| author | blanchet | 
| Mon, 06 Jun 2011 20:36:35 +0200 | |
| changeset 43201 | 0c9bf1a8e0d8 | 
| parent 42361 | 23f352990944 | 
| child 43564 | 9864182c6bad | 
| permissions | -rw-r--r-- | 
| 30293 | 1 | (*<*) | 
| 30401 | 2 | theory Main_Doc | 
| 30293 | 3 | imports Main | 
| 4 | begin | |
| 5 | ||
| 6 | ML {*
 | |
| 7 | fun pretty_term_type_only ctxt (t, T) = | |
| 42361 | 8 | (if fastype_of t = Sign.certify_typ (Proof_Context.theory_of ctxt) T then () | 
| 30293 | 9 | else error "term_type_only: type mismatch"; | 
| 10 | Syntax.pretty_typ ctxt T) | |
| 11 | ||
| 37216 
3165bc303f66
modernized some structure names, keeping a few legacy aliases;
 wenzelm parents: 
35805diff
changeset | 12 | val _ = Thy_Output.antiquotation "term_type_only" (Args.term -- Args.typ_abbrev) | 
| 38767 
d8da44a8dd25
proper context for various Thy_Output options, via official configuration options in ML and Isar;
 wenzelm parents: 
38323diff
changeset | 13 |   (fn {source, context = ctxt, ...} => fn arg =>
 | 
| 
d8da44a8dd25
proper context for various Thy_Output options, via official configuration options in ML and Isar;
 wenzelm parents: 
38323diff
changeset | 14 | Thy_Output.output ctxt | 
| 
d8da44a8dd25
proper context for various Thy_Output options, via official configuration options in ML and Isar;
 wenzelm parents: 
38323diff
changeset | 15 | (Thy_Output.maybe_pretty_source pretty_term_type_only ctxt source [arg])); | 
| 30293 | 16 | *} | 
| 17 | (*>*) | |
| 18 | text{*
 | |
| 19 | ||
| 20 | \begin{abstract}
 | |
| 30442 | 21 | This document lists the main types, functions and syntax provided by theory @{theory Main}. It is meant as a quick overview of what is available. The sophisticated class structure is only hinted at. For details see \url{http://isabelle.in.tum.de/dist/library/HOL/}.
 | 
| 30293 | 22 | \end{abstract}
 | 
| 23 | ||
| 24 | \section{HOL}
 | |
| 25 | ||
| 30440 | 26 | The basic logic: @{prop "x = y"}, @{const True}, @{const False}, @{prop"Not P"}, @{prop"P & Q"}, @{prop "P | Q"}, @{prop "P --> Q"}, @{prop"ALL x. P"}, @{prop"EX x. P"}, @{prop"EX! x. P"}, @{term"THE x. P"}.
 | 
| 27 | \smallskip | |
| 28 | ||
| 29 | \begin{tabular}{@ {} l @ {~::~} l @ {}}
 | |
| 30 | @{const HOL.undefined} & @{typeof HOL.undefined}\\
 | |
| 31 | @{const HOL.default} & @{typeof HOL.default}\\
 | |
| 32 | \end{tabular}
 | |
| 33 | ||
| 34 | \subsubsection*{Syntax}
 | |
| 30293 | 35 | |
| 30440 | 36 | \begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
 | 
| 37 | @{term"~(x = y)"} & @{term[source]"\<not> (x = y)"} & (\verb$~=$)\\
 | |
| 38 | @{term[source]"P \<longleftrightarrow> Q"} & @{term"P \<longleftrightarrow> Q"} \\
 | |
| 39 | @{term"If x y z"} & @{term[source]"If x y z"}\\
 | |
| 40 | @{term"Let e\<^isub>1 (%x. e\<^isub>2)"} & @{term[source]"Let e\<^isub>1 (\<lambda>x. e\<^isub>2)"}\\
 | |
| 41 | \end{supertabular}
 | |
| 42 | ||
| 43 | ||
| 44 | \section{Orderings}
 | |
| 45 | ||
| 46 | A collection of classes defining basic orderings: | |
| 47 | preorder, partial order, linear order, dense linear order and wellorder. | |
| 48 | \smallskip | |
| 30293 | 49 | |
| 30425 | 50 | \begin{supertabular}{@ {} l @ {~::~} l l @ {}}
 | 
| 35277 | 51 | @{const Orderings.less_eq} & @{typeof Orderings.less_eq} & (\verb$<=$)\\
 | 
| 52 | @{const Orderings.less} & @{typeof Orderings.less}\\
 | |
| 30440 | 53 | @{const Orderings.Least} & @{typeof Orderings.Least}\\
 | 
| 54 | @{const Orderings.min} & @{typeof Orderings.min}\\
 | |
| 55 | @{const Orderings.max} & @{typeof Orderings.max}\\
 | |
| 56 | @{const[source] top} & @{typeof Orderings.top}\\
 | |
| 57 | @{const[source] bot} & @{typeof Orderings.bot}\\
 | |
| 58 | @{const Orderings.mono} & @{typeof Orderings.mono}\\
 | |
| 59 | @{const Orderings.strict_mono} & @{typeof Orderings.strict_mono}\\
 | |
| 30293 | 60 | \end{supertabular}
 | 
| 61 | ||
| 62 | \subsubsection*{Syntax}
 | |
| 63 | ||
| 30440 | 64 | \begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
 | 
| 65 | @{term[source]"x \<ge> y"} & @{term"x \<ge> y"} & (\verb$>=$)\\
 | |
| 30293 | 66 | @{term[source]"x > y"} & @{term"x > y"}\\
 | 
| 67 | @{term"ALL x<=y. P"} & @{term[source]"\<forall>x. x \<le> y \<longrightarrow> P"}\\
 | |
| 30440 | 68 | @{term"EX x<=y. P"} & @{term[source]"\<exists>x. x \<le> y \<and> P"}\\
 | 
| 69 | \multicolumn{2}{@ {}l@ {}}{Similarly for $<$, $\ge$ and $>$}\\
 | |
| 30293 | 70 | @{term"LEAST x. P"} & @{term[source]"Least (\<lambda>x. P)"}\\
 | 
| 71 | \end{supertabular}
 | |
| 72 | ||
| 30401 | 73 | |
| 74 | \section{Lattices}
 | |
| 75 | ||
| 76 | Classes semilattice, lattice, distributive lattice and complete lattice (the | |
| 77 | latter in theory @{theory Set}).
