insert a (INT x:C. B x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1807 | "!!A B C. (INT x:C. A x Un B) = ((INT x:C. A x) Un B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1808 | "!!A B C. (INT x:C. A Un B x) = (A Un (INT x:C. B x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1809 | "!!A B. (INT x: Union A. B x) = (INT y:A. INT x:y. B x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1810 | "!!A B C. (INT z: UNION A B. C z) = (INT x:A. INT z: B(x). C z)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1811 | "!!A B f. (INT x:f`A. B x) = (INT a:A. B (f a))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1812 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1813 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1814 | lemma ball_simps [simp]: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1815 | "!!A P Q. (ALL x:A. P x | Q) = ((ALL x:A. P x) | Q)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1816 | "!!A P Q. (ALL x:A. P | Q x) = (P | (ALL x:A. Q x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1817 | "!!A P Q. (ALL x:A. P --> Q x) = (P --> (ALL x:A. Q x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1818 | "!!A P Q. (ALL x:A. P x --> Q) = ((EX x:A. P x) --> Q)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1819 |   "!!P. (ALL x:{}. P x) = True"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1820 | "!!P. (ALL x:UNIV. P x) = (ALL x. P x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1821 | "!!a B P. (ALL x:insert a B. P x) = (P a & (ALL x:B. P x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1822 | "!!A P. (ALL x:Union A. P x) = (ALL y:A. ALL x:y. P x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1823 | "!!A B P. (ALL x: UNION A B. P x) = (ALL a:A. ALL x: B a. P x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1824 | "!!P Q. (ALL x:Collect Q. P x) = (ALL x. Q x --> P x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1825 | "!!A P f. (ALL x:f`A. P x) = (ALL x:A. P (f x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1826 | "!!A P. (~(ALL x:A. P x)) = (EX x:A. ~P x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1827 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1828 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1829 | lemma bex_simps [simp]: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1830 | "!!A P Q. (EX x:A. P x & Q) = ((EX x:A. P x) & Q)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1831 | "!!A P Q. (EX x:A. P & Q x) = (P & (EX x:A. Q x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1832 |   "!!P. (EX x:{}. P x) = False"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1833 | "!!P. (EX x:UNIV. P x) = (EX x. P x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1834 | "!!a B P. (EX x:insert a B. P x) = (P(a) | (EX x:B. P x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1835 | "!!A P. (EX x:Union A. P x) = (EX y:A. EX x:y. P x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1836 | "!!A B P. (EX x: UNION A B. P x) = (EX a:A. EX x:B a. P x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1837 | "!!P Q. (EX x:Collect Q. P x) = (EX x. Q x & P x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1838 | "!!A P f. (EX x:f`A. P x) = (EX x:A. P (f x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1839 | "!!A P. (~(EX x:A. P x)) = (ALL x:A. ~P x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1840 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1841 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1842 | lemma ball_conj_distrib: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1843 | "(ALL x:A. P x & Q x) = ((ALL x:A. P x) & (ALL x:A. Q x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1844 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1845 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1846 | lemma bex_disj_distrib: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1847 | "(EX x:A. P x | Q x) = ((EX x:A. P x) | (EX x:A. Q x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1848 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1849 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1850 | |
| 13860 | 1851 | text {* \medskip Maxiscoping: pulling out big Unions and Intersections. *}
 | 
| 1852 | ||
| 1853 | lemma UN_extend_simps: | |
| 1854 |   "!!a B C. insert a (UN x:C. B x) = (if C={} then {a} else (UN x:C. insert a (B x)))"
 | |
| 1855 |   "!!A B C. (UN x:C. A x) Un B    = (if C={} then B else (UN x:C. A x Un B))"
 | |
| 1856 |   "!!A B C. A Un (UN x:C. B x)   = (if C={} then A else (UN x:C. A Un B x))"
 | |
| 1857 | "!!A B C. ((UN x:C. A x) Int B) = (UN x:C. A x Int B)" | |
| 1858 | "!!A B C. (A Int (UN x:C. B x)) = (UN x:C. A Int B x)" | |
| 1859 | "!!A B C. ((UN x:C. A x) - B) = (UN x:C. A x - B)" | |
| 1860 | "!!A B C. (A - (INT x:C. B x)) = (UN x:C. A - B x)" | |
| 1861 | "!!A B. (UN y:A. UN x:y. B x) = (UN x: Union A. B x)" | |
| 1862 | "!!A B C. (UN x:A. UN z: B(x). C z) = (UN z: UNION A B. C z)" | |
| 1863 | "!!A B f. (UN a:A. B (f a)) = (UN x:f`A. B x)" | |
| 1864 | by auto | |
| 1865 | ||
| 1866 | lemma INT_extend_simps: | |
| 1867 |   "!!A B C. (INT x:C. A x) Int B = (if C={} then B else (INT x:C. A x Int B))"
 | |
| 1868 |   "!!A B C. A Int (INT x:C. B x) = (if C={} then A else (INT x:C. A Int B x))"
 | |
| 1869 |   "!!A B C. (INT x:C. A x) - B   = (if C={} then UNIV-B else (INT x:C. A x - B))"
 | |
| 1870 |   "!!A B C. A - (UN x:C. B x)   = (if C={} then A else (INT x:C. A - B x))"
 | |
| 1871 | "!!a B C. insert a (INT x:C. B x) = (INT x:C. insert a (B x))" | |
| 1872 | "!!A B C. ((INT x:C. A x) Un B) = (INT x:C. A x Un B)" | |
| 1873 | "!!A B C. A Un (INT x:C. B x) = (INT x:C. A Un B x)" | |
| 1874 | "!!A B. (INT y:A. INT x:y. B x) = (INT x: Union A. B x)" | |
| 1875 | "!!A B C. (INT x:A. INT z: B(x). C z) = (INT z: UNION A B. C z)" | |
| 1876 | "!!A B f. (INT a:A. B (f a)) = (INT x:f`A. B x)" | |
| 1877 | by auto | |
| 1878 | ||
| 1879 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1880 | subsubsection {* Monotonicity of various operations *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1881 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1882 | lemma image_mono: "A \<subseteq> B ==> f`A \<subseteq> f`B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1883 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1884 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1885 | lemma Pow_mono: "A \<subseteq> B ==> Pow A \<subseteq> Pow B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1886 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1887 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1888 | lemma Union_mono: "A \<subseteq> B ==> \<Union>A \<subseteq> \<Union>B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1889 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1890 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1891 | lemma Inter_anti_mono: "B \<subseteq> A ==> \<Inter>A \<subseteq> \<Inter>B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1892 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1893 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1894 | lemma UN_mono: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1895 | "A \<subseteq> B ==> (!!x. x \<in> A ==> f x \<subseteq> g x) ==> | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1896 | (\<Union>x\<in>A. f x) \<subseteq> (\<Union>x\<in>B. g x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1897 | by (blast dest: subsetD) | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1898 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1899 | lemma INT_anti_mono: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1900 | "B \<subseteq> A ==> (!!x. x \<in> A ==> f x \<subseteq> g x) ==> | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1901 | (\<Inter>x\<in>A. f x) \<subseteq> (\<Inter>x\<in>A. g x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1902 |   -- {* The last inclusion is POSITIVE! *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1903 | by (blast dest: subsetD) | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1904 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1905 | lemma insert_mono: "C \<subseteq> D ==> insert a C \<subseteq> insert a D" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1906 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1907 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1908 | lemma Un_mono: "A \<subseteq> C ==> B \<subseteq> D ==> A \<union> B \<subseteq> C \<union> D" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1909 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1910 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1911 | lemma Int_mono: "A \<subseteq> C ==> B \<subseteq> D ==> A \<inter> B \<subseteq> C \<inter> D" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1912 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1913 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1914 | lemma Diff_mono: "A \<subseteq> C ==> D \<subseteq> B ==> A - B \<subseteq> C - D" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1915 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1916 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1917 | lemma Compl_anti_mono: "A \<subseteq> B ==> -B \<subseteq> -A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1918 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1919 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1920 | text {* \medskip Monotonicity of implications. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1921 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1922 | lemma in_mono: "A \<subseteq> B ==> x \<in> A --> x \<in> B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1923 | apply (rule impI) | 
| 14208 | 1924 | apply (erule subsetD, assumption) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1925 | done | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1926 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1927 | lemma conj_mono: "P1 --> Q1 ==> P2 --> Q2 ==> (P1 & P2) --> (Q1 & Q2)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1928 | by rules | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1929 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1930 | lemma disj_mono: "P1 --> Q1 ==> P2 --> Q2 ==> (P1 | P2) --> (Q1 | Q2)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1931 | by rules | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1932 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1933 | lemma imp_mono: "Q1 --> P1 ==> P2 --> Q2 ==> (P1 --> P2) --> (Q1 --> Q2)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1934 | by rules | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1935 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1936 | lemma imp_refl: "P --> P" .. | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1937 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1938 | lemma ex_mono: "(!!x. P x --> Q x) ==> (EX x. P x) --> (EX x. Q x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1939 | by rules | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1940 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1941 | lemma all_mono: "(!!x. P x --> Q x) ==> (ALL x. P x) --> (ALL x. Q x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1942 | by rules | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1943 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1944 | lemma Collect_mono: "(!!x. P x --> Q x) ==> Collect P \<subseteq> Collect Q" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1945 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1946 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1947 | lemma Int_Collect_mono: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1948 | "A \<subseteq> B ==> (!!x. x \<in> A ==> P x --> Q x) ==> A \<inter> Collect P \<subseteq> B \<inter> Collect Q" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1949 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1950 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1951 | lemmas basic_monos = | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1952 | subset_refl imp_refl disj_mono conj_mono | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1953 | ex_mono Collect_mono in_mono | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1954 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1955 | lemma eq_to_mono: "a = b ==> c = d ==> b --> d ==> a --> c" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1956 | by rules | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1957 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1958 | lemma eq_to_mono2: "a = b ==> c = d ==> ~ b --> ~ d ==> ~ a --> ~ c" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1959 | by rules | 
| 11979 | 1960 | |
| 11982 
65e2822d83dd
lemma Least_mono moved from Typedef.thy to Set.thy;
 wenzelm parents: 
11979diff
changeset | 1961 | lemma Least_mono: | 
| 
65e2822d83dd
lemma Least_mono moved from Typedef.thy to Set.thy;
 wenzelm parents: 
11979diff
changeset | 1962 | "mono (f::'a::order => 'b::order) ==> EX x:S. ALL y:S. x <= y | 
| 
65e2822d83dd
lemma Least_mono moved from Typedef.thy to Set.thy;
 wenzelm parents: 
11979diff
changeset | 1963 | ==> (LEAST y. y : f ` S) = f (LEAST x. x : S)" | 
| 
65e2822d83dd
lemma Least_mono moved from Typedef.thy to Set.thy;
 wenzelm parents: 
11979diff
changeset | 1964 |     -- {* Courtesy of Stephan Merz *}
 | 
| 
65e2822d83dd
lemma Least_mono moved from Typedef.thy to Set.thy;
 wenzelm parents: 
11979diff
changeset | 1965 | apply clarify | 
| 14208 | 1966 | apply (erule_tac P = "%x. x : S" in LeastI2, fast) | 
| 11982 
65e2822d83dd
lemma Least_mono moved from Typedef.thy to Set.thy;
 wenzelm parents: 
11979diff
changeset | 1967 | apply (rule LeastI2) | 
| 
65e2822d83dd
lemma Least_mono moved from Typedef.thy to Set.thy;
 wenzelm parents: 
11979diff
changeset | 1968 | apply (auto elim: monoD intro!: order_antisym) | 
| 
65e2822d83dd
lemma Least_mono moved from Typedef.thy to Set.thy;
 wenzelm parents: 
11979diff
changeset | 1969 | done | 
| 
65e2822d83dd
lemma Least_mono moved from Typedef.thy to Set.thy;
 wenzelm parents: 
11979diff
changeset | 1970 | |
| 12020 | 1971 | |
| 12257 | 1972 | subsection {* Inverse image of a function *}
 | 
| 1973 | ||
| 1974 | constdefs | |
| 1975 |   vimage :: "('a => 'b) => 'b set => 'a set"    (infixr "-`" 90)
