author | blanchet |
Thu, 20 Nov 2014 17:29:18 +0100 | |
changeset 59019 | 0c58b5cf989a |
parent 55229 | 08f2ebb65078 |
child 61385 | 538100cc4399 |
permissions | -rw-r--r-- |
41959 | 1 |
(* Title: Sequents/LK/Hard_Quantifiers.thy |
21426 | 2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
3 |
Copyright 1992 University of Cambridge |
|
4 |
||
5 |
Hard examples with quantifiers. Can be read to test the LK system. |
|
6 |
From F. J. Pelletier, |
|
7 |
Seventy-Five Problems for Testing Automatic Theorem Provers, |
|
8 |
J. Automated Reasoning 2 (1986), 191-216. |
|
9 |
Errata, JAR 4 (1988), 236-236. |
|
10 |
||
11 |
Uses pc_tac rather than fast_tac when the former is significantly faster. |
|
12 |
*) |
|
13 |
||
14 |
theory Hard_Quantifiers |
|
55229 | 15 |
imports "../LK" |
21426 | 16 |
begin |
17 |
||
18 |
lemma "|- (ALL x. P(x) & Q(x)) <-> (ALL x. P(x)) & (ALL x. Q(x))" |
|
19 |
by fast |
|
20 |
||
21 |
lemma "|- (EX x. P-->Q(x)) <-> (P --> (EX x. Q(x)))" |
|
22 |
by fast |
|
23 |
||
24 |
lemma "|- (EX x. P(x)-->Q) <-> (ALL x. P(x)) --> Q" |
|
25 |
by fast |
|
26 |
||
27 |
lemma "|- (ALL x. P(x)) | Q <-> (ALL x. P(x) | Q)" |
|
28 |
by fast |
|
29 |
||
30 |
||
31 |
text "Problems requiring quantifier duplication" |
|
32 |
||
33 |
(*Not provable by fast: needs multiple instantiation of ALL*) |
|
34 |
lemma "|- (ALL x. P(x)-->P(f(x))) & P(d)-->P(f(f(f(d))))" |
|
35 |
by best_dup |
|
36 |
||
37 |
(*Needs double instantiation of the quantifier*) |
|
38 |
lemma "|- EX x. P(x) --> P(a) & P(b)" |
|
39 |
by fast_dup |
|
40 |
||
41 |
lemma "|- EX z. P(z) --> (ALL x. P(x))" |
|
42 |
by best_dup |
|
43 |
||
44 |
||
45 |
text "Hard examples with quantifiers" |
|
46 |
||
47 |
text "Problem 18" |
|
48 |
lemma "|- EX y. ALL x. P(y)-->P(x)" |
|
49 |
by best_dup |
|
50 |
||
51 |
text "Problem 19" |
|
52 |
lemma "|- EX x. ALL y z. (P(y)-->Q(z)) --> (P(x)-->Q(x))" |
|
53 |
by best_dup |
|
54 |
||
55 |
text "Problem 20" |
|
56 |
lemma "|- (ALL x y. EX z. ALL w. (P(x)&Q(y)-->R(z)&S(w))) |
|
57 |
--> (EX x y. P(x) & Q(y)) --> (EX z. R(z))" |
|
58 |
by fast |
|
59 |
||
60 |
text "Problem 21" |
|
61 |
lemma "|- (EX x. P-->Q(x)) & (EX x. Q(x)-->P) --> (EX x. P<->Q(x))" |
|
62 |
by best_dup |
|
63 |
||
64 |
text "Problem 22" |
|
65 |
lemma "|- (ALL x. P <-> Q(x)) --> (P <-> (ALL x. Q(x)))" |
|
66 |
by fast |
|
67 |
||
68 |
text "Problem 23" |
|
69 |
lemma "|- (ALL x. P | Q(x)) <-> (P | (ALL x. Q(x)))" |
|
70 |
by best |
|
71 |
||
72 |
text "Problem 24" |
|
73 |
