| 23664 |      1 | theory ComputeNumeral
 | 
|  |      2 | imports ComputeHOL Float
 | 
|  |      3 | begin
 | 
|  |      4 | 
 | 
|  |      5 | (* normalization of bit strings *)
 | 
|  |      6 | lemmas bitnorm = Pls_0_eq Min_1_eq
 | 
|  |      7 | 
 | 
|  |      8 | (* neg for bit strings *)
 | 
|  |      9 | lemma neg1: "neg Numeral.Pls = False" by (simp add: Numeral.Pls_def)
 | 
|  |     10 | lemma neg2: "neg Numeral.Min = True" apply (subst Numeral.Min_def) by auto
 | 
|  |     11 | lemma neg3: "neg (x BIT Numeral.B0) = neg x" apply (simp add: neg_def) apply (subst Bit_def) by auto
 | 
|  |     12 | lemma neg4: "neg (x BIT Numeral.B1) = neg x" apply (simp add: neg_def) apply (subst Bit_def) by auto  
 | 
|  |     13 | lemmas bitneg = neg1 neg2 neg3 neg4
 | 
|  |     14 | 
 | 
|  |     15 | (* iszero for bit strings *)
 | 
|  |     16 | lemma iszero1: "iszero Numeral.Pls = True" by (simp add: Numeral.Pls_def iszero_def)
 | 
|  |     17 | lemma iszero2: "iszero Numeral.Min = False" apply (subst Numeral.Min_def) apply (subst iszero_def) by simp
 | 
|  |     18 | lemma iszero3: "iszero (x BIT Numeral.B0) = iszero x" apply (subst Numeral.Bit_def) apply (subst iszero_def)+ by auto
 | 
|  |     19 | lemma iszero4: "iszero (x BIT Numeral.B1) = False" apply (subst Numeral.Bit_def) apply (subst iszero_def)+  apply simp by arith
 | 
|  |     20 | lemmas bitiszero = iszero1 iszero2 iszero3 iszero4
 | 
|  |     21 | 
 | 
|  |     22 | (* lezero for bit strings *)
 | 
|  |     23 | constdefs
 | 
|  |     24 |   "lezero x == (x \<le> 0)"
 | 
|  |     25 | lemma lezero1: "lezero Numeral.Pls = True" unfolding Numeral.Pls_def lezero_def by auto
 | 
|  |     26 | lemma lezero2: "lezero Numeral.Min = True" unfolding Numeral.Min_def lezero_def by auto
 | 
|  |     27 | lemma lezero3: "lezero (x BIT Numeral.B0) = lezero x" unfolding Numeral.Bit_def lezero_def by auto
 | 
|  |     28 | lemma lezero4: "lezero (x BIT Numeral.B1) = neg x" unfolding Numeral.Bit_def lezero_def neg_def by auto
 | 
|  |     29 | lemmas bitlezero = lezero1 lezero2 lezero3 lezero4
 | 
|  |     30 | 
 | 
|  |     31 | (* equality for bit strings *)
 | 
|  |     32 | lemma biteq1: "(Numeral.Pls = Numeral.Pls) = True" by auto
 | 
|  |     33 | lemma biteq2: "(Numeral.Min = Numeral.Min) = True" by auto
 | 
|  |     34 | lemma biteq3: "(Numeral.Pls = Numeral.Min) = False" unfolding Pls_def Min_def by auto
 | 
|  |     35 | lemma biteq4: "(Numeral.Min = Numeral.Pls) = False" unfolding Pls_def Min_def by auto
 | 
|  |     36 | lemma biteq5: "(x BIT Numeral.B0 = y BIT Numeral.B0) = (x = y)" unfolding Bit_def by auto
 | 
|  |     37 | lemma biteq6: "(x BIT Numeral.B1 = y BIT Numeral.B1) = (x = y)" unfolding Bit_def by auto
 | 
|  |     38 | lemma biteq7: "(x BIT Numeral.B0 = y BIT Numeral.B1) = False" unfolding Bit_def by (simp, arith) 
 | 
|  |     39 | lemma biteq8: "(x BIT Numeral.B1 = y BIT Numeral.B0) = False" unfolding Bit_def by (simp, arith)