 | |
| 1976 |   "f -` B == {x. f x : B}"
 | |
| 1977 | ||
| 1978 | ||
| 1979 | subsubsection {* Basic rules *}
 | |
| 1980 | ||
| 1981 | lemma vimage_eq [simp]: "(a : f -` B) = (f a : B)" | |
| 1982 | by (unfold vimage_def) blast | |
| 1983 | ||
| 1984 | lemma vimage_singleton_eq: "(a : f -` {b}) = (f a = b)"
 | |
| 1985 | by simp | |
| 1986 | ||
| 1987 | lemma vimageI [intro]: "f a = b ==> b:B ==> a : f -` B" | |
| 1988 | by (unfold vimage_def) blast | |
| 1989 | ||
| 1990 | lemma vimageI2: "f a : A ==> a : f -` A" | |
| 1991 | by (unfold vimage_def) fast | |
| 1992 | ||
| 1993 | lemma vimageE [elim!]: "a: f -` B ==> (!!x. f a = x ==> x:B ==> P) ==> P" | |
| 1994 | by (unfold vimage_def) blast | |
| 1995 | ||
| 1996 | lemma vimageD: "a : f -` A ==> f a : A" | |
| 1997 | by (unfold vimage_def) fast | |
| 1998 | ||
| 1999 | ||
| 2000 | subsubsection {* Equations *}
 | |
| 2001 | ||
| 2002 | lemma vimage_empty [simp]: "f -` {} = {}"
 | |
| 2003 | by blast | |
| 2004 | ||
| 2005 | lemma vimage_Compl: "f -` (-A) = -(f -` A)" | |
| 2006 | by blast | |
| 2007 | ||
| 2008 | lemma vimage_Un [simp]: "f -` (A Un B) = (f -` A) Un (f -` B)" | |
| 2009 | by blast | |
| 2010 | ||
| 2011 | lemma vimage_Int [simp]: "f -` (A Int B) = (f -` A) Int (f -` B)" | |
| 2012 | by fast | |
| 2013 | ||
| 2014 | lemma vimage_Union: "f -` (Union A) = (UN X:A. f -` X)" | |
| 2015 | by blast | |
| 2016 | ||
| 2017 | lemma vimage_UN: "f-`(UN x:A. B x) = (UN x:A. f -` B x)" | |
| 2018 | by blast | |
| 2019 | ||
| 2020 | lemma vimage_INT: "f-`(INT x:A. B x) = (INT x:A. f -` B x)" | |
| 2021 | by blast | |
| 2022 | ||
| 2023 | lemma vimage_Collect_eq [simp]: "f -` Collect P = {y. P (f y)}"
 | |
| 2024 | by blast | |
| 2025 | ||
| 2026 | lemma vimage_Collect: "(!!x. P (f x) = Q x) ==> f -` (Collect P) = Collect Q" | |
| 2027 | by blast | |
| 2028 | ||
| 2029 | lemma vimage_insert: "f-`(insert a B) = (f-`{a}) Un (f-`B)"
 | |
| 2030 |   -- {* NOT suitable for rewriting because of the recurrence of @{term "{a}"}. *}
 | |
| 2031 | by blast | |
| 2032 | ||
| 2033 | lemma vimage_Diff: "f -` (A - B) = (f -` A) - (f -` B)" | |
| 2034 | by blast | |
| 2035 | ||
| 2036 | lemma vimage_UNIV [simp]: "f -` UNIV = UNIV" | |
| 2037 | by blast | |
| 2038 | ||
| 2039 | lemma vimage_eq_UN: "f-`B = (UN y: B. f-`{y})"
 | |
| 2040 |   -- {* NOT suitable for rewriting *}
 | |
| 2041 | by blast | |
| 2042 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2043 | lemma vimage_mono: "A \<subseteq> B ==> f -` A \<subseteq> f -` B" | 
| 12257 | 2044 |   -- {* monotonicity *}
 | 
| 2045 | by blast | |
| 2046 | ||
| 2047 | ||
| 14479 
0eca4aabf371
streamlined treatment of quotients for the integers
 paulson parents: 
14398diff
changeset | 2048 | subsection {* Getting the Contents of a Singleton Set *}
 | 
| 
0eca4aabf371
streamlined treatment of quotients for the integers
 paulson parents: 
14398diff
changeset | 2049 | |
| 
0eca4aabf371
streamlined treatment of quotients for the integers
 paulson parents: 
14398diff
changeset | 2050 | constdefs | 
| 
0eca4aabf371
streamlined treatment of quotients for the integers
 paulson parents: 
14398diff
changeset | 2051 | contents :: "'a set => 'a" | 
| 
0eca4aabf371
streamlined treatment of quotients for the integers
 paulson parents: 
14398diff
changeset | 2052 |    "contents X == THE x. X = {x}"
 | 
| 
0eca4aabf371
streamlined treatment of quotients for the integers
 paulson parents: 
14398diff
changeset | 2053 | |
| 
0eca4aabf371
streamlined treatment of quotients for the integers
 paulson parents: 
14398diff
changeset | 2054 | lemma contents_eq [simp]: "contents {x} = x"