 | |
| 78 | ||
| 79 | \begin{tabular}{@ {} l @ {~::~} l @ {}}
 | |
| 80 | @{const Lattices.inf} & @{typeof Lattices.inf}\\
 | |
| 81 | @{const Lattices.sup} & @{typeof Lattices.sup}\\
 | |
| 32885 | 82 | @{const Complete_Lattice.Inf} & @{term_type_only Complete_Lattice.Inf "'a set \<Rightarrow> 'a::Inf"}\\
 | 
| 83 | @{const Complete_Lattice.Sup} & @{term_type_only Complete_Lattice.Sup "'a set \<Rightarrow> 'a::Sup"}\\
 | |
| 30401 | 84 | \end{tabular}
 | 
| 85 | ||
| 86 | \subsubsection*{Syntax}
 | |
| 87 | ||
| 30440 | 88 | Available by loading theory @{text Lattice_Syntax} in directory @{text
 | 
| 89 | Library}. | |
| 30401 | 90 | |
| 91 | \begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
 | |
| 92 | @{text[source]"x \<sqsubseteq> y"} & @{term"x \<le> y"}\\
 | |
| 93 | @{text[source]"x \<sqsubset> y"} & @{term"x < y"}\\
 | |
| 94 | @{text[source]"x \<sqinter> y"} & @{term"inf x y"}\\
 | |
| 95 | @{text[source]"x \<squnion> y"} & @{term"sup x y"}\\
 | |
| 96 | @{text[source]"\<Sqinter> A"} & @{term"Sup A"}\\
 | |
| 97 | @{text[source]"\<Squnion> A"} & @{term"Inf A"}\\
 | |
| 30440 | 98 | @{text[source]"\<top>"} & @{term[source] top}\\
 | 
| 99 | @{text[source]"\<bottom>"} & @{term[source] bot}\\
 | |
| 30401 | 100 | \end{supertabular}
 | 
| 101 | ||
| 102 | ||
| 30293 | 103 | \section{Set}
 | 
| 104 | ||
| 105 | Sets are predicates: @{text[source]"'a set  =  'a \<Rightarrow> bool"}
 | |
| 106 | \bigskip | |
| 107 | ||
| 30425 | 108 | \begin{supertabular}{@ {} l @ {~::~} l l @ {}}
 | 
| 30370 | 109 | @{const Set.empty} & @{term_type_only "Set.empty" "'a set"}\\
 | 
| 32142 | 110 | @{const Set.insert} & @{term_type_only insert "'a\<Rightarrow>'a set\<Rightarrow>'a set"}\\
 | 
| 30293 | 111 | @{const Collect} & @{term_type_only Collect "('a\<Rightarrow>bool)\<Rightarrow>'a set"}\\
 | 
| 38323 | 112 | @{const Set.member} & @{term_type_only Set.member "'a\<Rightarrow>'a set\<Rightarrow>bool"} & (\texttt{:})\\
 | 
| 32208 | 113 | @{const Set.union} & @{term_type_only Set.union "'a set\<Rightarrow>'a set \<Rightarrow> 'a set"} & (\texttt{Un})\\
 | 
| 114 | @{const Set.inter} & @{term_type_only Set.inter "'a set\<Rightarrow>'a set \<Rightarrow> 'a set"} & (\texttt{Int})\\
 | |
| 30293 | 115 | @{const UNION} & @{term_type_only UNION "'a set\<Rightarrow>('a \<Rightarrow> 'b set) \<Rightarrow> 'b set"}\\
 | 
| 116 | @{const INTER} & @{term_type_only INTER "'a set\<Rightarrow>('a \<Rightarrow> 'b set) \<Rightarrow> 'b set"}\\
 | |
| 117 | @{const Union} & @{term_type_only Union "'a set set\<Rightarrow>'a set"}\\
 | |
| 118 | @{const Inter} & @{term_type_only Inter "'a set set\<Rightarrow>'a set"}\\
 | |
| 119 | @{const Pow} & @{term_type_only Pow "'a set \<Rightarrow>'a set set"}\\
 | |
| 120 | @{const UNIV} & @{term_type_only UNIV "'a set"}\\
 | |
| 121 | @{const image} & @{term_type_only image "('a\<Rightarrow>'b)\<Rightarrow>'a set\<Rightarrow>'b set"}\\
 | |
| 122 | @{const Ball} & @{term_type_only Ball "'a set\<Rightarrow>('a\<Rightarrow>bool)\<Rightarrow>bool"}\\
 | |
| 123 | @{const Bex} & @{term_type_only Bex "'a set\<Rightarrow>('a\<Rightarrow>bool)\<Rightarrow>bool"}\\
 | |
| 124 | \end{supertabular}
 | |
| 125 | ||
| 126 | \subsubsection*{Syntax}
 | |
| 127 | ||
| 30425 | 128 | \begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
 | 
| 30293 | 129 | @{text"{x\<^isub>1,\<dots>,x\<^isub>n}"} & @{text"insert x\<^isub>1 (\<dots> (insert x\<^isub>n {})\<dots>)"}\\
 | 
| 130 | @{term"x ~: A"} & @{term[source]"\<not>(x \<in> A)"}\\
 | |
| 131 | @{term"A \<subseteq> B"} & @{term[source]"A \<le> B"}\\
 | |
| 132 | @{term"A \<subset> B"} & @{term[source]"A < B"}\\
 | |
| 133 | @{term[source]"A \<supseteq> B"} & @{term[source]"B \<le> A"}\\
 | |
| 134 | @{term[source]"A \<supset> B"} & @{term[source]"B < A"}\\
 | |
| 30440 | 135 | @{term"{x. P}"} & @{term[source]"Collect (\<lambda>x. P)"}\\
 | 
| 30425 | 136 | @{term[mode=xsymbols]"UN x:I. A"} & @{term[source]"UNION I (\<lambda>x. A)"} & (\texttt{UN})\\
 | 
| 30370 | 137 | @{term[mode=xsymbols]"UN x. A"} & @{term[source]"UNION UNIV (\<lambda>x. A)"}\\
 | 
| 30425 | 138 | @{term[mode=xsymbols]"INT x:I. A"} & @{term[source]"INTER I (\<lambda>x. A)"} & (\texttt{INT})\\
 | 
| 30370 | 139 | @{term[mode=xsymbols]"INT x. A"} & @{term[source]"INTER UNIV (\<lambda>x. A)"}\\
 | 
| 30293 | 140 | @{term"ALL x:A. P"} & @{term[source]"Ball A (\<lambda>x. P)"}\\
 | 