 | 
|  |     40 | lemma biteq9: "(Numeral.Pls = x BIT Numeral.B0) = (Numeral.Pls = x)" unfolding Bit_def Pls_def by auto
 | 
|  |     41 | lemma biteq10: "(Numeral.Pls = x BIT Numeral.B1) = False" unfolding Bit_def Pls_def by (simp, arith) 
 | 
|  |     42 | lemma biteq11: "(Numeral.Min = x BIT Numeral.B0) = False" unfolding Bit_def Min_def by (simp, arith)
 | 
|  |     43 | lemma biteq12: "(Numeral.Min = x BIT Numeral.B1) = (Numeral.Min = x)" unfolding Bit_def Min_def by auto
 | 
|  |     44 | lemma biteq13: "(x BIT Numeral.B0 = Numeral.Pls) = (x = Numeral.Pls)" unfolding Bit_def Pls_def by auto
 | 
|  |     45 | lemma biteq14: "(x BIT Numeral.B1 = Numeral.Pls) = False" unfolding Bit_def Pls_def by (simp, arith)
 | 
|  |     46 | lemma biteq15: "(x BIT Numeral.B0 = Numeral.Min) = False" unfolding Bit_def Pls_def Min_def by (simp, arith)
 | 
|  |     47 | lemma biteq16: "(x BIT Numeral.B1 = Numeral.Min) = (x = Numeral.Min)" unfolding Bit_def Min_def by (simp, arith)
 | 
|  |     48 | lemmas biteq = biteq1 biteq2 biteq3 biteq4 biteq5 biteq6 biteq7 biteq8 biteq9 biteq10 biteq11 biteq12 biteq13 biteq14 biteq15 biteq16
 | 
|  |     49 | 
 | 
|  |     50 | (* x < y for bit strings *)
 | 
|  |     51 | lemma bitless1: "(Numeral.Pls < Numeral.Min) = False" unfolding Pls_def Min_def by auto
 | 
|  |     52 | lemma bitless2: "(Numeral.Pls < Numeral.Pls) = False" by auto
 | 
|  |     53 | lemma bitless3: "(Numeral.Min < Numeral.Pls) = True" unfolding Pls_def Min_def by auto
 | 
|  |     54 | lemma bitless4: "(Numeral.Min < Numeral.Min) = False" unfolding Pls_def Min_def by auto
 | 
|  |     55 | lemma bitless5: "(x BIT Numeral.B0 < y BIT Numeral.B0) = (x < y)" unfolding Bit_def by auto
 | 
|  |     56 | lemma bitless6: "(x BIT Numeral.B1 < y BIT Numeral.B1) = (x < y)" unfolding Bit_def by auto
 | 
|  |     57 | lemma bitless7: "(x BIT Numeral.B0 < y BIT Numeral.B1) = (x \<le> y)" unfolding Bit_def by auto
 | 
|  |     58 | lemma bitless8: "(x BIT Numeral.B1 < y BIT Numeral.B0) = (x < y)" unfolding Bit_def by auto
 | 
|  |     59 | lemma bitless9: "(Numeral.Pls < x BIT Numeral.B0) = (Numeral.Pls < x)" unfolding Bit_def Pls_def by auto
 | 
|  |     60 | lemma bitless10: "(Numeral.Pls < x BIT Numeral.B1) = (Numeral.Pls \<le> x)" unfolding Bit_def Pls_def by auto
 | 
|  |     61 | lemma bitless11: "(Numeral.Min < x BIT Numeral.B0) = (Numeral.Pls \<le> x)" unfolding Bit_def Pls_def Min_def by auto
 | 
|  |     62 | lemma bitless12: "(Numeral.Min < x BIT Numeral.B1) = (Numeral.Min < x)" unfolding Bit_def Min_def by auto
 | 
|  |     63 | lemma bitless13: "(x BIT Numeral.B0 < Numeral.Pls) = (x < Numeral.Pls)" unfolding Bit_def Pls_def by auto
 | 
|  |     64 | lemma bitless14: "(x BIT Numeral.B1 < Numeral.Pls) = (x < Numeral.Pls)" unfolding Bit_def Pls_def by auto
 | 
|  |     65 | lemma bitless15: "(x BIT Numeral.B0 < Numeral.Min) = (x < Numeral.Pls)" unfolding Bit_def Pls_def Min_def by auto