 | 
| 
0eca4aabf371
streamlined treatment of quotients for the integers
 paulson parents: 
14398diff
changeset | 2055 | by (simp add: contents_def) | 
| 
0eca4aabf371
streamlined treatment of quotients for the integers
 paulson parents: 
14398diff
changeset | 2056 | |
| 
0eca4aabf371
streamlined treatment of quotients for the integers
 paulson parents: 
14398diff
changeset | 2057 | |
| 12023 | 2058 | subsection {* Transitivity rules for calculational reasoning *}
 | 
| 12020 | 2059 | |
| 2060 | lemma forw_subst: "a = b ==> P b ==> P a" | |
| 2061 | by (rule ssubst) | |
| 2062 | ||
| 2063 | lemma back_subst: "P a ==> a = b ==> P b" | |
| 2064 | by (rule subst) | |
| 2065 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2066 | lemma set_rev_mp: "x:A ==> A \<subseteq> B ==> x:B" | 
| 12020 | 2067 | by (rule subsetD) | 
| 2068 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2069 | lemma set_mp: "A \<subseteq> B ==> x:A ==> x:B" | 
| 12020 | 2070 | by (rule subsetD) | 
| 2071 | ||
| 2072 | lemma ord_le_eq_trans: "a <= b ==> b = c ==> a <= c" | |
| 2073 | by (rule subst) | |
| 2074 | ||
| 2075 | lemma ord_eq_le_trans: "a = b ==> b <= c ==> a <= c" | |
| 2076 | by (rule ssubst) | |
| 2077 | ||
| 2078 | lemma ord_less_eq_trans: "a < b ==> b = c ==> a < c" | |
| 2079 | by (rule subst) | |
| 2080 | ||
| 2081 | lemma ord_eq_less_trans: "a = b ==> b < c ==> a < c" | |
| 2082 | by (rule ssubst) | |
| 2083 | ||
| 2084 | lemma order_less_subst2: "(a::'a::order) < b ==> f b < (c::'c::order) ==> | |
| 2085 | (!!x y. x < y ==> f x < f y) ==> f a < c" | |
| 2086 | proof - | |
| 2087 | assume r: "!!x y. x < y ==> f x < f y" | |
| 2088 | assume "a < b" hence "f a < f b" by (rule r) | |
| 2089 | also assume "f b < c" | |
| 2090 | finally (order_less_trans) show ?thesis . | |
| 2091 | qed | |
| 2092 | ||
| 2093 | lemma order_less_subst1: "(a::'a::order) < f b ==> (b::'b::order) < c ==> | |
| 2094 | (!!x y. x < y ==> f x < f y) ==> a < f c" | |
| 2095 | proof - | |
| 2096 | assume r: "!!x y. x < y ==> f x < f y" | |
| 2097 | assume "a < f b" | |
| 2098 | also assume "b < c" hence "f b < f c" by (rule r) | |
| 2099 | finally (order_less_trans) show ?thesis . | |
| 2100 | qed | |
| 2101 | ||
| 2102 | lemma order_le_less_subst2: "(a::'a::order) <= b ==> f b < (c::'c::order) ==> | |
| 2103 | (!!x y. x <= y ==> f x <= f y) ==> f a < c" | |
| 2104 | proof - | |
| 2105 | assume r: "!!x y. x <= y ==> f x <= f y" | |
| 2106 | assume "a <= b" hence "f a <= f b" by (rule r) | |
| 2107 | also assume "f b < c" | |
| 2108 | finally (order_le_less_trans) show ?thesis . | |
| 2109 | qed | |
| 2110 | ||
| 2111 | lemma order_le_less_subst1: "(a::'a::order) <= f b ==> (b::'b::order) < c ==> | |
| 2112 | (!!x y. x < y ==> f x < f y) ==> a < f c" | |
| 2113 | proof - | |
| 2114 | assume r: "!!x y. x < y ==> f x < f y" | |
| 2115 | assume "a <= f b" | |
| 2116 | also assume "b < c" hence "f b < f c" by (rule r) | |
| 2117 | finally (order_le_less_trans) show ?thesis . | |
| 2118 | qed | |
| 2119 | ||
| 2120 | lemma order_less_le_subst2: "(a::'a::order) < b ==> f b <= (c::'c::order) ==> | |
| 2121 | (!!x y. x < y ==> f x < f y) ==> f a < c" | |
| 2122 | proof - | |
| 2123 | assume r: "!!x y. x < y ==> f x < f y" | |
| 2124 | assume "a < b" hence "f a < f b" by (rule r) | |
| 2125 | also assume "f b <= c" | |
| 2126 | finally (order_less_le_trans) show ?thesis . | |
| 2127 | qed | |
| 2128 | ||
| 2129 | lemma order_less_le_subst1: "(a::'a::order) < f b ==> (b::'b::order) <= c ==> | |
| 2130 | (!!x y. x <= y ==> f x <= f y) ==> a < f c" | |