lemma "|- ~(EX x. S(x)&Q(x)) & (ALL x. P(x) --> Q(x)|R(x)) & |
|
74 |
~(EX x. P(x)) --> (EX x. Q(x)) & (ALL x. Q(x)|R(x) --> S(x)) |
|
75 |
--> (EX x. P(x)&R(x))" |
|
55228 | 76 |
by pc |
21426 | 77 |
|
78 |
text "Problem 25" |
|
79 |
lemma "|- (EX x. P(x)) & |
|
80 |
(ALL x. L(x) --> ~ (M(x) & R(x))) & |
|
81 |
(ALL x. P(x) --> (M(x) & L(x))) & |
|
82 |
((ALL x. P(x)-->Q(x)) | (EX x. P(x)&R(x))) |
|
83 |
--> (EX x. Q(x)&P(x))" |
|
84 |
by best |
|
85 |
||
86 |
text "Problem 26" |
|
87 |
lemma "|- ((EX x. p(x)) <-> (EX x. q(x))) & |
|
88 |
(ALL x. ALL y. p(x) & q(y) --> (r(x) <-> s(y))) |
|
89 |
--> ((ALL x. p(x)-->r(x)) <-> (ALL x. q(x)-->s(x)))" |
|
55228 | 90 |
by pc |
21426 | 91 |
|
92 |
text "Problem 27" |
|
93 |
lemma "|- (EX x. P(x) & ~Q(x)) & |
|
94 |
(ALL x. P(x) --> R(x)) & |
|
95 |
(ALL x. M(x) & L(x) --> P(x)) & |
|
96 |
((EX x. R(x) & ~ Q(x)) --> (ALL x. L(x) --> ~ R(x))) |
|
97 |
--> (ALL x. M(x) --> ~L(x))" |
|
55228 | 98 |
by pc |
21426 | 99 |
|
100 |
text "Problem 28. AMENDED" |
|
101 |
lemma "|- (ALL x. P(x) --> (ALL x. Q(x))) & |
|
102 |
((ALL x. Q(x)|R(x)) --> (EX x. Q(x)&S(x))) & |
|
103 |
((EX x. S(x)) --> (ALL x. L(x) --> M(x))) |
|
104 |
--> (ALL x. P(x) & L(x) --> M(x))" |
|
55228 | 105 |
by pc |
21426 | 106 |
|
107 |
text "Problem 29. Essentially the same as Principia Mathematica *11.71" |
|
108 |
lemma "|- (EX x. P(x)) & (EX y. Q(y)) |
|
109 |
--> ((ALL x. P(x)-->R(x)) & (ALL y. Q(y)-->S(y)) <-> |
|
110 |
(ALL x y. P(x) & Q(y) --> R(x) & S(y)))" |
|
55228 | 111 |
by pc |
21426 | 112 |
|
113 |
text "Problem 30" |
|
114 |
lemma "|- (ALL x. P(x) | Q(x) --> ~ R(x)) & |
|
115 |
(ALL x. (Q(x) --> ~ S(x)) --> P(x) & R(x)) |
|
116 |
--> (ALL x. S(x))" |
|
117 |
by fast |
|
118 |
||
119 |
text "Problem 31" |
|
120 |
lemma "|- ~(EX x. P(x) & (Q(x) | R(x))) & |
|
121 |
(EX x. L(x) & P(x)) & |
|
122 |
(ALL x. ~ R(x) --> M(x)) |
|
123 |
--> (EX x. L(x) & M(x))" |
|
124 |
by fast |
|
125 |
||
126 |
text "Problem 32" |
|
127 |
lemma "|- (ALL x. P(x) & (Q(x)|R(x))-->S(x)) & |
|
128 |
(ALL x. S(x) & R(x) --> L(x)) & |
|
129 |
(ALL x. M(x) --> R(x)) |
|
130 |
--> (ALL x. P(x) & M(x) --> L(x))" |
|
131 |
by best |
|
132 |
||
133 |
text "Problem 33" |
|
134 |
lemma "|- (ALL x. P(a) & (P(x)-->P(b))-->P(c)) <-> |
|
135 |
(ALL x. (~P(a) | P(x) | P(c)) & (~P(a) | ~P(b) | P(c)))" |
|
136 |
by fast |
|
137 |
||
138 |
text "Problem 34 AMENDED (TWICE!!)" |
|
139 |
(*Andrews's challenge*) |
|
140 |
lemma "|- ((EX x. ALL y. p(x) <-> p(y)) <-> |
|
141 |