 | 
|  |     66 | lemma bitless16: "(x BIT Numeral.B1 < Numeral.Min) = (x < Numeral.Min)" unfolding Bit_def Min_def by auto
 | 
|  |     67 | lemmas bitless = bitless1 bitless2 bitless3 bitless4 bitless5 bitless6 bitless7 bitless8 
 | 
|  |     68 |                  bitless9 bitless10 bitless11 bitless12 bitless13 bitless14 bitless15 bitless16
 | 
|  |     69 | 
 | 
|  |     70 | (* x \<le> y for bit strings *)
 | 
|  |     71 | lemma bitle1: "(Numeral.Pls \<le> Numeral.Min) = False" unfolding Pls_def Min_def by auto
 | 
|  |     72 | lemma bitle2: "(Numeral.Pls \<le> Numeral.Pls) = True" by auto
 | 
|  |     73 | lemma bitle3: "(Numeral.Min \<le> Numeral.Pls) = True" unfolding Pls_def Min_def by auto
 | 
|  |     74 | lemma bitle4: "(Numeral.Min \<le> Numeral.Min) = True" unfolding Pls_def Min_def by auto
 | 
|  |     75 | lemma bitle5: "(x BIT Numeral.B0 \<le> y BIT Numeral.B0) = (x \<le> y)" unfolding Bit_def by auto
 | 
|  |     76 | lemma bitle6: "(x BIT Numeral.B1 \<le> y BIT Numeral.B1) = (x \<le> y)" unfolding Bit_def by auto
 | 
|  |     77 | lemma bitle7: "(x BIT Numeral.B0 \<le> y BIT Numeral.B1) = (x \<le> y)" unfolding Bit_def by auto
 | 
|  |     78 | lemma bitle8: "(x BIT Numeral.B1 \<le> y BIT Numeral.B0) = (x < y)" unfolding Bit_def by auto
 | 
|  |     79 | lemma bitle9: "(Numeral.Pls \<le> x BIT Numeral.B0) = (Numeral.Pls \<le> x)" unfolding Bit_def Pls_def by auto
 | 
|  |     80 | lemma bitle10: "(Numeral.Pls \<le> x BIT Numeral.B1) = (Numeral.Pls \<le> x)" unfolding Bit_def Pls_def by auto
 | 
|  |     81 | lemma bitle11: "(Numeral.Min \<le> x BIT Numeral.B0) = (Numeral.Pls \<le> x)" unfolding Bit_def Pls_def Min_def by auto
 | 
|  |     82 | lemma bitle12: "(Numeral.Min \<le> x BIT Numeral.B1) = (Numeral.Min \<le> x)" unfolding Bit_def Min_def by auto
 | 
|  |     83 | lemma bitle13: "(x BIT Numeral.B0 \<le> Numeral.Pls) = (x \<le> Numeral.Pls)" unfolding Bit_def Pls_def by auto
 | 
|  |     84 | lemma bitle14: "(x BIT Numeral.B1 \<le> Numeral.Pls) = (x < Numeral.Pls)" unfolding Bit_def Pls_def by auto
 | 
|  |     85 | lemma bitle15: "(x BIT Numeral.B0 \<le> Numeral.Min) = (x < Numeral.Pls)" unfolding Bit_def Pls_def Min_def by auto
 | 
|  |     86 | lemma bitle16: "(x BIT Numeral.B1 \<le> Numeral.Min) = (x \<le> Numeral.Min)" unfolding Bit_def Min_def by auto
 | 
|  |     87 | lemmas bitle = bitle1 bitle2 bitle3 bitle4 bitle5 bitle6 bitle7 bitle8 
 | 
|  |     88 |                  bitle9 bitle10 bitle11 bitle12 bitle13 bitle14 bitle15 bitle16
 | 
|  |     89 | 
 | 
|  |     90 | (* succ for bit strings *)
 | 
|  |     91 | lemmas bitsucc = succ_Pls succ_Min succ_1 succ_0
 | 
|  |     92 | 
 | 
|  |     93 | (* pred for bit strings *)
 | 
|  |     94 | lemmas bitpred = pred_Pls pred_Min pred_1 pred_0
 | 
|  |     95 | 
 | 
|  |     96 | (* unary minus for bit strings *)
 | 