| 141 | @{term"EX x:A. P"} & @{term[source]"Bex A (\<lambda>x. P)"}\\
 | |
| 142 | @{term"range f"} & @{term[source]"f ` UNIV"}\\
 | |
| 143 | \end{supertabular}
 | |
| 144 | ||
| 145 | ||
| 146 | \section{Fun}
 | |
| 147 | ||
| 32933 | 148 | \begin{supertabular}{@ {} l @ {~::~} l l @ {}}
 | 
| 30293 | 149 | @{const "Fun.id"} & @{typeof Fun.id}\\
 | 
| 32933 | 150 | @{const "Fun.comp"} & @{typeof Fun.comp} & (\texttt{o})\\
 | 
| 30293 | 151 | @{const "Fun.inj_on"} & @{term_type_only Fun.inj_on "('a\<Rightarrow>'b)\<Rightarrow>'a set\<Rightarrow>bool"}\\
 | 
| 152 | @{const "Fun.inj"} & @{typeof Fun.inj}\\
 | |
| 153 | @{const "Fun.surj"} & @{typeof Fun.surj}\\
 | |
| 154 | @{const "Fun.bij"} & @{typeof Fun.bij}\\
 | |
| 155 | @{const "Fun.bij_betw"} & @{term_type_only Fun.bij_betw "('a\<Rightarrow>'b)\<Rightarrow>'a set\<Rightarrow>'b set\<Rightarrow>bool"}\\
 | |
| 156 | @{const "Fun.fun_upd"} & @{typeof Fun.fun_upd}\\
 | |
| 157 | \end{supertabular}
 | |
| 158 | ||
| 159 | \subsubsection*{Syntax}
 | |
| 160 | ||
| 161 | \begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
 | |
| 162 | @{term"fun_upd f x y"} & @{term[source]"fun_upd f x y"}\\
 | |
| 163 | @{text"f(x\<^isub>1:=y\<^isub>1,\<dots>,x\<^isub>n:=y\<^isub>n)"} & @{text"f(x\<^isub>1:=y\<^isub>1)\<dots>(x\<^isub>n:=y\<^isub>n)"}\\
 | |
| 164 | \end{tabular}
 | |
| 165 | ||
| 166 | ||
| 33019 | 167 | \section{Hilbert\_Choice}
 | 
| 168 | ||
| 169 | Hilbert's selection ($\varepsilon$) operator: @{term"SOME x. P"}.
 | |
| 170 | \smallskip | |
| 171 | ||
| 172 | \begin{tabular}{@ {} l @ {~::~} l @ {}}
 | |
| 33057 | 173 | @{const Hilbert_Choice.inv_into} & @{term_type_only Hilbert_Choice.inv_into "'a set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'a)"}
 | 
| 33019 | 174 | \end{tabular}
 | 
| 175 | ||
| 176 | \subsubsection*{Syntax}
 | |
| 177 | ||
| 178 | \begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
 | |
| 33057 | 179 | @{term inv} & @{term[source]"inv_into UNIV"}
 | 
| 33019 | 180 | \end{tabular}
 | 
| 181 | ||
| 30293 | 182 | \section{Fixed Points}
 | 
| 183 | ||
| 184 | Theory: @{theory Inductive}.
 | |
| 185 | ||
| 186 | Least and greatest fixed points in a complete lattice @{typ 'a}:
 | |
| 187 | ||
| 188 | \begin{tabular}{@ {} l @ {~::~} l @ {}}
 | |
| 189 | @{const Inductive.lfp} & @{typeof Inductive.lfp}\\
 | |
| 190 | @{const Inductive.gfp} & @{typeof Inductive.gfp}\\
 | |
| 191 | \end{tabular}
 | |
| 192 | ||
| 193 | Note that in particular sets (@{typ"'a \<Rightarrow> bool"}) are complete lattices.
 | |
| 194 | ||
| 195 | \section{Sum\_Type}
 | |
| 196 | ||
| 197 | Type constructor @{text"+"}.
 | |
| 198 | ||
| 199 | \begin{tabular}{@ {} l @ {~::~} l @ {}}
 | |
| 200 | @{const Sum_Type.Inl} & @{typeof Sum_Type.Inl}\\
 | |
| 201 | @{const Sum_Type.Inr} & @{typeof Sum_Type.Inr}\\
 | |
| 202 | @{const Sum_Type.Plus} & @{term_type_only Sum_Type.Plus "'a set\<Rightarrow>'b set\<Rightarrow>('a+'b)set"}
 | |
| 203 | \end{tabular}
 | |
| 204 | ||
| 205 | ||
| 206 | \section{Product\_Type}
 | |
| 207 | ||
| 208 | Types @{typ unit} and @{text"\<times>"}.
 | |
| 209 | ||
| 210 | \begin{supertabular}{@ {} l @ {~::~} l @ {}}
 | |
| 211 | @{const Product_Type.Unity} & @{typeof Product_Type.Unity}\\
 | |
| 212 | @{const Pair} & @{typeof Pair}\\
 | |
| 213 | @{const fst} & @{typeof fst}\\
 | |
| 214 | @{const snd} & @{typeof snd}\\
 | |
| 215 | @{const split} & @{typeof split}\\
 | |
| 216 | @{const curry} & @{typeof curry}\\
 | |
| 217 | @{const Product_Type.Sigma} & @{term_type_only Product_Type.Sigma "'a set\<Rightarrow>('a\<Rightarrow>'b set)\<Rightarrow>('a*'b)set"}\\
 | |
| 218 | \end{supertabular}
 | |
| 219 | ||
| 220 | \subsubsection*{Syntax}
 | |
| 221 | ||
| 30440 | 222 | \begin{tabular}{@ {} l @ {\quad$\equiv$\quad} ll @ {}}
 | 
| 30293 | 223 | @{term"Pair a b"} & @{term[source]"Pair a b"}\\
 | 
| 224 | @{term"split (\<lambda>x y. t)"} & @{term[source]"split (\<lambda>x y. t)"}\\
 | |
| 30440 | 225 | @{term"A <*> B"} &  @{text"Sigma A (\<lambda>\<^raw:\_>. B)"} & (\verb$<*>$)
 | 
| 30293 | 226 | \end{tabular}
 | 
| 227 | ||
| 228 | Pairs may be nested. Nesting to the right is printed as a tuple, | |
| 30440 | 229 | e.g.\ \mbox{@{term"(a,b,c)"}} is really \mbox{@{text"(a, (b, c))"}.}
 | 
| 30293 | 230 | Pattern matching with pairs and tuples extends to all binders, | 
| 30440 | 231 | e.g.\ \mbox{@{prop"ALL (x,y):A. P"},} @{term"{(x,y). P}"}, etc.