| 2131 | proof - | |
| 2132 | assume r: "!!x y. x <= y ==> f x <= f y" | |
| 2133 | assume "a < f b" | |
| 2134 | also assume "b <= c" hence "f b <= f c" by (rule r) | |
| 2135 | finally (order_less_le_trans) show ?thesis . | |
| 2136 | qed | |
| 2137 | ||
| 2138 | lemma order_subst1: "(a::'a::order) <= f b ==> (b::'b::order) <= c ==> | |
| 2139 | (!!x y. x <= y ==> f x <= f y) ==> a <= f c" | |
| 2140 | proof - | |
| 2141 | assume r: "!!x y. x <= y ==> f x <= f y" | |
| 2142 | assume "a <= f b" | |
| 2143 | also assume "b <= c" hence "f b <= f c" by (rule r) | |
| 2144 | finally (order_trans) show ?thesis . | |
| 2145 | qed | |
| 2146 | ||
| 2147 | lemma order_subst2: "(a::'a::order) <= b ==> f b <= (c::'c::order) ==> | |
| 2148 | (!!x y. x <= y ==> f x <= f y) ==> f a <= c" | |
| 2149 | proof - | |
| 2150 | assume r: "!!x y. x <= y ==> f x <= f y" | |
| 2151 | assume "a <= b" hence "f a <= f b" by (rule r) | |
| 2152 | also assume "f b <= c" | |
| 2153 | finally (order_trans) show ?thesis . | |
| 2154 | qed | |
| 2155 | ||
| 2156 | lemma ord_le_eq_subst: "a <= b ==> f b = c ==> | |
| 2157 | (!!x y. x <= y ==> f x <= f y) ==> f a <= c" | |
| 2158 | proof - | |
| 2159 | assume r: "!!x y. x <= y ==> f x <= f y" | |
| 2160 | assume "a <= b" hence "f a <= f b" by (rule r) | |
| 2161 | also assume "f b = c" | |
| 2162 | finally (ord_le_eq_trans) show ?thesis . | |
| 2163 | qed | |
| 2164 | ||
| 2165 | lemma ord_eq_le_subst: "a = f b ==> b <= c ==> | |
| 2166 | (!!x y. x <= y ==> f x <= f y) ==> a <= f c" | |
| 2167 | proof - | |
| 2168 | assume r: "!!x y. x <= y ==> f x <= f y" | |
| 2169 | assume "a = f b" | |
| 2170 | also assume "b <= c" hence "f b <= f c" by (rule r) | |
| 2171 | finally (ord_eq_le_trans) show ?thesis . | |
| 2172 | qed | |
| 2173 | ||
| 2174 | lemma ord_less_eq_subst: "a < b ==> f b = c ==> | |
| 2175 | (!!x y. x < y ==> f x < f y) ==> f a < c" | |
| 2176 | proof - | |
| 2177 | assume r: "!!x y. x < y ==> f x < f y" | |
| 2178 | assume "a < b" hence "f a < f b" by (rule r) | |
| 2179 | also assume "f b = c" | |
| 2180 | finally (ord_less_eq_trans) show ?thesis . | |
| 2181 | qed | |
| 2182 | ||
| 2183 | lemma ord_eq_less_subst: "a = f b ==> b < c ==> | |
| 2184 | (!!x y. x < y ==> f x < f y) ==> a < f c" | |
| 2185 | proof - | |
| 2186 | assume r: "!!x y. x < y ==> f x < f y" | |
| 2187 | assume "a = f b" | |
| 2188 | also assume "b < c" hence "f b < f c" by (rule r) | |
| 2189 | finally (ord_eq_less_trans) show ?thesis . | |
| 2190 | qed | |
| 2191 | ||
| 2192 | text {*
 | |
| 2193 | Note that this list of rules is in reverse order of priorities. | |
| 2194 | *} | |
| 2195 | ||
| 2196 | lemmas basic_trans_rules [trans] = | |
| 2197 | order_less_subst2 | |
| 2198 | order_less_subst1 | |
| 2199 | order_le_less_subst2 | |
| 2200 | order_le_less_subst1 | |
| 2201 | order_less_le_subst2 | |
| 2202 | order_less_le_subst1 | |
| 2203 | order_subst2 | |
| 2204 | order_subst1 | |
| 2205 | ord_le_eq_subst | |
| 2206 | ord_eq_le_subst | |
| 2207 | ord_less_eq_subst | |
| 2208 | ord_eq_less_subst | |
| 2209 | forw_subst | |
| 2210 | back_subst | |
| 2211 | rev_mp | |
| 2212 | mp | |
| 2213 | set_rev_mp | |
| 2214 | set_mp | |
| 2215 | order_neq_le_trans | |
| 2216 | order_le_neq_trans | |
| 2217 | order_less_trans | |
| 2218 | order_less_asym' | |
| 2219 | order_le_less_trans | |
| 2220 | order_less_le_trans | |
| 2221 | order_trans | |
| 2222 | order_antisym | |
| 2223 | ord_le_eq_trans | |
| 2224 | ord_eq_le_trans | |
| 2225 | ord_less_eq_trans | |
| 2226 | ord_eq_less_trans | |
| 2227 | trans | |
| 2228 | ||
| 11979 | 2229 | end |