((EX x. q(x)) <-> (ALL y. p(y)))) <-> |
|
142 |
((EX x. ALL y. q(x) <-> q(y)) <-> |
|
143 |
((EX x. p(x)) <-> (ALL y. q(y))))" |
|
144 |
by best_dup |
|
145 |
||
146 |
text "Problem 35" |
|
147 |
lemma "|- EX x y. P(x,y) --> (ALL u v. P(u,v))" |
|
148 |
by best_dup |
|
149 |
||
150 |
text "Problem 36" |
|
151 |
lemma "|- (ALL x. EX y. J(x,y)) & |
|
152 |
(ALL x. EX y. G(x,y)) & |
|
153 |
(ALL x y. J(x,y) | G(x,y) --> |
|
154 |
(ALL z. J(y,z) | G(y,z) --> H(x,z))) |
|
155 |
--> (ALL x. EX y. H(x,y))" |
|
156 |
by fast |
|
157 |
||
158 |
text "Problem 37" |
|
159 |
lemma "|- (ALL z. EX w. ALL x. EX y. |
|
160 |
(P(x,z)-->P(y,w)) & P(y,z) & (P(y,w) --> (EX u. Q(u,w)))) & |
|
161 |
(ALL x z. ~P(x,z) --> (EX y. Q(y,z))) & |
|
162 |
((EX x y. Q(x,y)) --> (ALL x. R(x,x))) |
|
163 |
--> (ALL x. EX y. R(x,y))" |
|
55228 | 164 |
by pc |
21426 | 165 |
|
166 |
text "Problem 38" |
|
167 |
lemma "|- (ALL x. p(a) & (p(x) --> (EX y. p(y) & r(x,y))) --> |
|
168 |
(EX z. EX w. p(z) & r(x,w) & r(w,z))) <-> |
|
169 |
(ALL x. (~p(a) | p(x) | (EX z. EX w. p(z) & r(x,w) & r(w,z))) & |
|
170 |
(~p(a) | ~(EX y. p(y) & r(x,y)) | |
|
171 |
(EX z. EX w. p(z) & r(x,w) & r(w,z))))" |
|
55228 | 172 |
by pc |
21426 | 173 |
|
174 |
text "Problem 39" |
|
175 |
lemma "|- ~ (EX x. ALL y. F(y,x) <-> ~F(y,y))" |
|
176 |
by fast |
|
177 |
||
178 |
text "Problem 40. AMENDED" |
|
179 |
lemma "|- (EX y. ALL x. F(x,y) <-> F(x,x)) --> |
|
180 |
~(ALL x. EX y. ALL z. F(z,y) <-> ~ F(z,x))" |
|
181 |
by fast |
|
182 |
||
183 |
text "Problem 41" |
|
184 |
lemma "|- (ALL z. EX y. ALL x. f(x,y) <-> f(x,z) & ~ f(x,x)) |
|
185 |
--> ~ (EX z. ALL x. f(x,z))" |
|
186 |
by fast |
|
187 |
||
188 |
text "Problem 42" |
|
189 |
lemma "|- ~ (EX y. ALL x. p(x,y) <-> ~ (EX z. p(x,z) & p(z,x)))" |
|
190 |
oops |
|
191 |
||
192 |
text "Problem 43" |
|
193 |
lemma "|- (ALL x. ALL y. q(x,y) <-> (ALL z. p(z,x) <-> p(z,y))) |
|
194 |
--> (ALL x. (ALL y. q(x,y) <-> q(y,x)))" |
|
195 |
oops |
|
196 |
||
197 |
text "Problem 44" |
|
198 |
lemma "|- (ALL x. f(x) --> |
|
199 |
(EX y. g(y) & h(x,y) & (EX y. g(y) & ~ h(x,y)))) & |
|
200 |
(EX x. j(x) & (ALL y. g(y) --> h(x,y))) |
|
201 |
--> (EX x. j(x) & ~f(x))" |
|
202 |
by fast |
|
203 |
||
204 |
text "Problem 45" |
|
205 |
lemma "|- (ALL x. f(x) & (ALL y. g(y) & h(x,y) --> j(x,y)) |
|
206 |
--> (ALL y. g(y) & h(x,y) --> k(y))) & |
|
207 |
~ (EX y. l(y) & k(y)) & |
|
208 |
(EX x. f(x) & (ALL y. h(x,y) --> l(y)) |
|
209 |
& (ALL y. g(y) & h(x,y) --> j(x,y))) |
|
210 |
--> (EX x. f(x) & ~ (EX y. g(y) & h(x,y)))" |