 | 
| 30293 | 232 | |
| 233 | ||
| 234 | \section{Relation}
 | |
| 235 | ||
| 30440 | 236 | \begin{supertabular}{@ {} l @ {~::~} l @ {}}
 | 
| 30293 | 237 | @{const Relation.converse} & @{term_type_only Relation.converse "('a * 'b)set \<Rightarrow> ('b*'a)set"}\\
 | 
| 32243 | 238 | @{const Relation.rel_comp} & @{term_type_only Relation.rel_comp "('a*'b)set\<Rightarrow>('b*'c)set\<Rightarrow>('a*'c)set"}\\
 | 
| 30293 | 239 | @{const Relation.Image} & @{term_type_only Relation.Image "('a*'b)set\<Rightarrow>'a set\<Rightarrow>'b set"}\\
 | 
| 240 | @{const Relation.inv_image} & @{term_type_only Relation.inv_image "('a*'a)set\<Rightarrow>('b\<Rightarrow>'a)\<Rightarrow>('b*'b)set"}\\
 | |
| 241 | @{const Relation.Id_on} & @{term_type_only Relation.Id_on "'a set\<Rightarrow>('a*'a)set"}\\
 | |
| 242 | @{const Relation.Id} & @{term_type_only Relation.Id "('a*'a)set"}\\
 | |
| 243 | @{const Relation.Domain} & @{term_type_only Relation.Domain "('a*'b)set\<Rightarrow>'a set"}\\
 | |
| 244 | @{const Relation.Range} & @{term_type_only Relation.Range "('a*'b)set\<Rightarrow>'b set"}\\
 | |
| 245 | @{const Relation.Field} & @{term_type_only Relation.Field "('a*'a)set\<Rightarrow>'a set"}\\
 | |
| 246 | @{const Relation.refl_on} & @{term_type_only Relation.refl_on "'a set\<Rightarrow>('a*'a)set\<Rightarrow>bool"}\\
 | |
| 247 | @{const Relation.refl} & @{term_type_only Relation.refl "('a*'a)set\<Rightarrow>bool"}\\
 | |
| 248 | @{const Relation.sym} & @{term_type_only Relation.sym "('a*'a)set\<Rightarrow>bool"}\\
 | |
| 249 | @{const Relation.antisym} & @{term_type_only Relation.antisym "('a*'a)set\<Rightarrow>bool"}\\
 | |
| 250 | @{const Relation.trans} & @{term_type_only Relation.trans "('a*'a)set\<Rightarrow>bool"}\\
 | |
| 251 | @{const Relation.irrefl} & @{term_type_only Relation.irrefl "('a*'a)set\<Rightarrow>bool"}\\
 | |
| 252 | @{const Relation.total_on} & @{term_type_only Relation.total_on "'a set\<Rightarrow>('a*'a)set\<Rightarrow>bool"}\\
 | |
| 30440 | 253 | @{const Relation.total} & @{term_type_only Relation.total "('a*'a)set\<Rightarrow>bool"}\\
 | 
| 254 | \end{supertabular}
 | |
| 30293 | 255 | |
| 256 | \subsubsection*{Syntax}
 | |
| 257 | ||
| 30440 | 258 | \begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
 | 
| 259 | @{term"converse r"} & @{term[source]"converse r"} & (\verb$^-1$)
 | |
| 30293 | 260 | \end{tabular}
 | 
| 261 | ||
| 262 | \section{Equiv\_Relations}
 | |
| 263 | ||
| 264 | \begin{supertabular}{@ {} l @ {~::~} l @ {}}
 | |
| 265 | @{const Equiv_Relations.equiv} & @{term_type_only Equiv_Relations.equiv "'a set \<Rightarrow> ('a*'a)set\<Rightarrow>bool"}\\
 | |
| 266 | @{const Equiv_Relations.quotient} & @{term_type_only Equiv_Relations.quotient "'a set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> 'a set set"}\\
 | |
| 267 | @{const Equiv_Relations.congruent} & @{term_type_only Equiv_Relations.congruent "('a*'a)set\<Rightarrow>('a\<Rightarrow>'b)\<Rightarrow>bool"}\\
 | |
| 268 | @{const Equiv_Relations.congruent2} & @{term_type_only Equiv_Relations.congruent2 "('a*'a)set\<Rightarrow>('b*'b)set\<Rightarrow>('a\<Rightarrow>'b\<Rightarrow>'c)\<Rightarrow>bool"}\\
 | |
| 269 | %@ {const Equiv_Relations.} & @ {term_type_only Equiv_Relations. ""}\\
 | |
| 270 | \end{supertabular}
 | |
| 271 | ||
| 272 | \subsubsection*{Syntax}
 | |
| 273 | ||
| 274 | \begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
 | |
| 275 | @{term"congruent r f"} & @{term[source]"congruent r f"}\\
 | |
| 276 | @{term"congruent2 r r f"} & @{term[source]"congruent2 r r f"}\\
 | |
| 277 | \end{tabular}
 | |
| 278 | ||
| 279 | ||
| 280 | \section{Transitive\_Closure}
 | |
| 281 | ||
| 282 | \begin{tabular}{@ {} l @ {~::~} l @ {}}
 | |
| 283 | @{const Transitive_Closure.rtrancl} & @{term_type_only Transitive_Closure.rtrancl "('a*'a)set\<Rightarrow>('a*'a)set"}\\
 | |
| 284 | @{const Transitive_Closure.trancl} & @{term_type_only Transitive_Closure.trancl "('a*'a)set\<Rightarrow>('a*'a)set"}\\
 | |
| 285 | @{const Transitive_Closure.reflcl} & @{term_type_only Transitive_Closure.reflcl "('a*'a)set\<Rightarrow>('a*'a)set"}\\
 | |
| 30988 | 286 | @{const compower} & @{term_type_only "op ^^ :: ('a*'a)set\<Rightarrow>nat\<Rightarrow>('a*'a)set" "('a*'a)set\<Rightarrow>nat\<Rightarrow>('a*'a)set"}\\
 | 
| 30293 | 287 | \end{tabular}
 | 
| 288 | ||
| 289 | \subsubsection*{Syntax}
 | |
| 290 | ||
