17006
|
1 |
(* Title: HOL/FixedPoint.thy
|
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
Copyright 1992 University of Cambridge
|
|
5 |
*)
|
|
6 |
|
|
7 |
header{* Fixed Points and the Knaster-Tarski Theorem*}
|
|
8 |
|
|
9 |
theory FixedPoint
|
|
10 |
imports Product_Type
|
|
11 |
begin
|
|
12 |
|
|
13 |
constdefs
|
|
14 |
lfp :: "['a set \<Rightarrow> 'a set] \<Rightarrow> 'a set"
|
|
15 |
"lfp(f) == Inter({u. f(u) \<subseteq> u})" --{*least fixed point*}
|
|
16 |
|
|
17 |
gfp :: "['a set=>'a set] => 'a set"
|
|
18 |
"gfp(f) == Union({u. u \<subseteq> f(u)})"
|
|
19 |
|
|
20 |
|
|
21 |
subsection{*Proof of Knaster-Tarski Theorem using @{term lfp}*}
|
|
22 |
|
|
23 |
|
|
24 |
text{*@{term "lfp f"} is the least upper bound of
|
|
25 |
the set @{term "{u. f(u) \<subseteq> u}"} *}
|
|
26 |
|
|
27 |
lemma lfp_lowerbound: "f(A) \<subseteq> A ==> lfp(f) \<subseteq> A"
|
|
28 |
by (auto simp add: lfp_def)
|
|
29 |
|
|
30 |
lemma lfp_greatest: "[| !!u. f(u) \<subseteq> u ==> A\<subseteq>u |] ==> A \<subseteq> lfp(f)"
|
|
31 |
by (auto simp add: lfp_def)
|
|
32 |
|
|
33 |
lemma lfp_lemma2: "mono(f) ==> f(lfp(f)) \<subseteq> lfp(f)"
|
17589
|
34 |
by (iprover intro: lfp_greatest subset_trans monoD lfp_lowerbound)
|
17006
|
35 |
|
|
36 |
lemma lfp_lemma3: "mono(f) ==> lfp(f) \<subseteq> f(lfp(f))"
|
17589
|
37 |
by (iprover intro: lfp_lemma2 monoD lfp_lowerbound)
|
17006
|
38 |
|
|
39 |
lemma lfp_unfold: "mono(f) ==> lfp(f) = f(lfp(f))"
|
17589
|
40 |
by (iprover intro: equalityI lfp_lemma2 lfp_lemma3)
|
17006
|
41 |
|
|
42 |
subsection{*General induction rules for greatest fixed points*}
|
|
43 |
|
|
44 |
lemma lfp_induct:
|
|
45 |
assumes lfp: "a: lfp(f)"
|
|
46 |
and mono: "mono(f)"
|
|
47 |
and indhyp: "!!x. [| x: f(lfp(f) Int {x. P(x)}) |] ==> P(x)"
|
|
48 |
shows "P(a)"
|
|
49 |
apply (rule_tac a=a in Int_lower2 [THEN subsetD, THEN CollectD])
|
|
50 |
apply (rule lfp [THEN [2] lfp_lowerbound [THEN subsetD]])
|
|
51 |
apply (rule Int_greatest)
|
|
52 |
apply (rule subset_trans [OF Int_lower1 [THEN mono [THEN monoD]]
|
|
53 |
mono [THEN lfp_lemma2]])
|
|
54 |
apply (blast intro: indhyp)
|
|
55 |
done
|
|
56 |
|
|
57 |
|
|
58 |
text{*Version of induction for binary relations*}
|
|
59 |
lemmas lfp_induct2 = lfp_induct [of "(a,b)", split_format (complete)]
|
|
60 |
|
|
61 |
|
|
62 |
lemma lfp_ordinal_induct:
|
|
63 |
assumes mono: "mono f"
|
|
64 |
shows "[| !!S. P S ==> P(f S); !!M. !S:M. P S ==> P(Union M) |]
|
|
65 |
==> P(lfp f)"
|
|
66 |
apply(subgoal_tac "lfp f = Union{S. S \<subseteq> lfp f & P S}")
|
|
67 |
apply (erule ssubst, simp)
|
|
68 |
apply(subgoal_tac "Union{S. S \<subseteq> lfp f & P S} \<subseteq> lfp f")
|
|
69 |
prefer 2 apply blast
|
|
70 |
apply(rule equalityI)
|
|
71 |
prefer 2 apply assumption
|
|
72 |
apply(drule mono [THEN monoD])
|
|
73 |
apply (cut_tac mono [THEN lfp_unfold], simp)
|
|
74 |
apply (rule lfp_lowerbound, auto)
|
|
75 |
done
|
|
76 |
|
|
77 |
|
|
78 |
text{*Definition forms of @{text lfp_unfold} and @{text lfp_induct},
|
|
79 |
to control unfolding*}
|
|
80 |