|  |     97 | lemmas bituminus = minus_Pls minus_Min minus_1 minus_0 
 | 
|  |     98 | 
 | 
|  |     99 | (* addition for bit strings *)
 | 
|  |    100 | lemmas bitadd = add_Pls add_Pls_right add_Min add_Min_right add_BIT_11 add_BIT_10 add_BIT_0[where b="Numeral.B0"] add_BIT_0[where b="Numeral.B1"]
 | 
|  |    101 | 
 | 
|  |    102 | (* multiplication for bit strings *) 
 | 
|  |    103 | lemma mult_Pls_right: "x * Numeral.Pls = Numeral.Pls" by (simp add: Pls_def)
 | 
|  |    104 | lemma mult_Min_right: "x * Numeral.Min = - x" by (subst mult_commute, simp add: mult_Min)
 | 
|  |    105 | lemma multb0x: "(x BIT Numeral.B0) * y = (x * y) BIT Numeral.B0" unfolding Bit_def by simp
 | 
|  |    106 | lemma multxb0: "x * (y BIT Numeral.B0) = (x * y) BIT Numeral.B0" unfolding Bit_def by simp
 | 
|  |    107 | lemma multb1: "(x BIT Numeral.B1) * (y BIT Numeral.B1) = (((x * y) BIT Numeral.B0) + x + y) BIT Numeral.B1"
 | 
|  |    108 |   unfolding Bit_def by (simp add: ring_simps)
 | 
|  |    109 | lemmas bitmul = mult_Pls mult_Min mult_Pls_right mult_Min_right multb0x multxb0 multb1
 | 
|  |    110 | 
 | 
|  |    111 | lemmas bitarith = bitnorm bitiszero bitneg bitlezero biteq bitless bitle bitsucc bitpred bituminus bitadd bitmul 
 | 
|  |    112 | 
 | 
|  |    113 | constdefs 
 | 
|  |    114 |   "nat_norm_number_of (x::nat) == x"
 | 
|  |    115 | 
 | 
|  |    116 | lemma nat_norm_number_of: "nat_norm_number_of (number_of w) = (if lezero w then 0 else number_of w)"
 | 
|  |    117 |   apply (simp add: nat_norm_number_of_def)
 | 
|  |    118 |   unfolding lezero_def iszero_def neg_def
 | 
|  |    119 |   apply (simp add: number_of_is_id)
 | 
|  |    120 |   done
 | 
|  |    121 | 
 | 
|  |    122 | (* Normalization of nat literals *)
 | 
|  |    123 | lemma natnorm0: "(0::nat) = number_of (Numeral.Pls)" by auto
 | 
|  |    124 | lemma natnorm1: "(1 :: nat) = number_of (Numeral.Pls BIT Numeral.B1)"  by auto 
 | 
|  |    125 | lemmas natnorm = natnorm0 natnorm1 nat_norm_number_of
 | 
|  |    126 | 
 | 
|  |    127 | (* Suc *)
 | 
|  |    128 | lemma natsuc: "Suc (number_of x) = (if neg x then 1 else number_of (Numeral.succ x))" by (auto simp add: number_of_is_id)
 | 
|  |    129 | 
 | 
|  |    130 | (* Addition for nat *)
 | 
|  |    131 | lemma natadd: "number_of x + ((number_of y)::nat) = (if neg x then (number_of y) else (if neg y then number_of x else (number_of (x + y))))"
 | 
|  |    132 |   by (auto simp add: number_of_is_id)
 | 
|  |    133 | 
 | 
|  |    134 | (* Subtraction for nat *)
 | 
|  |    135 | lemma natsub: "(number_of x) - ((number_of y)::nat) = 
 | 
|  |    136 |   (if neg x then 0 else (if neg y then number_of x else (nat_norm_number_of (number_of (x + (- y))))))"
 | 
|  |    137 |   unfolding nat_norm_number_of
 | 
|  |    138 |   by (auto simp add: number_of_is_id neg_def lezero_def iszero_def Let_def nat_number_of_def)
 | 
|  |    139 | 
 | 