| 30440 | 291 | \begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
 | 
| 292 | @{term"rtrancl r"} & @{term[source]"rtrancl r"} & (\verb$^*$)\\
 | |
| 293 | @{term"trancl r"} & @{term[source]"trancl r"} & (\verb$^+$)\\
 | |
| 294 | @{term"reflcl r"} & @{term[source]"reflcl r"} & (\verb$^=$)
 | |
| 30293 | 295 | \end{tabular}
 | 
| 296 | ||
| 297 | ||
| 298 | \section{Algebra}
 | |
| 299 | ||
| 35061 | 300 | Theories @{theory Groups}, @{theory Rings}, @{theory Fields} and @{theory
 | 
| 30440 | 301 | Divides} define a large collection of classes describing common algebraic | 
| 302 | structures from semigroups up to fields. Everything is done in terms of | |
| 303 | overloaded operators: | |
| 304 | ||
| 305 | \begin{supertabular}{@ {} l @ {~::~} l l @ {}}
 | |
| 306 | @{text "0"} & @{typeof zero}\\
 | |
| 307 | @{text "1"} & @{typeof one}\\
 | |
| 308 | @{const plus} & @{typeof plus}\\
 | |
| 309 | @{const minus} & @{typeof minus}\\
 | |
| 310 | @{const uminus} & @{typeof uminus} & (\verb$-$)\\
 | |
| 311 | @{const times} & @{typeof times}\\
 | |
| 312 | @{const inverse} & @{typeof inverse}\\
 | |
| 313 | @{const divide} & @{typeof divide}\\
 | |
| 314 | @{const abs} & @{typeof abs}\\
 | |
| 315 | @{const sgn} & @{typeof sgn}\\
 | |
| 316 | @{const dvd_class.dvd} & @{typeof "dvd_class.dvd"}\\
 | |
| 317 | @{const div_class.div} & @{typeof "div_class.div"}\\
 | |
| 318 | @{const div_class.mod} & @{typeof "div_class.mod"}\\
 | |
| 319 | \end{supertabular}
 | |
| 320 | ||
| 321 | \subsubsection*{Syntax}
 | |
| 322 | ||
| 323 | \begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
 | |
| 324 | @{term"abs x"} & @{term[source]"abs x"}
 | |
| 325 | \end{tabular}
 | |
| 30293 | 326 | |
| 327 | ||
| 328 | \section{Nat}
 | |
| 329 | ||
| 330 | @{datatype nat}
 | |
| 331 | \bigskip | |
| 332 | ||
| 333 | \begin{tabular}{@ {} lllllll @ {}}
 | |
| 334 | @{term "op + :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
 | |
| 335 | @{term "op - :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
 | |
| 336 | @{term "op * :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
 | |
| 337 | @{term "op div :: nat \<Rightarrow> nat \<Rightarrow> nat"}&
 | |
| 338 | @{term "op mod :: nat \<Rightarrow> nat \<Rightarrow> nat"}&
 | |
| 339 | @{term "op dvd :: nat \<Rightarrow> nat \<Rightarrow> bool"}\\
 | |
| 340 | @{term "op \<le> :: nat \<Rightarrow> nat \<Rightarrow> bool"} &
 | |
| 341 | @{term "op < :: nat \<Rightarrow> nat \<Rightarrow> bool"} &
 | |
| 342 | @{term "min :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
 | |
| 343 | @{term "max :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
 | |
| 344 | @{term "Min :: nat set \<Rightarrow> nat"} &
 | |
| 345 | @{term "Max :: nat set \<Rightarrow> nat"}\\
 | |
| 346 | \end{tabular}
 | |
| 347 | ||
| 348 | \begin{tabular}{@ {} l @ {~::~} l @ {}}
 | |
| 30988 | 349 | @{const Nat.of_nat} & @{typeof Nat.of_nat}\\
 | 
| 350 | @{term "op ^^ :: ('a \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a"} &
 | |
| 351 |   @{term_type_only "op ^^ :: ('a \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a" "('a \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a"}
 | |
| 30293 | 352 | \end{tabular}
 | 
| 353 | ||
| 354 | \section{Int}
 | |
| 355 | ||
| 356 | Type @{typ int}
 | |
| 357 | \bigskip | |
| 358 | ||
| 359 | \begin{tabular}{@ {} llllllll @ {}}
 | |
| 360 | @{term "op + :: int \<Rightarrow> int \<Rightarrow> int"} &
 | |
| 361 | @{term "op - :: int \<Rightarrow> int \<Rightarrow> int"} &
 | |
| 362 | @{term "uminus :: int \<Rightarrow> int"} &
 | |
| 363 | @{term "op * :: int \<Rightarrow> int \<Rightarrow> int"} &
 | |
| 364 | @{term "op ^ :: int \<Rightarrow> nat \<Rightarrow> int"} &
 | |
| 365 | @{term "op div :: int \<Rightarrow> int \<Rightarrow> int"}&
 | |
| 366 | @{term "op mod :: int \<Rightarrow> int \<Rightarrow> int"}&
 | |
| 367 | @{term "op dvd :: int \<Rightarrow> int \<Rightarrow> bool"}\\
 | |
| 368 | @{term "op \<le> :: int \<Rightarrow> int \<Rightarrow> bool"} &
 | |
| 369 | @{term "op < :: int \<Rightarrow> int \<Rightarrow> bool"} &
 | |
| 370 | @{term "min :: int \<Rightarrow> int \<Rightarrow> int"} &
 | |
| 371 | @{term "max :: int \<Rightarrow> int \<Rightarrow> int"} &
 | |
| 372 | @{term "Min :: int set \<Rightarrow> int"} &
 | |
| 373 | @{term "Max :: int set \<Rightarrow> int"}\\
 | |
| 374 | @{term "abs :: int \<Rightarrow> int"} &
 | |