|
|
81 |
lemma def_lfp_unfold: "[| h==lfp(f); mono(f) |] ==> h = f(h)"
|
|
82 |
by (auto intro!: lfp_unfold)
|
|
83 |
|
|
84 |
lemma def_lfp_induct:
|
|
85 |
"[| A == lfp(f); mono(f); a:A;
|
|
86 |
!!x. [| x: f(A Int {x. P(x)}) |] ==> P(x)
|
|
87 |
|] ==> P(a)"
|
|
88 |
by (blast intro: lfp_induct)
|
|
89 |
|
|
90 |
(*Monotonicity of lfp!*)
|
|
91 |
lemma lfp_mono: "[| !!Z. f(Z)\<subseteq>g(Z) |] ==> lfp(f) \<subseteq> lfp(g)"
|
|
92 |
by (rule lfp_lowerbound [THEN lfp_greatest], blast)
|
|
93 |
|
|
94 |
|
|
95 |
subsection{*Proof of Knaster-Tarski Theorem using @{term gfp}*}
|
|
96 |
|
|
97 |
|
|
98 |
text{*@{term "gfp f"} is the greatest lower bound of
|
|
99 |
the set @{term "{u. u \<subseteq> f(u)}"} *}
|
|
100 |
|
|
101 |
lemma gfp_upperbound: "[| X \<subseteq> f(X) |] ==> X \<subseteq> gfp(f)"
|
|
102 |
by (auto simp add: gfp_def)
|
|
103 |
|
|
104 |
lemma gfp_least: "[| !!u. u \<subseteq> f(u) ==> u\<subseteq>X |] ==> gfp(f) \<subseteq> X"
|
|
105 |
by (auto simp add: gfp_def)
|
|
106 |
|
|
107 |
lemma gfp_lemma2: "mono(f) ==> gfp(f) \<subseteq> f(gfp(f))"
|
17589
|
108 |
by (iprover intro: gfp_least subset_trans monoD gfp_upperbound)
|
17006
|
109 |
|
|
110 |
lemma gfp_lemma3: "mono(f) ==> f(gfp(f)) \<subseteq> gfp(f)"
|
17589
|
111 |
by (iprover intro: gfp_lemma2 monoD gfp_upperbound)
|
17006
|
112 |
|
|
113 |
lemma gfp_unfold: "mono(f) ==> gfp(f) = f(gfp(f))"
|
17589
|
114 |
by (iprover intro: equalityI gfp_lemma2 gfp_lemma3)
|
17006
|
115 |
|
|
116 |
subsection{*Coinduction rules for greatest fixed points*}
|
|
117 |
|
|
118 |
text{*weak version*}
|
|
119 |
lemma weak_coinduct: "[| a: X; X \<subseteq> f(X) |] ==> a : gfp(f)"
|
|
120 |
by (rule gfp_upperbound [THEN subsetD], auto)
|
|
121 |
|
|
122 |
lemma weak_coinduct_image: "!!X. [| a : X; g`X \<subseteq> f (g`X) |] ==> g a : gfp f"
|
|
123 |
apply (erule gfp_upperbound [THEN subsetD])
|
|
124 |
apply (erule imageI)
|
|
125 |
done
|
|
126 |
|
|
127 |
lemma coinduct_lemma:
|
|
128 |
"[| X \<subseteq> f(X Un gfp(f)); mono(f) |] ==> X Un gfp(f) \<subseteq> f(X Un gfp(f))"
|
|
129 |
by (blast dest: gfp_lemma2 mono_Un)
|
|
130 |
|
|
131 |
text{*strong version, thanks to Coen and Frost*}
|
|
132 |
lemma coinduct: "[| mono(f); a: X; X \<subseteq> f(X Un gfp(f)) |] ==> a : gfp(f)"
|
|
133 |
by (blast intro: weak_coinduct [OF _ coinduct_lemma])
|
|
134 |
|
|
135 |
lemma gfp_fun_UnI2: "[| mono(f); a: gfp(f) |] ==> a: f(X Un gfp(f))"
|
|
136 |
by (blast dest: gfp_lemma2 mono_Un)
|
|
137 |
|
|
138 |
subsection{*Even Stronger Coinduction Rule, by Martin Coen*}
|
|
139 |
|
|
140 |
text{* Weakens the condition @{term "X \<subseteq> f(X)"} to one expressed using both
|
|
141 |
@{term lfp} and @{term gfp}*}
|
|
142 |
|
|
143 |
lemma coinduct3_mono_lemma: "mono(f) ==> mono(%x. f(x) Un X Un B)"
|
17589
|
144 |
by (iprover intro: subset_refl monoI Un_mono monoD)
|
17006
|
145 |
|
|
146 |
lemma coinduct3_lemma:
|
|
147 |
"[| X \<subseteq> f(lfp(%x. f(x) Un X Un gfp(f))); mono(f) |]
|
|
148 |
==> lfp(%x. f(x) Un X Un gfp(f)) \<subseteq> f(lfp(%x. f(x) Un X Un gfp(f)))"