|  |    140 | (* Multiplication for nat *)
 | 
|  |    141 | lemma natmul: "(number_of x) * ((number_of y)::nat) = 
 | 
|  |    142 |   (if neg x then 0 else (if neg y then 0 else number_of (x * y)))"
 | 
|  |    143 |   apply (auto simp add: number_of_is_id neg_def iszero_def)
 | 
|  |    144 |   apply (case_tac "x > 0")
 | 
|  |    145 |   apply auto
 | 
|  |    146 |   apply (simp add: mult_strict_left_mono[where a=y and b=0 and c=x, simplified])
 | 
|  |    147 |   done
 | 
|  |    148 | 
 | 
|  |    149 | lemma nateq: "(((number_of x)::nat) = (number_of y)) = ((lezero x \<and> lezero y) \<or> (x = y))"
 | 
|  |    150 |   by (auto simp add: iszero_def lezero_def neg_def number_of_is_id)
 | 
|  |    151 | 
 | 
|  |    152 | lemma natless: "(((number_of x)::nat) < (number_of y)) = ((x < y) \<and> (\<not> (lezero y)))"
 | 
|  |    153 |   by (auto simp add: number_of_is_id neg_def lezero_def)
 | 
|  |    154 | 
 | 
|  |    155 | lemma natle: "(((number_of x)::nat) \<le> (number_of y)) = (y < x \<longrightarrow> lezero x)"
 | 
|  |    156 |   by (auto simp add: number_of_is_id lezero_def nat_number_of_def)
 | 
|  |    157 | 
 | 
|  |    158 | fun natfac :: "nat \<Rightarrow> nat"
 | 
|  |    159 | where
 | 
|  |    160 |    "natfac n = (if n = 0 then 1 else n * (natfac (n - 1)))"
 | 
|  |    161 | 
 | 
|  |    162 | lemmas compute_natarith = bitarith natnorm natsuc natadd natsub natmul nateq natless natle natfac.simps
 | 
|  |    163 | 
 | 
|  |    164 | lemma number_eq: "(((number_of x)::'a::{number_ring, ordered_idom}) = (number_of y)) = (x = y)"
 | 
|  |    165 |   unfolding number_of_eq
 | 
|  |    166 |   apply simp
 | 
|  |    167 |   done
 | 
|  |    168 | 
 | 
|  |    169 | lemma number_le: "(((number_of x)::'a::{number_ring, ordered_idom}) \<le>  (number_of y)) = (x \<le> y)"
 | 
|  |    170 |   unfolding number_of_eq
 | 
|  |    171 |   apply simp
 | 
|  |    172 |   done
 | 
|  |    173 | 
 | 
|  |    174 | lemma number_less: "(((number_of x)::'a::{number_ring, ordered_idom}) <  (number_of y)) = (x < y)"
 | 
|  |    175 |   unfolding number_of_eq 
 | 
|  |    176 |   apply simp
 | 
|  |    177 |   done
 | 
|  |    178 | 
 | 
|  |    179 | lemma number_diff: "((number_of x)::'a::{number_ring, ordered_idom}) - number_of y = number_of (x + (- y))"
 | 
|  |    180 |   apply (subst diff_number_of_eq)
 | 
|  |    181 |   apply simp
 | 
|  |    182 |   done
 | 
|  |    183 | 
 | 
|  |    184 | lemmas number_norm = number_of_Pls[symmetric] numeral_1_eq_1[symmetric]
 | 
|  |    185 | 
 | 
|  |    186 | lemmas compute_numberarith = number_of_minus[symmetric] number_of_add[symmetric] number_diff number_of_mult[symmetric] number_norm number_eq number_le number_less
 | 
|  |    187 | 
 | 
|  |    188 | lemma compute_real_of_nat_number_of: "real ((number_of v)::nat) = (if neg v then 0 else number_of v)"
 | 
|  |    189 |   by (simp only: real_of_nat_number_of number_of_is_id)