| 375 | @{term "sgn :: int \<Rightarrow> int"}\\
 | |
| 376 | \end{tabular}
 | |
| 377 | ||
| 30440 | 378 | \begin{tabular}{@ {} l @ {~::~} l l @ {}}
 | 
| 30293 | 379 | @{const Int.nat} & @{typeof Int.nat}\\
 | 
| 380 | @{const Int.of_int} & @{typeof Int.of_int}\\
 | |
| 30440 | 381 | @{const Int.Ints} & @{term_type_only Int.Ints "'a::ring_1 set"} & (\verb$Ints$)
 | 
| 30293 | 382 | \end{tabular}
 | 
| 383 | ||
| 384 | \subsubsection*{Syntax}
 | |
| 385 | ||
| 386 | \begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
 | |
| 387 | @{term"of_nat::nat\<Rightarrow>int"} & @{term[source]"of_nat"}\\
 | |
| 388 | \end{tabular}
 | |
| 389 | ||
| 390 | ||
| 30401 | 391 | \section{Finite\_Set}
 | 
| 392 | ||
| 393 | ||
| 394 | \begin{supertabular}{@ {} l @ {~::~} l @ {}}
 | |
| 395 | @{const Finite_Set.finite} & @{term_type_only Finite_Set.finite "'a set\<Rightarrow>bool"}\\
 | |
| 396 | @{const Finite_Set.card} & @{term_type_only Finite_Set.card "'a set => nat"}\\
 | |
| 397 | @{const Finite_Set.fold} & @{term_type_only Finite_Set.fold "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a set \<Rightarrow> 'b"}\\
 | |
| 398 | @{const Finite_Set.fold_image} & @{typ "('b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a set \<Rightarrow> 'b"}\\
 | |
| 35805 | 399 | @{const Big_Operators.setsum} & @{term_type_only Big_Operators.setsum "('a => 'b) => 'a set => 'b::comm_monoid_add"}\\
 | 
| 400 | @{const Big_Operators.setprod} & @{term_type_only Big_Operators.setprod "('a => 'b) => 'a set => 'b::comm_monoid_mult"}\\
 | |
| 30401 | 401 | \end{supertabular}
 | 
| 402 | ||
| 403 | ||
| 404 | \subsubsection*{Syntax}
 | |
| 405 | ||
| 30440 | 406 | \begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
 | 
| 407 | @{term"setsum (%x. x) A"} & @{term[source]"setsum (\<lambda>x. x) A"} & (\verb$SUM$)\\
 | |
| 30401 | 408 | @{term"setsum (%x. t) A"} & @{term[source]"setsum (\<lambda>x. t) A"}\\
 | 
| 409 | @{term[source]"\<Sum>x|P. t"} & @{term"\<Sum>x|P. t"}\\
 | |
| 30440 | 410 | \multicolumn{2}{@ {}l@ {}}{Similarly for @{text"\<Prod>"} instead of @{text"\<Sum>"}} & (\verb$PROD$)\\
 | 
| 30401 | 411 | \end{supertabular}
 | 
| 412 | ||
| 413 | ||
| 30293 | 414 | \section{Wellfounded}
 | 
| 415 | ||
| 416 | \begin{supertabular}{@ {} l @ {~::~} l @ {}}
 | |
| 417 | @{const Wellfounded.wf} & @{term_type_only Wellfounded.wf "('a*'a)set\<Rightarrow>bool"}\\
 | |
| 418 | @{const Wellfounded.acyclic} & @{term_type_only Wellfounded.acyclic "('a*'a)set\<Rightarrow>bool"}\\
 | |
| 419 | @{const Wellfounded.acc} & @{term_type_only Wellfounded.acc "('a*'a)set\<Rightarrow>'a set"}\\
 | |
| 420 | @{const Wellfounded.measure} & @{term_type_only Wellfounded.measure "('a\<Rightarrow>nat)\<Rightarrow>('a*'a)set"}\\
 | |
| 421 | @{const Wellfounded.lex_prod} & @{term_type_only Wellfounded.lex_prod "('a*'a)set\<Rightarrow>('b*'b)set\<Rightarrow>(('a*'b)*('a*'b))set"}\\
 | |
| 422 | @{const Wellfounded.mlex_prod} & @{term_type_only Wellfounded.mlex_prod "('a\<Rightarrow>nat)\<Rightarrow>('a*'a)set\<Rightarrow>('a*'a)set"}\\
 | |
| 423 | @{const Wellfounded.less_than} & @{term_type_only Wellfounded.less_than "(nat*nat)set"}\\
 | |
| 424 | @{const Wellfounded.pred_nat} & @{term_type_only Wellfounded.pred_nat "(nat*nat)set"}\\
 | |
| 425 | \end{supertabular}
 | |
| 426 | ||
| 427 | ||
| 30384 | 428 | \section{SetInterval}
 | 
| 30321 | 429 | |
| 430 | \begin{supertabular}{@ {} l @ {~::~} l @ {}}
 | |
| 30370 | 431 | @{const lessThan} & @{term_type_only lessThan "'a::ord \<Rightarrow> 'a set"}\\
 | 
| 432 | @{const atMost} & @{term_type_only atMost "'a::ord \<Rightarrow> 'a set"}\\
 | |
| 433 | @{const greaterThan} & @{term_type_only greaterThan "'a::ord \<Rightarrow> 'a set"}\\
 | |
| 434 | @{const atLeast} & @{term_type_only atLeast "'a::ord \<Rightarrow> 'a set"}\\
 | |
| 435 | @{const greaterThanLessThan} & @{term_type_only greaterThanLessThan "'a::ord \<Rightarrow> 'a \<Rightarrow> 'a set"}\\
 | |
| 436 | @{const atLeastLessThan} & @{term_type_only atLeastLessThan "'a::ord \<Rightarrow> 'a \<Rightarrow> 'a set"}\\
 | |
| 437 | @{const greaterThanAtMost} & @{term_type_only greaterThanAtMost "'a::ord \<Rightarrow> 'a \<Rightarrow> 'a set"}\\
 | |
| 438 | @{const atLeastAtMost} & @{term_type_only atLeastAtMost "'a::ord \<Rightarrow> 'a \<Rightarrow> 'a set"}\\
 | |
| 30321 | 439 | \end{supertabular}
 | 
| 440 | ||
| 441 | \subsubsection*{Syntax}
 | |