|
|
149 |
apply (rule subset_trans)
|
|
150 |
apply (erule coinduct3_mono_lemma [THEN lfp_lemma3])
|
|
151 |
apply (rule Un_least [THEN Un_least])
|
|
152 |
apply (rule subset_refl, assumption)
|
|
153 |
apply (rule gfp_unfold [THEN equalityD1, THEN subset_trans], assumption)
|
|
154 |
apply (rule monoD, assumption)
|
|
155 |
apply (subst coinduct3_mono_lemma [THEN lfp_unfold], auto)
|
|
156 |
done
|
|
157 |
|
|
158 |
lemma coinduct3:
|
|
159 |
"[| mono(f); a:X; X \<subseteq> f(lfp(%x. f(x) Un X Un gfp(f))) |] ==> a : gfp(f)"
|
|
160 |
apply (rule coinduct3_lemma [THEN [2] weak_coinduct])
|
|
161 |
apply (rule coinduct3_mono_lemma [THEN lfp_unfold, THEN ssubst], auto)
|
|
162 |
done
|
|
163 |
|
|
164 |
|
|
165 |
text{*Definition forms of @{text gfp_unfold} and @{text coinduct},
|
|
166 |
to control unfolding*}
|
|
167 |
|
|
168 |
lemma def_gfp_unfold: "[| A==gfp(f); mono(f) |] ==> A = f(A)"
|
|
169 |
by (auto intro!: gfp_unfold)
|
|
170 |
|
|
171 |
lemma def_coinduct:
|
|
172 |
"[| A==gfp(f); mono(f); a:X; X \<subseteq> f(X Un A) |] ==> a: A"
|
|
173 |
by (auto intro!: coinduct)
|
|
174 |
|
|
175 |
(*The version used in the induction/coinduction package*)
|
|
176 |
lemma def_Collect_coinduct:
|
|
177 |
"[| A == gfp(%w. Collect(P(w))); mono(%w. Collect(P(w)));
|
|
178 |
a: X; !!z. z: X ==> P (X Un A) z |] ==>
|
|
179 |
a : A"
|
|
180 |
apply (erule def_coinduct, auto)
|
|
181 |
done
|
|
182 |
|
|
183 |
lemma def_coinduct3:
|
|
184 |
"[| A==gfp(f); mono(f); a:X; X \<subseteq> f(lfp(%x. f(x) Un X Un A)) |] ==> a: A"
|
|
185 |
by (auto intro!: coinduct3)
|
|
186 |
|
|
187 |
text{*Monotonicity of @{term gfp}!*}
|
|
188 |
lemma gfp_mono: "[| !!Z. f(Z)\<subseteq>g(Z) |] ==> gfp(f) \<subseteq> gfp(g)"
|
|
189 |
by (rule gfp_upperbound [THEN gfp_least], blast)
|
|
190 |
|
|
191 |
|
|
192 |
ML
|
|
193 |
{*
|
|
194 |
val lfp_def = thm "lfp_def";
|
|
195 |
val lfp_lowerbound = thm "lfp_lowerbound";
|
|
196 |
val lfp_greatest = thm "lfp_greatest";
|
|
197 |
val lfp_unfold = thm "lfp_unfold";
|
|
198 |
val lfp_induct = thm "lfp_induct";
|
|
199 |
val lfp_induct2 = thm "lfp_induct2";
|
|
200 |
val lfp_ordinal_induct = thm "lfp_ordinal_induct";
|
|
201 |
val def_lfp_unfold = thm "def_lfp_unfold";
|
|
202 |
val def_lfp_induct = thm "def_lfp_induct";
|
|
203 |
val lfp_mono = thm "lfp_mono";
|
|
204 |
val gfp_def = thm "gfp_def";
|
|
205 |
val gfp_upperbound = thm "gfp_upperbound";
|
|
206 |
val gfp_least = thm "gfp_least";
|
|
207 |
val gfp_unfold = thm "gfp_unfold";
|
|
208 |
val weak_coinduct = thm "weak_coinduct";
|
|
209 |
val weak_coinduct_image = thm "weak_coinduct_image";
|
|
210 |
val coinduct = thm "coinduct";
|
|
211 |
val gfp_fun_UnI2 = thm "gfp_fun_UnI2";
|
|
212 |
val coinduct3 = thm "coinduct3";
|
|
213 |
val def_gfp_unfold = thm "def_gfp_unfold";
|
|
214 |
val def_coinduct = thm "def_coinduct";
|
|
215 |
val def_Collect_coinduct = thm "def_Collect_coinduct";
|
|
216 |
val def_coinduct3 = thm "def_coinduct3";
|
|
217 |
val gfp_mono = thm "gfp_mono";
|
|
218 |
*}
|
|
219 |
|
|
220 |
end
|