| 
1478
 | 
     1  | 
(*  Title:      ZF/Coind/Static.thy
  | 
| 
916
 | 
     2  | 
    ID:         $Id$
  | 
| 
1478
 | 
     3  | 
    Author:     Jacob Frost, Cambridge University Computer Laboratory
  | 
| 
916
 | 
     4  | 
    Copyright   1995  University of Cambridge
  | 
| 
 | 
     5  | 
*)
  | 
| 
 | 
     6  | 
  | 
| 
16417
 | 
     7  | 
theory Static imports Values Types begin
  | 
| 
12595
 | 
     8  | 
  | 
| 
 | 
     9  | 
(*** Basic correspondence relation -- not completely specified, as it is a
  | 
| 
 | 
    10  | 
     parameter of the proof.  A concrete version could be defined inductively.
  | 
| 
 | 
    11  | 
***)
  | 
| 
 | 
    12  | 
  | 
| 
 | 
    13  | 
consts
  | 
| 
 | 
    14  | 
  isof :: "[i,i] => o"
  | 
| 
 | 
    15  | 
  | 
| 
 | 
    16  | 
axioms
  | 
| 
 | 
    17  | 
  isof_app: "[|isof(c1,t_fun(t1,t2)); isof(c2,t1)|] ==> isof(c_app(c1,c2),t2)"
  | 
| 
 | 
    18  | 
  | 
| 
 | 
    19  | 
(*Its extension to environments*)
  | 
| 
 | 
    20  | 
  | 
| 
 | 
    21  | 
constdefs
  | 
| 
 | 
    22  | 
  isofenv :: "[i,i] => o"
  | 
| 
 | 
    23  | 
   "isofenv(ve,te) ==                
  | 
| 
 | 
    24  | 
      ve_dom(ve) = te_dom(te) &            
  | 
| 
 | 
    25  | 
      (\<forall>x \<in> ve_dom(ve).                          
  | 
| 
 | 
    26  | 
	\<exists>c \<in> Const. ve_app(ve,x) = v_const(c) & isof(c,te_app(te,x)))"
  | 
| 
 | 
    27  | 
  
  | 
| 
 | 
    28  | 
  | 
| 
 | 
    29  | 
(*** Elaboration ***)
  | 
| 
916
 | 
    30  | 
  | 
| 
6141
 | 
    31  | 
consts  ElabRel :: i
  | 
| 
 | 
    32  | 
  | 
| 
916
 | 
    33  | 
inductive
  | 
| 
 | 
    34  | 
  domains "ElabRel" <= "TyEnv * Exp * Ty"
  | 
| 
12595
 | 
    35  | 
  intros
  | 
| 
 | 
    36  | 
    constI [intro!]:
  | 
| 
 | 
    37  | 
      "[| te \<in> TyEnv; c \<in> Const; t \<in> Ty; isof(c,t) |] ==>   
  | 
| 
 | 
    38  | 
       <te,e_const(c),t> \<in> ElabRel"
  | 
| 
 | 
    39  | 
    varI [intro!]:
  | 
| 
 | 
    40  | 
      "[| te \<in> TyEnv; x \<in> ExVar; x \<in> te_dom(te) |] ==>   
  | 
| 
 | 
    41  | 
       <te,e_var(x),te_app(te,x)> \<in> ElabRel"
  | 
| 
 | 
    42  | 
    fnI [intro!]:
  | 
| 
 | 
    43  | 
      "[| te \<in> TyEnv; x \<in> ExVar; e \<in> Exp; t1 \<in> Ty; t2 \<in> Ty;   
  | 
| 
 | 
    44  | 
          <te_owr(te,x,t1),e,t2> \<in> ElabRel |] ==>   
  | 
| 
 | 
    45  | 
       <te,e_fn(x,e),t_fun(t1,t2)> \<in> ElabRel"
  | 
| 
 | 
    46  | 
    fixI [intro!]:
  | 
| 
 | 
    47  | 
      "[| te \<in> TyEnv; f \<in> ExVar; x \<in> ExVar; t1 \<in> Ty; t2 \<in> Ty;   
  | 
| 
 | 
    48  | 
          <te_owr(te_owr(te,f,t_fun(t1,t2)),x,t1),e,t2> \<in> ElabRel |] ==>   
  | 
| 
 | 
    49  | 
       <te,e_fix(f,x,e),t_fun(t1,t2)> \<in> ElabRel"
  | 
| 
 | 
    50  | 
    appI [intro]:
  | 
| 
 | 
    51  | 
      "[| te \<in> TyEnv; e1 \<in> Exp; e2 \<in> Exp; t1 \<in> Ty; t2 \<in> Ty;   
  | 
| 
 | 
    52  | 
          <te,e1,t_fun(t1,t2)> \<in> ElabRel;   
  | 
| 
 | 
    53  | 
          <te,e2,t1> \<in> ElabRel |] ==> <te,e_app(e1,e2),t2> \<in> ElabRel"
  | 
| 
 | 
    54  | 
  type_intros te_appI Exp.intros Ty.intros
  | 
| 
 | 
    55  | 
  | 
| 
 | 
    56  | 
  | 
| 
12610
 | 
    57  | 
inductive_cases
  | 
| 
 | 
    58  | 
    elab_constE [elim!]: "<te,e_const(c),t> \<in> ElabRel"
  | 
| 
 | 
    59  | 
  and elab_varE [elim!]: "<te,e_var(x),t> \<in> ElabRel"
  | 
| 
 | 
    60  | 
  and elab_fnE [elim]:   "<te,e_fn(x,e),t> \<in> ElabRel"
  | 
| 
 | 
    61  | 
  and elab_fixE [elim!]: "<te,e_fix(f,x,e),t> \<in> ElabRel"
  | 
| 
 | 
    62  | 
  and elab_appE [elim]:  "<te,e_app(e1,e2),t> \<in> ElabRel"
  | 
| 
12595
 | 
    63  | 
  | 
| 
 | 
    64  | 
declare ElabRel.dom_subset [THEN subsetD, dest]
  | 
| 
916
 | 
    65  | 
  | 
| 
 | 
    66  | 
end
  | 
| 
 | 
    67  | 
  
  | 
| 
 | 
    68  | 
  | 
| 
 | 
    69  | 
  | 
| 
 | 
    70  | 
  | 
| 
 | 
    71  | 
  | 
| 
 | 
    72  | 
  | 
| 
 | 
    73  | 
  | 
| 
 | 
    74  | 
  | 
| 
 | 
    75  | 
  | 
| 
 | 
    76  | 
  | 
| 
 | 
    77  | 
  | 
| 
 | 
    78  | 
  | 
| 
 | 
    79  | 
  | 
| 
 | 
    80  | 
  | 
| 
 | 
    81  | 
  | 
| 
 | 
    82  | 
  | 
| 
 | 
    83  | 
  | 
| 
 | 
    84  | 
  | 
| 
 | 
    85  | 
  | 
| 
 | 
    86  | 
  | 
| 
 | 
    87  | 
  | 
| 
 | 
    88  | 
  |