1019
|
1 |
(* Title: ZF/AC/WO6_WO1.thy
|
|
2 |
ID: $Id$
|
1203
|
3 |
Author: Krzysztof Grabczewski
|
1019
|
4 |
|
|
5 |
The proof of "WO6 ==> WO1".
|
|
6 |
|
|
7 |
From the book "Equivalents of the Axiom of Choice" by Rubin & Rubin,
|
|
8 |
pages 2-5
|
|
9 |
*)
|
|
10 |
|
1042
|
11 |
WO6_WO1 = "rel_is_fun" + AC_Equiv + Let +
|
1019
|
12 |
|
|
13 |
consts
|
|
14 |
(* Auxiliary definitions used in proof *)
|
1401
|
15 |
NN :: i => i
|
|
16 |
uu :: [i, i, i, i] => i
|
|
17 |
vv1, ww1, gg1 :: [i, i, i] => i
|
|
18 |
vv2, ww2, gg2 :: [i, i, i, i] => i
|
1019
|
19 |
|
|
20 |
defs
|
992
|
21 |
|
1155
|
22 |
NN_def "NN(y) == {m:nat. EX a. EX f. Ord(a) & domain(f)=a &
|
|
23 |
(UN b<a. f`b) = y & (ALL b<a. f`b lepoll m)}"
|
1019
|
24 |
|
|
25 |
uu_def "uu(f, beta, gamma, delta) == (f`beta * f`gamma) Int f`delta"
|
1042
|
26 |
|
|
27 |
(*Definitions for case 1*)
|
|
28 |
|
1155
|
29 |
vv1_def "vv1(f,m,b) ==
|
|
30 |
let g = LEAST g. (EX d. Ord(d) & (domain(uu(f,b,g,d)) ~= 0 &
|
|
31 |
domain(uu(f,b,g,d)) lepoll m));
|
|
32 |
d = LEAST d. domain(uu(f,b,g,d)) ~= 0 &
|
|
33 |
domain(uu(f,b,g,d)) lepoll m
|
|
34 |
in if(f`b ~= 0, domain(uu(f,b,g,d)), 0)"
|
1042
|
35 |
|
|
36 |
ww1_def "ww1(f,m,b) == f`b - vv1(f,m,b)"
|
|
37 |
|
|
38 |
gg1_def "gg1(f,a,m) == lam b:a++a. if (b<a, vv1(f,m,b), ww1(f,m,b--a))"
|
1019
|
39 |
|
1042
|
40 |
(*Definitions for case 2*)
|
1019
|
41 |
|
1155
|
42 |
vv2_def "vv2(f,b,g,s) ==
|
|
43 |
if(f`g ~= 0, {uu(f, b, g, LEAST d. uu(f,b,g,d) ~= 0)`s}, 0)"
|
1019
|
44 |
|
|
45 |
ww2_def "ww2(f,b,g,s) == f`g - vv2(f,b,g,s)"
|
|
46 |
|
1042
|
47 |
gg2_def "gg2(f,a,b,s) == lam g:a++a. if (g<a, vv2(f,b,g,s), ww2(f,b,g--a,s))"
|
|
48 |
|
1019
|
49 |
end
|