 | 
|  |    190 | 
 | 
|  |    191 | lemma compute_nat_of_int_number_of: "nat ((number_of v)::int) = (number_of v)"
 | 
|  |    192 |   by simp
 | 
|  |    193 | 
 | 
|  |    194 | lemmas compute_num_conversions = compute_real_of_nat_number_of compute_nat_of_int_number_of real_number_of
 | 
|  |    195 | 
 | 
|  |    196 | lemmas zpowerarith = zpower_number_of_even
 | 
|  |    197 |   zpower_number_of_odd[simplified zero_eq_Numeral0_nring one_eq_Numeral1_nring]
 | 
|  |    198 |   zpower_Pls zpower_Min
 | 
|  |    199 | 
 | 
|  |    200 | (* div, mod *)
 | 
|  |    201 | 
 | 
|  |    202 | lemma adjust: "adjust b (q, r) = (if 0 \<le> r - b then (2 * q + 1, r - b) else (2 * q, r))"
 | 
|  |    203 |   by (auto simp only: adjust_def)
 | 
|  |    204 | 
 | 
|  |    205 | lemma negateSnd: "negateSnd (q, r) = (q, -r)" 
 | 
|  |    206 |   by (auto simp only: negateSnd_def)
 | 
|  |    207 | 
 | 
|  |    208 | lemma divAlg: "divAlg (a, b) = (if 0\<le>a then
 | 
|  |    209 |                   if 0\<le>b then posDivAlg a b
 | 
|  |    210 |                   else if a=0 then (0, 0)
 | 
|  |    211 |                        else negateSnd (negDivAlg (-a) (-b))
 | 
|  |    212 |                else 
 | 
|  |    213 |                   if 0<b then negDivAlg a b
 | 
|  |    214 |                   else negateSnd (posDivAlg (-a) (-b)))"
 | 
|  |    215 |   by (auto simp only: divAlg_def)
 | 
|  |    216 | 
 | 
|  |    217 | lemmas compute_div_mod = div_def mod_def divAlg adjust negateSnd posDivAlg.simps negDivAlg.simps
 | 
|  |    218 | 
 | 
|  |    219 | 
 | 
|  |    220 | 
 | 
|  |    221 | (* collecting all the theorems *)
 | 
|  |    222 | 
 | 
|  |    223 | lemma even_Pls: "even (Numeral.Pls) = True"
 | 
|  |    224 |   apply (unfold Pls_def even_def)
 | 
|  |    225 |   by simp
 | 
|  |    226 | 
 | 
|  |    227 | lemma even_Min: "even (Numeral.Min) = False"
 | 
|  |    228 |   apply (unfold Min_def even_def)
 | 
|  |    229 |   by simp
 | 
|  |    230 | 
 | 
|  |    231 | lemma even_B0: "even (x BIT Numeral.B0) = True"
 | 
|  |    232 |   apply (unfold Bit_def)
 | 
|  |    233 |   by simp
 | 
|  |    234 | 
 | 
|  |    235 | lemma even_B1: "even (x BIT Numeral.B1) = False"
 | 
|  |    236 |   apply (unfold Bit_def)
 | 
|  |    237 |   by simp
 | 
|  |    238 | 
 | 
|  |    239 | lemma even_number_of: "even ((number_of w)::int) = even w"
 | 
|  |    240 |   by (simp only: number_of_is_id)
 | 
|  |    241 | 
 | 
|  |    242 | lemmas compute_even = even_Pls even_Min even_B0 even_B1 even_number_of
 | 
|  |    243 | 
 | 
|  |    244 | lemmas compute_numeral = compute_if compute_let compute_pair compute_bool 
 | 
|  |    245 |                          compute_natarith compute_numberarith max_def min_def compute_num_conversions zpowerarith compute_div_mod compute_even
 | 
|  |    246 | 
 | 
|  |    247 | end
 | 
|  |    248 | 
 | 
|  |    249 | 
 | 
|  |    250 | 
 |