| 442 | ||
| 443 | \begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
 | |
| 444 | @{term "lessThan y"} & @{term[source] "lessThan y"}\\
 | |
| 445 | @{term "atMost y"} & @{term[source] "atMost y"}\\
 | |
| 446 | @{term "greaterThan x"} & @{term[source] "greaterThan x"}\\
 | |
| 447 | @{term "atLeast x"} & @{term[source] "atLeast x"}\\
 | |
| 448 | @{term "greaterThanLessThan x y"} & @{term[source] "greaterThanLessThan x y"}\\
 | |
| 449 | @{term "atLeastLessThan x y"} & @{term[source] "atLeastLessThan x y"}\\
 | |
| 450 | @{term "greaterThanAtMost x y"} & @{term[source] "greaterThanAtMost x y"}\\
 | |
| 451 | @{term "atLeastAtMost x y"} & @{term[source] "atLeastAtMost x y"}\\
 | |
| 30370 | 452 | @{term[mode=xsymbols] "UN i:{..n}. A"} & @{term[source] "\<Union> i \<in> {..n}. A"}\\
 | 
| 453 | @{term[mode=xsymbols] "UN i:{..<n}. A"} & @{term[source] "\<Union> i \<in> {..<n}. A"}\\
 | |
| 454 | \multicolumn{2}{@ {}l@ {}}{Similarly for @{text"\<Inter>"} instead of @{text"\<Union>"}}\\
 | |
| 30321 | 455 | @{term "setsum (%x. t) {a..b}"} & @{term[source] "setsum (\<lambda>x. t) {a..b}"}\\
 | 
| 30370 | 456 | @{term "setsum (%x. t) {a..<b}"} & @{term[source] "setsum (\<lambda>x. t) {a..<b}"}\\
 | 
| 30386 | 457 | @{term "setsum (%x. t) {..b}"} & @{term[source] "setsum (\<lambda>x. t) {..b}"}\\
 | 
| 458 | @{term "setsum (%x. t) {..<b}"} & @{term[source] "setsum (\<lambda>x. t) {..<b}"}\\
 | |
| 30372 | 459 | \multicolumn{2}{@ {}l@ {}}{Similarly for @{text"\<Prod>"} instead of @{text"\<Sum>"}}\\
 | 
| 30321 | 460 | \end{supertabular}
 | 
| 461 | ||
| 462 | ||
| 30293 | 463 | \section{Power}
 | 
| 464 | ||
| 465 | \begin{tabular}{@ {} l @ {~::~} l @ {}}
 | |
| 466 | @{const Power.power} & @{typeof Power.power}
 | |
| 467 | \end{tabular}
 | |
| 468 | ||
| 469 | ||
| 470 | \section{Option}
 | |
| 471 | ||
| 472 | @{datatype option}
 | |
| 473 | \bigskip | |
| 474 | ||
| 475 | \begin{tabular}{@ {} l @ {~::~} l @ {}}
 | |
| 476 | @{const Option.the} & @{typeof Option.the}\\
 | |
| 477 | @{const Option.map} & @{typ[source]"('a \<Rightarrow> 'b) \<Rightarrow> 'a option \<Rightarrow> 'b option"}\\
 | |
| 41532 | 478 | @{const Option.set} & @{term_type_only Option.set "'a option \<Rightarrow> 'a set"}\\
 | 
| 479 | @{const Option.bind} & @{term_type_only Option.bind "'a option \<Rightarrow> ('a \<Rightarrow> 'b option) \<Rightarrow> 'b option"}
 | |
| 30293 | 480 | \end{tabular}
 | 
| 481 | ||
| 482 | \section{List}
 | |
| 483 | ||
| 484 | @{datatype list}
 | |
| 485 | \bigskip | |
| 486 | ||
| 487 | \begin{supertabular}{@ {} l @ {~::~} l @ {}}
 | |
| 488 | @{const List.append} & @{typeof List.append}\\
 | |
| 489 | @{const List.butlast} & @{typeof List.butlast}\\
 | |
| 490 | @{const List.concat} & @{typeof List.concat}\\
 | |
| 491 | @{const List.distinct} & @{typeof List.distinct}\\
 | |
| 492 | @{const List.drop} & @{typeof List.drop}\\
 | |
| 493 | @{const List.dropWhile} & @{typeof List.dropWhile}\\
 | |
| 494 | @{const List.filter} & @{typeof List.filter}\\
 | |
| 495 | @{const List.foldl} & @{typeof List.foldl}\\
 | |
| 496 | @{const List.foldr} & @{typeof List.foldr}\\
 | |
| 497 | @{const List.hd} & @{typeof List.hd}\\
 | |
| 498 | @{const List.last} & @{typeof List.last}\\
 | |
| 499 | @{const List.length} & @{typeof List.length}\\
 | |
| 500 | @{const List.lenlex} & @{term_type_only List.lenlex "('a*'a)set\<Rightarrow>('a list * 'a list)set"}\\
 | |
| 501 | @{const List.lex} & @{term_type_only List.lex "('a*'a)set\<Rightarrow>('a list * 'a list)set"}\\
 | |
| 502 | @{const List.lexn} & @{term_type_only List.lexn "('a*'a)set\<Rightarrow>nat\<Rightarrow>('a list * 'a list)set"}\\
 | |
| 503 | @{const List.lexord} & @{term_type_only List.lexord "('a*'a)set\<Rightarrow>('a list * 'a list)set"}\\
 | |
| 504 | @{const List.listrel} & @{term_type_only List.listrel "('a*'a)set\<Rightarrow>('a list * 'a list)set"}\\
 | |
| 40272 | 505 | @{const List.listrel1} & @{term_type_only List.listrel1 "('a*'a)set\<Rightarrow>('a list * 'a list)set"}\\
 | 
| 30293 | 506 | @{const List.lists} & @{term_type_only List.lists "'a set\<Rightarrow>'a list set"}\\
 | 
| 507 | @{const List.listset} & @{term_type_only List.listset "'a set list \<Rightarrow> 'a list set"}\\
 | |
| 508 | @{const List.listsum} & @{typeof List.listsum}\\
 | |
| 509 | @{const List.list_all2} & @{typeof List.list_all2}\\
 | |
| 510 | @{const List.list_update} & @{typeof List.list_update}\\