|
211 |
by best |
|
212 |
||
213 |
||
214 |
text "Problems (mainly) involving equality or functions" |
|
215 |
||
216 |
text "Problem 48" |
|
217 |
lemma "|- (a=b | c=d) & (a=c | b=d) --> a=d | b=c" |
|
55228 | 218 |
by (fast add!: subst) |
21426 | 219 |
|
220 |
text "Problem 50" |
|
221 |
lemma "|- (ALL x. P(a,x) | (ALL y. P(x,y))) --> (EX x. ALL y. P(x,y))" |
|
222 |
by best_dup |
|
223 |
||
224 |
text "Problem 51" |
|
225 |
lemma "|- (EX z w. ALL x y. P(x,y) <-> (x=z & y=w)) --> |
|
226 |
(EX z. ALL x. EX w. (ALL y. P(x,y) <-> y=w) <-> x=z)" |
|
55228 | 227 |
by (fast add!: subst) |
21426 | 228 |
|
229 |
text "Problem 52" (*Almost the same as 51. *) |
|
230 |
lemma "|- (EX z w. ALL x y. P(x,y) <-> (x=z & y=w)) --> |
|
231 |
(EX w. ALL y. EX z. (ALL x. P(x,y) <-> x=z) <-> y=w)" |
|
55228 | 232 |
by (fast add!: subst) |
21426 | 233 |
|
234 |
text "Problem 56" |
|
235 |
lemma "|- (ALL x.(EX y. P(y) & x=f(y)) --> P(x)) <-> (ALL x. P(x) --> P(f(x)))" |
|
55228 | 236 |
by (best add: symL subst) |
21426 | 237 |
(*requires tricker to orient the equality properly*) |
238 |
||
239 |
text "Problem 57" |
|
240 |
lemma "|- P(f(a,b), f(b,c)) & P(f(b,c), f(a,c)) & |
|
241 |
(ALL x y z. P(x,y) & P(y,z) --> P(x,z)) --> P(f(a,b), f(a,c))" |
|
242 |
by fast |
|
243 |
||
244 |
text "Problem 58!" |
|
245 |
lemma "|- (ALL x y. f(x)=g(y)) --> (ALL x y. f(f(x))=f(g(y)))" |
|
55228 | 246 |
by (fast add!: subst) |
21426 | 247 |
|
248 |
text "Problem 59" |
|
249 |
(*Unification works poorly here -- the abstraction %sobj prevents efficient |
|
250 |
operation of the occurs check*) |
|
24178
4ff1dc2aa18d
turned Unify flags into configuration options (global only);
wenzelm
parents:
22896
diff
changeset
|
251 |
|
21426 | 252 |
lemma "|- (ALL x. P(x) <-> ~P(f(x))) --> (EX x. P(x) & ~P(f(x)))" |
253 |
by best_dup |
|
254 |
||
255 |
text "Problem 60" |
|
256 |
lemma "|- ALL x. P(x,f(x)) <-> (EX y. (ALL z. P(z,y) --> P(z,f(x))) & P(x,y))" |
|
257 |
by fast |
|
258 |
||
259 |
text "Problem 62 as corrected in JAR 18 (1997), page 135" |
|
260 |
lemma "|- (ALL x. p(a) & (p(x) --> p(f(x))) --> p(f(f(x)))) <-> |
|
261 |
(ALL x. (~p(a) | p(x) | p(f(f(x)))) & |
|
262 |
(~p(a) | ~p(f(x)) | p(f(f(x)))))" |
|
263 |
by fast |
|
264 |
||
265 |
(*18 June 92: loaded in 372 secs*) |
|
266 |
(*19 June 92: loaded in 166 secs except #34, using repeat_goal_tac*) |
|
267 |
(*29 June 92: loaded in 370 secs*) |
|
268 |
(*18 September 2005: loaded in 1.809 secs*) |
|
269 |
||
270 |
end |