 | |
| 511 | @{const List.map} & @{typeof List.map}\\
 | |
| 512 | @{const List.measures} & @{term_type_only List.measures "('a\<Rightarrow>nat)list\<Rightarrow>('a*'a)set"}\\
 | |
| 32933 | 513 | @{const List.nth} & @{typeof List.nth}\\
 | 
| 30293 | 514 | @{const List.remdups} & @{typeof List.remdups}\\
 | 
| 515 | @{const List.removeAll} & @{typeof List.removeAll}\\
 | |
| 516 | @{const List.remove1} & @{typeof List.remove1}\\
 | |
| 517 | @{const List.replicate} & @{typeof List.replicate}\\
 | |
| 518 | @{const List.rev} & @{typeof List.rev}\\
 | |
| 519 | @{const List.rotate} & @{typeof List.rotate}\\
 | |
| 520 | @{const List.rotate1} & @{typeof List.rotate1}\\
 | |
| 521 | @{const List.set} & @{term_type_only List.set "'a list \<Rightarrow> 'a set"}\\
 | |
| 522 | @{const List.sort} & @{typeof List.sort}\\
 | |
| 523 | @{const List.sorted} & @{typeof List.sorted}\\
 | |
| 524 | @{const List.splice} & @{typeof List.splice}\\
 | |
| 525 | @{const List.sublist} & @{typeof List.sublist}\\
 | |
| 526 | @{const List.take} & @{typeof List.take}\\
 | |
| 527 | @{const List.takeWhile} & @{typeof List.takeWhile}\\
 | |
| 528 | @{const List.tl} & @{typeof List.tl}\\
 | |
| 529 | @{const List.upt} & @{typeof List.upt}\\
 | |
| 530 | @{const List.upto} & @{typeof List.upto}\\
 | |
| 531 | @{const List.zip} & @{typeof List.zip}\\
 | |
| 532 | \end{supertabular}
 | |
| 533 | ||
| 534 | \subsubsection*{Syntax}
 | |
| 535 | ||
| 536 | \begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
 | |
| 537 | @{text"[x\<^isub>1,\<dots>,x\<^isub>n]"} & @{text"x\<^isub>1 # \<dots> # x\<^isub>n # []"}\\
 | |
| 538 | @{term"[m..<n]"} & @{term[source]"upt m n"}\\
 | |
| 539 | @{term"[i..j]"} & @{term[source]"upto i j"}\\
 | |
| 540 | @{text"[e. x \<leftarrow> xs]"} & @{term"map (%x. e) xs"}\\
 | |
| 541 | @{term"[x \<leftarrow> xs. b]"} & @{term[source]"filter (\<lambda>x. b) xs"} \\
 | |
| 542 | @{term"xs[n := x]"} & @{term[source]"list_update xs n x"}\\
 | |
| 543 | @{term"\<Sum>x\<leftarrow>xs. e"} & @{term[source]"listsum (map (\<lambda>x. e) xs)"}\\
 | |
| 544 | \end{supertabular}
 | |
| 545 | \medskip | |
| 546 | ||
| 30440 | 547 | List comprehension: @{text"[e. q\<^isub>1, \<dots>, q\<^isub>n]"} where each
 | 
| 548 | qualifier @{text q\<^isub>i} is either a generator \mbox{@{text"pat \<leftarrow> e"}} or a
 | |
| 30293 | 549 | guard, i.e.\ boolean expression. | 
| 550 | ||
| 551 | \section{Map}
 | |
| 552 | ||
| 553 | Maps model partial functions and are often used as finite tables. However, | |
| 554 | the domain of a map may be infinite. | |
| 555 | ||
| 556 | @{text"'a \<rightharpoonup> 'b  =  'a \<Rightarrow> 'b option"}
 | |
| 557 | \bigskip | |
| 558 | ||
| 559 | \begin{supertabular}{@ {} l @ {~::~} l @ {}}
 | |
| 560 | @{const Map.empty} & @{typeof Map.empty}\\
 | |
| 561 | @{const Map.map_add} & @{typeof Map.map_add}\\
 | |
| 562 | @{const Map.map_comp} & @{typeof Map.map_comp}\\
 | |
| 563 | @{const Map.restrict_map} & @{term_type_only Map.restrict_map "('a\<Rightarrow>'b option)\<Rightarrow>'a set\<Rightarrow>('a\<Rightarrow>'b option)"}\\
 | |
| 564 | @{const Map.dom} & @{term_type_only Map.dom "('a\<Rightarrow>'b option)\<Rightarrow>'a set"}\\
 | |
| 565 | @{const Map.ran} & @{term_type_only Map.ran "('a\<Rightarrow>'b option)\<Rightarrow>'b set"}\\
 | |
| 566 | @{const Map.map_le} & @{typeof Map.map_le}\\
 | |
| 567 | @{const Map.map_of} & @{typeof Map.map_of}\\
 | |
| 568 | @{const Map.map_upds} & @{typeof Map.map_upds}\\
 | |
| 569 | \end{supertabular}
 | |
| 570 | ||
| 571 | \subsubsection*{Syntax}
 | |
| 572 | ||
| 573 | \begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
 | |
| 30403 | 574 | @{term"Map.empty"} & @{term"\<lambda>x. None"}\\
 | 
| 30293 | 575 | @{term"m(x:=Some y)"} & @{term[source]"m(x:=Some y)"}\\
 | 
| 576 | @{text"m(x\<^isub>1\<mapsto>y\<^isub>1,\<dots>,x\<^isub>n\<mapsto>y\<^isub>n)"} & @{text[source]"m(x\<^isub>1\<mapsto>y\<^isub>1)\<dots>(x\<^isub>n\<mapsto>y\<^isub>n)"}\\
 | |
| 30440 | 577 | @{text"[x\<^isub>1\<mapsto>y\<^isub>1,\<dots>,x\<^isub>n\<mapsto>y\<^isub>n]"} & @{text[source]"Map.empty(x\<^isub>1\<mapsto>y\<^isub>1,\<dots>,x\<^isub>n\<mapsto>y\<^isub>n)"}\\
 | 
| 30293 | 578 | @{term"map_upds m xs ys"} & @{term[source]"map_upds m xs ys"}\\
 | 
| 579 | \end{tabular}
 | |
| 580 | ||
| 581 | *} | |
| 582 | (*<*) | |
| 583 | end | |
| 584 | (*>*) |